
HAL Id: hal-02305354
https://hal.science/hal-02305354v1

Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using k-means for redundancy and inconsistency
detection: application to industrial requirements

Manel Mezghani, Juyeon Kang Choi, Florence Sèdes

To cite this version:
Manel Mezghani, Juyeon Kang Choi, Florence Sèdes. Using k-means for redundancy and inconsistency
detection: application to industrial requirements. 23rd International conference on Applications of
Natural Language Processing to Information Systems (NLDB 2018), Jun 2018, Paris, France. pp.501-
508, �10.1007/978-3-319-91947-8_52�. �hal-02305354�

https://hal.science/hal-02305354v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22425

Official URL

DOI : https://doi.org/10.1007/978-3-319-91947-8_52

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Mezghani, