
HAL Id: hal-02305430
https://hal.science/hal-02305430v1

Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterisation of wheel/rail roughness and track
decay rates on a tram network

Olivier Chiello, Adrien Le Bellec, Marie Agnès Pallas, Patricio Munoz, Valérie
Janillon

To cite this version:
Olivier Chiello, Adrien Le Bellec, Marie Agnès Pallas, Patricio Munoz, Valérie Janillon. Characterisa-
tion of wheel/rail roughness and track decay rates on a tram network. 48th International Congress and
Exposition on Noise Control Engineering (Inter-Noise 2019), Jun 2019, Madrid, Spain. �hal-02305430�

https://hal.science/hal-02305430v1
https://hal.archives-ouvertes.fr


 

 

Characterisation of wheel/rail roughness and track decay 

rates on a tram network 
 

Olivier Chiello1, Adrien Le Bellec, Marie-Agnès Pallas   

Univ Lyon, IFSTTAR, CEREMA, UMRAE, F-69675, Lyon 

 

Patricio Munoz, Valérie Janillon  

Acoucité, 24 Rue Saint-Michel, 69007 Lyon, France 

 

 

From the beginning of 2019, the new CNOSSOS-EU method shall be used for 

strategic noise mapping in application of Directive 2002/49/EC instead of national 

noise prediction methods. For the railway part, the operators are responsible for 

providing input data describing the different noise sources characterising the 

railway system. Concerning the rolling noise, the vehicle and the track have to be 

distinguished by providing specific transfer functions and wheel/rail roughness 

spectra. For conventional railways, default values are given in the CNOSSOS-EU 

method and national operators generally have experimental data at their disposal to 

evaluate these new input parameters. This is not the case for tram networks, for 

which very few measurements exist, notably concerning the wheel and rail 

roughness or the track transfer function.  In 2018, Acoucité and IFSTTAR 

performed an acoustic test campaign on a French tram network in order to propose 

tram input data from pass-by measurements corresponding to various sites and 

vehicles.  In this paper, the results concerning the direct measurements of wheel/rail 

roughness and track decay rates (a key parameter for the assessment of the track 

transfer function) are presented and discussed. The main differences with data 

corresponding to conventional railways are highlighted. 
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1. INTRODUCTION 

The European Directive 2002/49/EC [1] dated 25 June 2002 makes it compulsory 

for Member States to create noise maps in order to assess the exposure to environmental 

noise. These maps are made available to the public and allow the implementation of action 

plans to reduce noise and to estimate the impact of new infrastructures on the noise 

environment. They take into account noise emissions related to transport and industry. 

Their implementation is mandatory for urban areas with more than 100000 inhabitants 

and for major roads, railways and airports. This directive specifies common noise 
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indicators for determining exposure to noise. Pending the adoption of a common 

assessment method, Member States were allowed to use their national method.  For 

example, in France, the NMPB2008 prediction method has been used [2]. Recently, the 

common method, called CNOSSOS-EU for “Common Noise Assessment Methods in 

Europe” [3] has been published in the Official Journal of the European Union on 19 May 

2015 to harmonise the production of noise maps among all EU countries. The first noise 

maps based on this method are expected in 2019. 

Concerning the calculation of the propagation of noise in the environment, the 

changes made by the new CNOSSOS method compared to the French method are not 

fundamental. This is not the case for the calculation of noise emission terms, particularly 

those corresponding to rail transport. There are indeed two major changes. On the one 

hand, the different sources of railway pass-by noise (rolling noise, traction noise and 

aerodynamic noise) must be distinguished: their respective acoustic powers must be 

specified in the model. Furthermore, the rolling noise term must be estimated from the 

specific contributions of the vehicle and the track, themselves calculated from wheel/rail 

roughness and transfer functions characterising the track and the vehicle “vibro-acoustic 

efficiency” (see Figure 1). The method gives tabulated values in appendix, corresponding 

to conventional railway vehicles or tracks. Moreover, major national operators generally 

have experimental data or advanced models at their disposal to evaluate these new input 

parameters.  

 

 
Figure 1: CNOSSOS rolling noise model for rail-bound vehicles (inputs in green, outputs in blue) 

 This is not the case for tram networks, for which very few measurements are 

available, notably concerning the wheel and rail roughness or the transfer functions. With 

regard to rail roughness, some recent measurements show significant differences with 

conventional rails [4-6]. Concerning the separation of noise sources and the contributions 

of track and vehicle to rolling noise, existing models also show that tramways have their 

own properties [7-10]. There are several reasons for these differences. The most important 

are that the sound radiation from embedded tram tracks is significantly different from 

conventional tracks [11-13], the vehicle wheels are smaller and the wheel loads are lower 

[6]. Consequently, for tram rolling noise modelling, it is clear that the transfer functions 

defined for conventional railways cannot be used. 

In order to propose tram input data, Acoucité and IFSTTAR performed a test 

campaign on a French tram network. In addition to classic pass-by measurements carried 

out on various sites and vehicles at different heights, specific measurements of wheel and 

rail roughness as well as track decay rates were performed. The track decay rate is indeed 

a key parameter for the assessment of the track transfer function. In this paper, the results 

concerning these additional measurements are presented and discussed. The main 

differences with data corresponding to conventional railways are highlighted. 



 

2.  DESCRIPTION OF TEST TRACKS AND VEHICLES 

Measurements were performed on four sites with different track types and 

surfacing. Two tracks are equipped with Vignole rail laying on monobloc concrete 

sleepers and ballast (C and D).  One of these two tracks is characterised by the addition 

of a grassy coating above the ballast layer, outcropping the rail head (C). The other two 

tracks have grooved rails laying on bi-block sleepers, embedded in a concrete slab (A and 

B).  On one of these two tracks, a grassy coating is also added (A). This last track section 

is characterised by a slight curve, unlike the three others which are located on straight 

lines. Table 1 summarises the characteristics of these track sections. Photographs in 

Figure 2 show the different rail types and surfacing. 

  
Table 1: Characteristics of test track sections 

 Rail type Track support Surfacing Geometry 

A Grooved Bi-block concrete sleepers 

+ concrete slab 

Concrete Slight curve 

B Grooved Bi-block concrete sleepers 

+ concrete slab 

Grass Straight line 

C Vignole Monobloc concrete 

sleepers + ballast 

Grass Straight line 

D Vignole Monobloc concrete 

sleepers + ballast 

(Ballast) Straight line 

 

  
 

  
Figure 2: Photos of the tracks 

Three types of vehicles regularly run on the network. Two of them are very similar 

and differ only in the number of units (5 or 7) and bogies (3 or 4 respectively). Both are 

equipped with disc-braked resilient wheels of diameter 59 cm (new). The third type of 

vehicle is composed of three units, resting on three bogies in all. It is also equipped with 

disc-braked resilient wheels but with a diameter of 72 cm (new).  Wheel roughness was 

measured only on three vehicles of the first category but with various mileage since the 

last reprofiling. 

 

A B 
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3.  RAIL AND WHEEL ROUGHNESS MEASUREMENTS 

 

4.1 Rail roughness 

The procedure used for measuring the rail acoustic roughness was in accordance 

with the standard EN 15610-2009 [14]. The thoroughly validated CAT equipment (for 

"Corrugation Analysis Trolley") developed by RailMeasurement was used [15]. An 

accelerometer fixed on the trolley is in contact with the rail. An operator pushes the trolley 

along the test section. Only one rail is measured at a time, at a speed of approximately 

1 m/s and with a sampling distance of 1 mm. The trolley can be configured on a Vignole 

or grooved rail. The roughness estimation is carried out by post-processing the measured 

raw vertical profile (after integration of the acceleration signal) according to the standard: 

removal of localised defects or narrow peaks/spikes, curvature procedure and spectral 

analysis. Roughness was measured on both rails of each track. 

