
HAL Id: hal-02305449
https://hal.science/hal-02305449v1

Submitted on 21 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Approach for Constraint Solving in Model
Transformations

Youness Laghouaouta, Pierre Laforcade

To cite this version:
Youness Laghouaouta, Pierre Laforcade. A Practical Approach for Constraint Solving in Model Trans-
formations. Software Technologies, 1077, Springer, pp.104-123, 2019, Communications in Computer
and Information Science, �10.1007/978-3-030-29157-0_5�. �hal-02305449�

https://hal.science/hal-02305449v1
https://hal.archives-ouvertes.fr

A practical approach for constraint solving in model
transformations

Youness Laghouaouta1 and Pierre Laforcade1

Computer Laboratory of Le Mans University, France
{youness.lahouaouta, pierre.laforcade}@univ-lemans.fr

Abstract. As MDE (Model Driven Engineering) principles are increasingly ap-
plied in the development of complex software, the use of constraint solving in the
specification of model transformations is often required. However, transformation
techniques do not provide fully integrated supports for solving constraints, and
external solvers are not well adapted. To deal with this issue, this paper proposes
a pattern-matching based approach as a promising solution for enforcing con-
straints on target models. A transformation infrastructure is semi-automatically
generated and it provides support for specifying patterns, searching for match
models, and producing valid target models. Finally, a use case is presented in
order to illustrate our contribution.

Keywords: Model Driven Engineering, Model Transformation, Pattern Match-
ing, Constraint Satisfaction Problem.

1 Introduction

In Model Driven Engineering (MDE), the primary focus is on models rather than com-
puting concepts. Models represent all artifacts handled by a software development pro-
cess and can be used as first class entities in dedicated model management operations
(e.g. model transformation, model composition, model validation. . .).

The model transformation operation is one the pillar of MDE. It underpins the
automatic generation of target models from source ones (i.e. generally higher level
models). The managed models conform to metamodels that define the structure and
well-formedness rules. Besides, a transformation specification/definition includes de-
scriptions of how constructs of source metamodels can be transformed into constructs
of target metamodels [15]. Several related techniques have been proposed to provide
developers with supports to implement transformation scenarios (e.g. [6][11][16]).

The obtained target models have to conform to the structuring defined by the implied
metamodel and satisfy all the related constraints. In practice, constraints cannot be ex-
pressed by means of metamodel constructs and require the use of additional formalisms
(e.g. OCL [17]). Likewise, model transformation techniques are not well supported for
enforcing all constraints. Indeed, developers are constrained to use external constraint
solvers or libraries.

However, expressing a Constraint Satisfaction Problem (CSP) is a complex and
error prone activity. This is due to the fact that constraint solvers support numeric values
while model transformations are expressed against model elements. Hence, developers

2 Y. Lahouaouta and P. Laforcade

are faced with the two domains divergence and are obliged to establish and manage non
evident correspondences between these domains.

Our contribution is then a practical constraint solving approach for model transfor-
mations. The objective is to allow enforcing constraint on target models while simplify-
ing the expression of the constraint based problem. To this aim, a CSP is considered as
a pattern matching problem specified by means of model elements. Besides, the pattern
matching is included in a global process that allows producing the expected target mod-
els of a given transformation scenario. In [13], we have presented the base principles
of the proposed approach and give the primary results. The current chapter extends this
work and focuses on parametric patterns.

The remainder of this chapter is structured as follows. In Section 2, we present the
context of this research work and motivate the need for a practical constraint solving
approach for model transformations. Section 3 gives a global overview of the proposed
approach, while Section 4 focuses on implementation details. In section 5, we demon-
strate the soundness of our approach using an illustrative transformation scenario. Sec-
tion 5 lists related work. Finally, Section 6 summarizes this paper and presents future
work.

2 Motivation

This research work is conducted in the context of the Escape it! project. The objective is
to develop a serious game to train visual skills of children with ASD (Autistic Syndrome
Disorder). Given the specific needs of autistic children, it was crucial to involve ASD
experts in the first development stage. The aim is to guarantee that the proposed game
fits to ASD characteristics while to be individually adaptive to each child.

MDE provides principles and techniques that allow domain experts to take part of
the design activity and guide the development of the game. Indeed, the domain elements
(i.e. children profiles, game components and game scenarios) can be expressed in a
high level of abstraction so that the implication of domain experts does not require a
technical background. Also, model transformations make it possible to deal with the
scenarization process (i.e. the other alternative would be to design and implement all
possible configurations of scenarios). Indeed, the profile model and game component
model can be transformed to automatically produce adapted scenarios. These latter are
used to validate the domain elements and rules that are relevant for the generation of
scenarios and will subsequently form a basis for real exploitation within the game.

In [12], we have proposed a metamodel for structuring all the dimensions related
to the game. As for the generation of scenarios adapted to children profiles, it is im-
plemented as a model transformation written in Java/EMF [20]. Certainly, the proposed
implementation allows optimizing the validation task in the sense that game scenarios
are generated in demand and without additional effort. However, the problem arises
when domain experts suggest alterations of the domain rules that drive the generation.

The identification of transformation fragments impacted by an expressed change is
a complex task. Indeed, the way the transformation is specified does not reveal matches
between each experts direction/requirement (i.e. considered here as a constraint) and
the transformation fragments that allow building conformed models. In addition, the

A practical approach for constraint solving in model transformations 3

experts directions/requirements are not easy to implement even when the transforma-
tion is specified from scratch. Several constraints are expressed in order of priority.
Moreover, they are global constraints as they are attached to a set of model elements
and not to separated ones. In fact, the proposed model transformation uses an external
constraints solving library to tackle some very specific generation steps.

As a feedback from the co-design sessions conducted with ASD experts, we real-
ize that MDE provides support for adaptive generation of scenarios and allows varying
situations proposed to domain experts without significant effort. However, the way to
implement the production of learning scenarios is problematic (i.e. especially when
changes are expressed). Hence, we have exploited other model transformations lan-
guages/supports (i.e. ETL language [11] and the meta-language Melange [3]) to express
the generation of scenarios.

Although ETL allows specifying the transformation in a much more structured way
compared to Java/EMF (e.g. rules, operations, pre and post blocks), the lack of a CSP
support raises a significant issue. As for Melange (i.e. a language workbench that al-
lows expressing operational semantics by augmenting meta-classes with behaviors), the
generation concern is specified in a modular manner which helps to identify the compo-
nents (e.g. metaclasses, operations) related to the expressed change. Also, it is possible
to reuse existing Java libraries for CSP solving. However, like the Java/EMF transfor-
mation, it is not easy to express the direction/requirement of the expert by means of
CSP. This is due to the divergence between domains of values supported by the CSP
solver (essentially integer and real values) and the concerned model elements.

The next section details our proposal for a model transformation approach that fa-
cilitates the expression of problems addressed by constraints satisfaction. Our goal is to
deal with the objectives below:

1. the generation of target models by transforming source ones;
2. the specification of constraints applied to target models in a simple manner and

constraint solving;
3. the modification or reconfiguration of the transformation in case of constraint changes.

We have to notice that details concerning the last objective are out of the paper
scope.

3 Global overview

This section explains how a model transformation implying constraint solving could be
considered as a pattern matching problem. We give the base principles of our approach
and present an illustrative example. Thereafter, we detail the structuring the pattern
matching problem.

3.1 Base principles

Basically, a CSP is defined as a set of variables, variable domains (i.e. possible values
for each variable) and a set of constraints. A solution is an assignment of values to each

4 Y. Lahouaouta and P. Laforcade

variable that satisfies every constraint. As for graph pattern matching, it is based on
(sub)graph isomorphism and requires finding an image (i.e. match) of a given graph
(i.e. pattern graph) in another graph (i.e. source graph) [14].

In the literature, several work address the joint use of CSP and pattern matching
[19][14][21]. Essentially, the graph pattern matching is expressed and resolved as a
CSP. The aim is to improve matching performance by exploiting the rich and advanced
research work done in the CSP field. In order to obtain the CSP equivalent of a pattern
matching problem, some matches have been established between concepts of the two
domains [19]:

– CSP variables correspond to the objects of the pattern graph;
– variable domains correspond to the source graph objects to be matched into;
– constraints correspond to the restrictions that apply to a graph morphism.

Our approach is based on a reverse use of these matches. The core principle is to
consider a pattern matching problem as a high level specification of a CSP. Hence,
a CSP problem over a model can be directly expressed by means of model elements
rather than establishing non evident matches to basic variable domains supported by
CSP solvers (e.g. integers, reals).

Figure 1 gives a global overview of our approach. A model transformation that
implies constraint solving is decomposed into two steps: a pattern matching step and a
transformation step. The idea is to express all constraints to enforce on target models
through a relevant pattern. The found match is then transformed into valid target models.
Therefore, the expression of the pattern has to consider the following requirements:

– although the pattern is expressed by means of source model elements, it has to
ensure the satisfaction of all constraints related to target models;

– a match model has to be sufficient enough to ensure a complete generation of target
models.

Furthermore, the expression of a pattern is decomposed into two parts. The struc-
ture part refers to the elements to be matched into source models, while the constraint
part refers to the different constraints that force the identification of a match model.
This decoupling makes it possible to associate multiple constraints (i.e. classed by or-
der of priority) to the same pattern. Also, variation of a constraint does not affect the
transformation because this latter is specified using the pattern structure.

3.2 Illustrative example

The transformation scenario we have chosen to illustrate the base principles of our
proposal consists in producing a piling up of triangles. These triangles are matched
from those belonging to the source model (see Figure 2). This latter contains a set of
squares with a colored background with numbered triangles of different areas. Each
produced triangle must preserve the same area of its source equivalent and have the
background color of the container square. Besides, the produced model must include as
many triangles as source squares.

As for constraints to to be satisfied by the target model, they are listed by order of
priority:

A practical approach for constraint solving in model transformations 5

Fig. 1. Global overview of the transformation process

1. the piling up must be coherent (i.e. the area of the contained triangle must be less
than the container one) and the target triangles must have different color.

2. the piling up must be coherent.

Fig. 2. Simple application example

For this transformation scenario, the pattern structure consists of an ordered set of
three triangles (because the source model contains three squares). Each one can match
one of the source triangles. As for the constraints part, we specify that the piling up
must be coherent and triangles must have different colors. The less prioritized constraint

6 Y. Lahouaouta and P. Laforcade

allows producing a coherent piling up of triangles regardless their colors. We have to
notice that the two constraints express what has to be satisfied by target models, but they
cannot be directly applied on the pattern structure elements. In fact, other constraint are
derived from expressed ones to specify the validation logic of a model matched using
the pattern structure. The relevant correspondences are given below:

– The piling up must be coherent: the matched triangles are in descending order of
area.

– target triangles must have different color: the matched triangles must belong to
different squares.

The matching process uses the high level constraint to search for a valid model. In
case of no match is found (e.g. considering that triangles 1 and 5 have the same area),
models matched using the pattern structure are validated against the less prioritized
constraint. Once a valid match occurs, the transformation is applied on each matched
triangle for copying it and assigning the background color of its container. We have
to notice that squares are not matched by the pattern. They are derived from matched
triangles.

3.3 Configuration metamodel

As discussed before, the pattern specification (i.e. structure and constraints parts) under-
pins the proposed transformation approach. The relevant information is considered as
a configuration for generating the transformation infrastructure. It is stored in a model
which conforms to the metamodel depicted in Figure 3.

Fig. 3. Configuration metamodel

A configuration references different models (i.e. source models, target models and
the implied metamodels). As for the pattern structure, a configuration is defined by
multiple role types. Each one can be considered as an abstraction of a set of concrete
roles (i.e. pattern elements used to match source model elements) sharing same char-
acteristics or managed as a set. Indeed, a RoleType is characterized by the number of

A practical approach for constraint solving in model transformations 7

concrete roles and it references a specific source model element type. The number of
concrete roles can be fixed (expressed using the nbRoles attribute) or parametric (ex-
pressed using the nbRolesP reference). In the latter case, the roles number corresponds
to the resolution of the expression value which depends on the managed models.

For example, the pattern depicted in Figure 2 can be expressed by one RoleType
instance. This latter references the model element type corresponding to triangles, while
the number of concrete roles is parametric and corresponds to the number of source
squares. Therefore, the declared role type is an abstraction of three concrete roles and
each of them is used to match a unique triangle of the source model.

As for to the pattern constraint part, a configuration expresses if a match model is
validated against one constraint level (SimpleConstraint) or multi-levels and prioritized
constraints (PrioritizedConstraint). A constraint is characterized by a name that gives
an idea of the validation logic. One can note that the complete constraints specification
(i.e. by means of conditions for example) is not covered by the proposed metamodel.
Indeed, the configuration model does not ensure the generation of the entire transforma-
tion infrastructure. This latter includes resources that have to be manually completed by
developers. The next section details these aspects by presenting the infrastructure gen-
eration process.

4 Transformation infrastructure

In this section, we detail the generation process of the infrastructure supporting our
approach for CSP solving in model transformations (see Figure 4).

Fig. 4. Process for generating the transformation infrastructure

8 Y. Lahouaouta and P. Laforcade

4.1 Generate configuration

The first step to produce the transformation infrastructure is the generation of the con-
figuration. For that, we provide developers with a GUI allowing them to specify all
paths of the managed models and metamodels to which they conform. A configuration
model can then be automatically generated. It includes the input information as well as
other automatically derived data (e.g. metamodels URIs, model elements types).

4.2 Complete configuration

Recaling from Section 3.3, the configuration model has to be completed with the pat-
tern structure as well as with the constraints type (i.e. simple or hierarchical). To make
this task easier for developers, we have associated a concrete textual syntax to the con-
figuration metamodel and implemented a dedicated XText editor [1].