On each rail, the effective width of the running band on the railhead was identified 

by a visual inspection. It turned out to be rather wide (> 2 cm) and several measurements 

were made for different lateral positions of the sensor on the rail: 25 and 35 mm for tracks 

A and D, 25 mm, 30 and 35 mm for tracks B and C (distances from the interior edge of 

the railhead, see Figure 3).  

 

  
Figure 3: Identification of the width of the running band on the railhead and measurement with the CAT 

Results corresponding to each track section are given in Figure 4: roughness 

spectra measured on the same rail for various lateral positions, mean roughness for each 

rail and global mean roughness for both rails (Throughout the paper, roughness means are 

quadratic averages of individual roughnesses). Default data given in the appendix of the 

CNOSSOS method for conventional rails are also plotted for comparison: the limit 

roughness curve prescribed in the standard ISO 3095:2013 [16] for the definition of 

reference tracks and an average spectrum corresponding to the national Dutch network. 

The roughness spectra measured on the same rail are very similar with differences 

generally less than 1 dB per third octave. The differences between the two rails of the 

same track are greater but often remain below 3 dB except for track B which has 

significantly higher levels on the left track. On this rail, we note in particular a zone of 

severe corrugation in the spectrum at wavelengths between 4 and 8 cm. This is probably 

due to the fact that the track section corresponds to the entrance of a curve. The resulting 

lateral friction phenomena can indeed lead to wheel/rail wear. The most important point 

is that the measured roughness levels are much higher than the levels proposed in the 

CNOSSOS method for conventional rails (sometimes by more than 10 to 15 dB), except 



for track D whose average levels are closer to those of the Dutch network (2 to 3 dB 

difference on average). 

 
Figure 4: Rail roughness spectra measured on test tracks 

4.2 Wheel roughness 

 Wheel roughness measurements were carried out in the workshop on a free wheel, 

with an axle raised a few millimetres above the rail. A magnetic-based measuring system 

(TriTops device developed by RailMeasurement) was installed on the rail near the wheel 

to be measured (see Figure 5). Three displacement sensors and an incremental encoder 

wheel were in contact with the wheel. The three sensors were positioned on the contact 

area of the wheel tread. The measurement was achieved by turning the axle by hand over 

a few turns (5 or 6 in this case). 

 

 

  
Figure 5: Wheel roughness measurement system 



Results corresponding to a wheel of each vehicle are given in Figure 6 : roughness 

spectra measured on the same wheel for various lateral positions (the three 

displacements sensors of the measuring device) and mean roughness for each 

vehicle. Default data given in the appendix of the CNOSSOS method for a 

conventional disc-braked wheel are also plotted for comparison. A significant 

dispersion is observed with regard to the lateral position on the wheel (i.e. between 

the three sensors of the system) with differences of up to 3-4 dB per third.  The 

differences between the roughness measured on the different vehicles are also 

significant, but no correlation could be established between the roughness spectra 

and the mileage since the last reprofiling. Finally, the comparison with the roughness 

spectrum proposed in the CNOSSOS method for a disc-braked wheel shows that 

tram wheels generally have higher roughness levels, particularly at the shortest 

wavelengths (< 31.5 mm) for which differences of up to 10 dB are observed in some 

third octaves. 

 
Figure 6 : Wheel roughness spectra measured on test vehicles 

4.3 Influence of the track and the vehicle on the combined roughness 

 In order to evaluate the contributions of the wheels and the rail to the total 

combined roughness, mean rail roughness spectra corresponding to each track are plotted 

in Figure 7 and compared with the wheel roughness spectrum averaged over the three 

vehicles. In addition to the graduation of the abscissa in terms of wavelength, a frequency 

scale has been added at the top of the figure. The frequency (𝑓) - wavelength (𝜆) 

correspondence is performed by the relationship 𝑓 = 𝑉/𝜆,  for a speed of 45 km/h which 

is representative of the vehicle speed on the test track sections.  It can be seen that all over 

the first part of the spectrum (above 25 mm wavelength or below about 500 Hz at 

45 km/h) the contribution of the track to the combined roughness is predominant. In this 

range, the track will thus have a significant influence (up to 7-8 dB) on pass-by noise 

levels via the rail roughness. In the second part of the spectrum (below 25 mm wavelength 



or above about 500 Hz at 45 km/h), wheel and rail roughness have the same order of 

magnitude. Thus, both the track and the vehicle contribute to the combined roughness. 