4.3 Generate infrastructure

Once the configuration is completed, developers can ask for the automatic generation
of the transformation infrastructure. This is concretely done by associating a specific
EPL pattern [9] to each constraint level (i.e. in case of hierarchical constraints).

EPL is a language that provides support for the specification and detection of struc-
tural patterns in models that conform to diverse metamodels [9]. Essentially, an EPL
pattern consists of a set of typed roles used to capture adequate combinations from
source models and a match condition to evaluate the validity of a combination. In our
case, typed roles are derived from RoleType instances (i.e. with respect to nbRoles,
nbRolesP, type and refModel values) while the match condition is viewed as a Boolean
operation that references a considered constraint.

Besides, the sequencing of the patterns execution is described as an ANT-based Ep-
silon workflow [8]. For each EPL pattern, a dedicated target and task pair is generated.
Besides, depends properties of each generated target are specified in order to prohibits
the execution of a successor pattern (i.e. with respect to constraint priorities which is
derived from the order of declaration) if a match has already been found for the current
pattern.

These details are hidden to developers by separating the patterns (i.e. generated
automatically) from some required resources to be completed (i.e. transformation, val-
idation, domain restrictions and metaclasses operations). Figure 5 depicts details of the
patterns execution activities.

4.4 Complete resources

Since all the patterns have the same structure (i.e. derived from the configuration model),
a developer needs to provide only one specification for transforming match models. The
transformation is specified by means of EOL operations [10] that are applied the match
model elements to produce a valid target model.

Regarding constraints, they are expressed in the validation resource. Indeed, for
each constraint, a specific EOL operation is generated and it allows accessing the match

A practical approach for constraint solving in model transformations 9

Fig. 5. Patterns execution

model elements. The generated operations must be implemented by the developer in
order to express the validation logic (i.e. when a model captured by pattern roles is
considered to be a valid match).

Domain restriction resources make it possible to refine the constraints specification.
Unlike the validation which applies on an entire match model, the restriction concerns
only one single role (e.g. do not capture a triangle if its area exceeds a threshold).
Finally, the remaining resource allows the developer to assign operations to metaclasses.
These operations can be called by other resources.

4.5 Generate targets

In order to encapsulate the patterns execution details, the transformation infrastructure
includes a launch configuration that allows automatically calling the ANT workflow
and therefore producing the target models. Nevertheless, changing the source models
implies to synchronize the transformation infrastructure. Indeed, the ANT workflow
and the launch file has to be regenerated in order to reference the new models paths. In
addition, the patterns have to be adapted with respect to the resolved values of paramet-
ric concrete roles numbers. The different resources remain unchanged because they are
independent from the managed models and the number of concrete roles.

The way in which the transformation infrastructure is structured brings further ben-
efits. When a constraint changes, the transformation resource is not impacted. Besides,
the operations associated to the implied metaclasses can be reused when changing the
pattern structure or the transformation scenario as long as the same metamodels are
involved.

10 Y. Lahouaouta and P. Laforcade

5 Application

This section is dedicated to the application of the proposed approach. First, we briefly
present the serious game that motivates the overall proposal and we describe the selected
use case. Then, we illustrate each step of the process of generating the transformation
infrastructure.

5.1 Use case

The application context is the Escape it! project which aims to develop a mobile learn-
ing game (i.e. a serious game with learning purposes) dedicated to children with ASD
(Autistic Syndrome Disorder). The game intends to support the learning of visual skills
and it will be used both to reinforce and generalize the learning skills. These skills will
be initiated by ”classic” working sessions with tangible objects. The proposed serious
game is based on a minimalist ”escape-room” gameplay. The child (player) has to drag
objects, sometimes hidden, to their correct locations in order to unlock the room’s door
and get to the next level.

The global domain elements required for the generation of game sessions are struc-
tured into three related parts: game description elements, profile-related elements, and
scenario elements. The required constructs have been defined by a dedicated metamodel
[12].

The game description model describes all the real game elements (skills, resources
or exercisers, in-game objects. . .). As for the profile model, it represents a player’s
(child’s) profile. These models are transformed into game scenario. This later is built
after three steps.

– objective scenario: it is related to the selection of the visual performance skills in
accordance with the current child profile.

– structural scenario: it refers to the selection of the various scenes where game levels
will take place. This scenario extends the previous one. It is generated from knowl-
edge domain rules stating the relations between scenes and the targeted skills they
can deal with.

– features scenario: it expresses the additional inner-resources/fine-grained elements
to be associated to each selected scene (e.g. objects appearing in a scene, their
positions. . .). The features scenario includes components of previous scenarios. It
specifies the overall information required by a game engine to drive the set-up of a
learning game session.

In [13], we have selected the generation of the objective scenario as an illustrative
use case (top part of Figure 6). This paper extends the application scope by presenting
the way structural scenarios can be generated using the proposed constraint solving
approach. The selected transformation scenario takes as input the objective scenario
presented in [13] as well as an extended version of the game description model that
includes the structural dimension (i.e exercises) (butom part of Figure 6). The managed
models conform to the metamodel depicted in Figure 7. It is worth noting that the
presented metamodel is an excerpt of the global one that defines all the game constructs
[12].

A practical approach for constraint solving in model transformations 11

Fig. 6. selected transformation scenario

Fig. 7. Excerpt of the ”Escape It!” metamodel

The game description model has been specified on the base of experts’ require-
ments. It expresses four visual performance skills B3-B4-B8-B25 (respectively match-
ing object to object, matching object to image, sorting categories of objects, making a
seriation) and their dependency relations. The game description model expresses also
the different supported scenes organized by themes. Figure 8 shows an excerpt of this
model that focuses on exercisers. Relations between scenes and the targeted skills are
depicted with dashed lines.

The structural scenario is generated from the objective scenario depicted in Figure
9. It includes a possible combination of skills to be trained by the child. We recall that
the corresponding fictive child profile as well as details about the generation process are
given in [13]. The number of targeted scenes to be added to the structural scenario has to
be equals to the number of the targeted skills. Besides, each selected scene corresponds
to one of the selected targeted skills (i.e. based on the targets reference). In addition, the
domain experts have expressed some constraints to enforce on the generated structural
scenario. They are listed by priority order:

1. all scenes must be different and belong to the same theme;
2. all scenes must belong to the same theme. In addition, two successive scenes must

be different;

12 Y. Lahouaouta and P. Laforcade

Fig. 8. Game description model

3. all scenes must be different (no constraints on themes);

4. two successive scenes must be different (no constraints on themes).

Fig. 9. objective scenario

A practical approach for constraint solving in model transformations 13

5.2 Infrastructure generation

In order to perform the described transformation scenario, we start by generating the
relevant configuration. This latter can be completed by defining the pattern structure
and identifying constraints through a dedicated Xtext editor (Figure 10).

For the presented use case, the pattern comprises three role types. The first one
allows matching an ObjectiveScenario, the second role type corresponds to the target-
edSkill instances to be matched, and the last one corresponds to the selected scenes.
The two last roles are related to a parameter (i.e. parametric number of roles) to express
the need to match all targeted skills belonging to the source objective scenario and
the same number of scenes. Indeed, each pair of TargetedSkill and Scene elements is
viewed as the source equivalent of a targeted scene (TargetedScene) to be generated. As
for the constraints presented above, they are expressed as prioritized constraints while
greatest priority is given to the first declared one. Aside from the pattern structure and
constraints parts, all the other elements are automatically generated.

Fig. 10. Configuration model

Once the configuration model is completed, the transformation infrastructure can be
generated (see Figure 11). Recalling from Section 4.3, an EPL pattern is automatically
generated for each constraint level and the related details are hidden to developers by
separating patterns and the required resources. For the application example, four EPL
patterns are generated respectively for the aforementioned constraints (cf. Section 5.1).
Listing 1 illustrates an excerpt of the pattern generated for constraint 3 (i.e. all scenes
must be different). For convenience, the excerpt focuses on the pattern structure and the

14 Y. Lahouaouta and P. Laforcade

resources invocation. Some code fragments (e.g variables declaration, stop searching,
randomness. . .) have been removed to simplify the pattern’s interpretation.

Fig. 11. Transformation infrastructure

As for the domain restriction resource, it is possible to specify guard conditions in
order to restrict the possible elements to be caught by a role. Given that the restriction
mechanism is not applicable for the selected use case, the generated operations remains
unchanged and they allows capturing all possible elements (cf. Listing 2).

Listing 3 depicts an excerpt of the validation resource. Rour operations are automat-
ically generated with respect to the constraints type and names. We complete these op-
erations with action blocks that express the specific validation logic for models matched
by the pattern (the added code is highlighted). For example, the third operation imple-
ments the validation logic the constraint 3 (i.e. all scenes must be different). The first
statement verify if the matched targeted skills are all different (i.e. because EPL al-
lows matching the same element multiple times) while the second one is applied on
the matched scenes. Also, the For statement verify if each matched scene is compatible

A practical approach for constraint solving in model transformations 15

with one of the targeted skills. the targets() operation implements this behavior and it
is expressed in the context of the Scene metaclass (i.e. metaclass operations resources).