However, the differences between the roughness levels of the different tracks are less 

important in this range and all rail roughnesses will therefore play a similar role in the 

pass-by noise.  

 
Figure 7: Comparison of wheel and rail roughness spectra as a function of wavelength and frequency 

4.  TRACK DECAY RATE MEASUREMENTS  

 The last part of the campaign concerns the characterisation of the dynamic 

behaviour of the track. Indeed, as indicated above, in order to validate and adjust the 

calculation of the track vibro-acoustic transfer functions, it is necessary to characterise 

the specificities of tram tracks with embedded rails which may have a very different 

behaviour from conventional railways. The track decay rate (TDR), which reflects the 

attenuation of waves along the rails from the excitation, is the key indicator to characterise 

this behaviour. The method for direct measurement of the TDR is defined in the standard 

EN 15461+A1:2011. The procedure was applied on track B (specific tramway track: 

grooved rail on sleepers embedded in a concrete slab) and track D (rather conventional 

track: Vignole rail on concrete sleepers and ballast). On track D, the vertical and lateral 

decay rates were measured, whereas on track B, only the vertical decay rate was 

measured. 

 

 
Figure 8: Accelerometer fixed on the embedded rail with first impact location marks for the measurement 

of the vertical decay rate according to EN 15461 (track B)  



 The measured decay rates are given in Figure 9 and compared with the limit 

vertical and lateral curves prescribed in the standard ISO 3095:2013 [16] for the 

definition of reference tracks. The TDR curves measured of track D display classic 

shapes. Vertically, three peaks are identified around 500, 1250 and 5000 Hz due 

respectively to the resonance of the rail on the pad, the periodicity of the sleepers 

(pinned-pinned frequency) and the deformation modes of the rail section (in 

particular the rail foot).  Lateral peaks are also visible with significantly lower 

frequencies (125, 630 and 3150 Hz). Finally, we note that the two TDRs of track D 

remain higher than the standard gauge for most frequency bands. The vertical TDR 

measured on track B is completely different from that measured on track D. Three 

peaks can also be identified but with frequencies much lower than those of track D. 

In particular, a minimum of less than 2 dB/m is observed in the curve at a frequency 

of 630 Hz, which is quite unusual on conventional tracks. It should also be noted 

that at this frequency, the measured TDR is lower than the standard limit curve, 

which implies a possible high contribution of the rail to the pass-by noise emitted 

(to be qualified according to the rail radiation factor at this frequency).  

 

 
Figure 9: Track Decay Rates (TDR) measured on test tracks D and B 

 

4.  CONCLUSIONS 

 In order to identify input parameters for CNOSSOS noise emission models 

specific to trams, measurements of acoustic roughness and vibration decay rates were 

performed on various tracks and vehicles of a tramway network.  It appears that the 

characteristics measured are very different from those corresponding to conventional 

railways. In particular, wheel and rail roughness levels are higher in all wavelength bands, 

with differences that may exceed 10 dB. In the high-wavelength (or low-frequency) 

range, rail roughness levels are much higher than wheel roughness levels and the track 

has a significant influence (up to 7-8 dB) on the combined roughness. The comparison of 

measured decay rates also shows that tram-specific transfer functions must be proposed, 

particularly for the tracks with embedded rail. The identification of appropriate vibro-

acoustic transfer functions for trams based on these measurements and pass-by acoustic 

measurements is the next step of this project. 
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