As for allDifferent(), it is a predefined operation. Indeed, we defined a list of op-
erations (e.g. followingNotMatch(), sort(), randSequence(). . .) which are automatically
added to the operations resource.
p a t t e r n P a t t e r n

r0 : m1! O b j e c t i v e S c e n a r i o
gua rd : r0 . O b j e c t i v e S c e n a r i o D o m a i n R e s t r i c t i o n () ,

r1 : m1! T a r g e t e d S k i l l
gua rd : r1 . T a r g e t e d S k i l l D o m a i n R e s t r i c t i o n () ,

r2 : m1! T a r g e t e d S k i l l
gua rd : r2 . T a r g e t e d S k i l l D o m a i n R e s t r i c t i o n () ,

r3 : m1! T a r g e t e d S k i l l
gua rd : r3 . T a r g e t e d S k i l l D o m a i n R e s t r i c t i o n () ,

r4 : m2! Scene
gua rd : r4 . S c e n e D o m a i n R e s t r i c t i o n () ,

r5 : m2! Scene
gua rd : r5 . S c e n e D o m a i n R e s t r i c t i o n () ,

r6 : m2! Scene
gua rd : r6 . S c e n e D o m a i n R e s t r i c t i o n () ,

r7 : m2! Scene
gua rd : r7 . S c e n e D o m a i n R e s t r i c t i o n () ,

r8 : m2! Scene
gua rd : r8 . S c e n e D o m a i n R e s t r i c t i o n () ,

{
match : c o n t i n u e and v a l i d a t e P a t t e r n d S (r0 , Sequence { r1 , r2 , r3 , r4 } , Sequence { r5 , r6 , r7 , r8 })
onmatch

{
/ / code f r a g m e n t depends on t h e match ing mechanism (a l l p o s s i b l e match , f i r s t match , random match)
/ / use t h e c o n t i n u e b o o l e a n t o s t o p s e a r c h i n g f o r p o s s i b l e c o m b i n a t i o n s .
}
do{
/ / code f r a g m e n t depends on t h e match ing mechanism
t r a n s f o r m P a t t e r n (r0 , Sequence { r1 , r2 , r3 , r4 } , Sequence { r5 , r6 , r7 , r8 }) ;
}

}

Listing 1.1. Excerpt of the EPL pattern generated for constraint 3

o p e r a t i o n m1! O b j e c t i v e S c e n a r i o C o n c e p t u a l S c e n a r i o D o m a i n R e s t r i c t i o n () : Boolean {
r e t u r n t r u e ;
}
o p e r a t i o n m1! T a r g e t e d S k i l l T a r g e t e d S k i l l D o m a i n R e s t r i c t i o n () : Boolean {
r e t u r n t r u e ;
}
o p e r a t i o n m2! Scene S c e n e D o m a i n R e s t r i c t i o n () : Boolean {
r e t u r n t r u e ;
}

Listing 1.2. Domain restriction resource

o p e r a t i o n v a l i d a t e P a t t e r n d S u T (r0 : m1! O b j e c t i v e S c e n a r i o , r1 : Sequence , r5 : Sequence) : Boolean {
/ / code f r a g m e n t i m p l e m e n t i n g t h e c o n s t r a i n t 1

}
o p e r a t i o n v a l i d a t e P a t t e r n u T d S S (r0 : m1! O b j e c t i v e S c e n a r i o , r1 : Sequence , r5 : Sequence) : Boolean {

/ / code f r a g m e n t i m p l e m e n t i n g t h e c o n s t r a i n t 2
}
o p e r a t i o n v a l i d a t e P a t t e r n d S (r0 : m1! O b j e c t i v e S c e n a r i o , r1 : Sequence , r5 : Sequence) : Boolean {

i f (n o t a l l D i f f e r e n t (r1)) r e t u r n f a l s e ;
i f (n o t a l l D i f f e r e n t (r5)) r e t u r n f a l s e ;
f o r (i i n Sequence { 0 . . r1 . s i z e () −1}){

i f (n o t r5 . g e t (i) . t a r g e t s (r1 . g e t (i))) {
r e t u r n f a l s e ;

}
}
r e t u r n t r u e ;

}
o p e r a t i o n v a l i d a t e P a t t e r n d S S (r0 : m1! O b j e c t i v e S c e n a r i o , r1 : Sequence , r5 : Sequence) : Boolean {

/ / code f r a g m e n t i m p l e m e n t i n g t h e c o n s t r a i n t 4
}

Listing 1.3. Validation resource

As for the transformation resource (see Listing 4), we completed it with actions to
be applied on the match model in order to produce a valid structural scenario. Basi-
cally, a new StructuralScenario element is created as a target equivalent of the matched

16 Y. Lahouaouta and P. Laforcade

objective scenario. In addition, for each targeted skill, the compatible scene is selected
(with respect to the sequencing order), and both elements are used to create a new Tar-
getedScene element.
o p e r a t i o n t r a n s f o r m P a t t e r n (r0 : m1! O b j e c t i v e S c e n a r i o , r1 : Sequence , r5 : Sequence) {

v a r s s = c r e a t e S t r u c t u r a l S c e n a r i o (r0) ;
f o r (i i n Sequence { 0 . . r1 . s i z e () −1}){

s s . t a r g e t e d s c e n e . add (c r e a t e T a r g e t e d S c e n e (r1 . g e t (i) , r 5 . g e t (i))) ;
}

}
o p e r a t i o n c r e a t e S t r u c t u r a l S c e n a r i o (p0 : m1! O b j e c t i v e S c e n a r i o) : m1! S t r u c t u r a l S c e n a r i o {

v a r s s = new m1! S t r u c t u r a l S c e n a r i o ;
p0 . e C o n t a i n e r () . p e d a g o g i c a l s c e n a r i o = s s ;
r e t u r n s s ;

}
o p e r a t i o n c r e a t e T a r g e t e d S c e n e (p0 : m1! T a r g e t e d S k i l l , p1 : m3! Scene) : m1! T a r g e t e d S c e n e {

v a r t s = new m1! T a r g e t e d S c e n e ;
t s . t a r g e t e d s k i l l =p0 ;
t s . s c e n e =p1 ;
r e t u r n t s ;

}

Listing 1.4. Transformation resource

Figure 12 presents the generated structural scenario. We can verify that the selected
scenes are compatible with the targeted skills. However, the proposed skills do not
belong to the same theme. In fact, no combination of the possible skills allows enforcing
the first constraint. For that, the transformation generates a scenario with respect to a
less prioritized constraint (i.e. constraint 2). Indeed, the selected scenes belongs to same
theme (i.e School), and you can see that each one is different from its successor scene.

Fig. 12. The generated structural scenario

6 Related work

Our approach for constraint solving is based on expressing constraints to enforce on
target models by means of source model elements. This proposal is inspired from graph
transformations techniques where constraints on the involved graphs can be expressed
through application conditions [4]. Besides, the proposed transformation process (i.e.
including the match and transformation steps) is similar to the application of graph
transformations. For these latter, the source graph fragments concerned with the appli-
cation of a transformation are first determined with respect to the LHS (Left Hand Side)
graph. Then, the matched fragments are replaced with the structure of the RHS (Right
Hand Side) graph.

A practical approach for constraint solving in model transformations 17

The main difference is the way the pattern is defined. In fact, the pattern structure
is separated from the constraints which allows expressing different and prioritized con-
straints for the same pattern. Besides, it is much easier to express complex constraints
within our approach (e.g. textual syntax, feature navigation, predefined operations. . .).
In contrast, for graph transformations the pattern is defined as one block (i.e. the LHS
graph) and constraints are expressed like sub-graphs.

Several proposals have addressed the problem of directly enforcing constraints on
target models. Petter et al. [18] have proposed an implementation to extend the QVT-
Relations language [16] with constraint solving capabilities. However, the proposal fo-
cuses on constraints related to attribute values and disregards global constraints.

Other related work address the automatic generation of models. In this case, models
are not considered as targets of applying model transformations but are viewed as valid
instances of constrained metamodels [7]. Cabot et al. [2] have proposed an approach
where metamodels and OCL constraints are translated into a CSP and a dedicated solver
allows producing a valid instance. Based on similar principles, Ferdjoukh et al. [5] have
proposed an approach for model generation while dealing with performance.

In the limited scope of the presented use case, we have experimented the use of
model generation techniques to perform the transformation scenario. The idea was to
express the source models information, the way to construct the target model and the
expert requirements, as OCL constraints. Hence, a model generation support (we chose
Grimm [5]) can be used to deal with the generation of the expected objective scenario.
However, the tool failed because it does not support some essential OCL operations.

7 Conclusion

This paper presents a practical approach for constraint solving in model transforma-
tions. The base principle is to consider a pattern matching problem as a high level spec-
ification of a CSP. Besides, a transformation infrastructure that underpins the concep-
tual proposal can be generated in a semi-automatic manner. Indeed, this infrastructure
provides support for pattern specification, match model search, and transformation into
valid target models. A use case extracted from the Escape It! serious game has been
selected to illustrate these tasks.

The way the pattern definition is carried out allows some benefits. By decoupling
the pattern structure from the validation constraints, it is possible to associate multi-
ple constraints to a same pattern and therefore allows specifying shared transformation
rules for all validation logic. In addition, the proposal supports parametric patterns.
Hence, the same pattern definition can be used in various transformation scenarios even
if involving slightly different match models.

The integration of our proposal in the co-design framework for the presented serious
game opens up many perspectives. The future work deal with two main issues: (i) the
cognitive effort to be implicated by the domain expert in order to specify/interpret the
pattern and (ii) the change impact analysis of domain rules. To address the first issue, we
are exploring a new approach to express the constraint satisfaction problem by means
of target model elements. The corresponding source pattern can be automatically gen-
erated by exploiting some relevant information (i.e. source-figtarget correspondences,

18 Y. Lahouaouta and P. Laforcade

one time or multiple match. . .). As for the change of domain rules, the regeneration of
the transformation infrastructure must consider the extent of the variation expressed by
the expert (e.g. adding a constraint must imply changing the validation resource without
impacting the transformation and operations resources).

References

1. Bettini, L.: Implementing domain-specific languages with Xtext and Xtend. Packt Publishing
Ltd (2016)

2. Cabot, J., Claris, R., Riera, D., et al.: Verification of uml/ocl class diagrams using constraint
programming. In: First International Conference on Software Testing Verification and Vali-
dation, ICST 2008. pp. 73–80. IEEE (2008)

3. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.M.: Melange: A meta-
language for modular and reusable development of dsls. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering. pp. 25–36. ACM
(2015)

4. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Constraints and application conditions:
From graphs to high-level structures. In: International Conference on Graph Transformation.
pp. 287–303. Springer (2004)

5. Ferdjoukh, A., Baert, A.E., Chateau, A., Coletta, R., Nebut, C.: A csp approach for meta-
model instantiation. In: 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence. pp. 1044–1051. IEEE (2013)

6. Jouault, F., Kurtev, I.: Transforming models with atl. In: International Conference on Model
Driven Engineering Languages and Systems. pp. 128–138. Springer (2005)

7. Kleiner, M., Del Fabro, M.D., Albert, P.: Model search: Formalizing and automating con-
straint solving in mde platforms. In: European Conference on Modelling Foundations and
Applications. pp. 173–188. Springer (2010)

8. Kolovos, D., Rose, L., Garcia-Dominguez, A., Paige, R.: The epsilon book (2017) (2017)
9. Kolovos, D.S., Paige, R.F.: The epsilon pattern language. In: 9th IEEE/ACM International

Workshop on Modelling in Software Engineering, MiSE@ICSE 2017. pp. 54–60. IEEE
(2017)

10. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object language (eol). In: European
Conference on Model Driven Architecture-Foundations and Applications. pp. 128–142.
Springer (2006)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon transformation language. In: Interna-
tional Conference on Theory and Practice of Model Transformations. pp. 46–60. Springer
(2008)

12. Laforcade, P., Laghouaouta, Y.: Supporting the adaptive generation of learning game scenar-
ios with a model-driven engineering framework. In: Lifelong Technology-Enhanced Learn-
ing - 13th European Conference on Technology Enhanced Learning, EC-TEL 2018, UK. pp.
151–165. Lecture Notes in Computer Science, Springer (2018). https://doi.org/10.1007/978-
3-319-98572-5 12

13. Laghouaouta, Y., Laforcade, P., Loiseau, E.: A pattern-matching based approach for prob-
lem solving in model transformations. In: Proceedings of the 13th International Confer-
ence on Software Technologies, ICSOFT 2018, Portugal. pp. 113–123. SciTePress (2018).
https://doi.org/10.5220/0006847901130123

14. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Math-
ematical Structures in Computer Science 12(4), 403–422 (2002)

A practical approach for constraint solving in model transformations 19

15. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science 152, 125–142 (2006)

16. OMG: Meta object facility (mof) 2.0 query/view/transformation specification (2008)
17. OMG: Object constraint language 2.4 specification (2014)
18. Petter, A., Behring, A., Mühlhäuser, M.: Solving constraints in model transformations. In:

International Conference on Theory and Practice of Model Transformations. pp. 132–147.
Springer (2009)

19. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern matching.
In: International Workshop on Theory and Application of Graph Transformations. pp. 238–
251. Springer (1998)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework
2.0. Addison-Wesley Professional, 2nd edn. (2009)

21. Taentzer, G., Ermel, C., Rudolf, M.: The agg approach: Language and tool environment.
Handbook of graph grammars and computing by graph transformation 2, 551–603 (1999)

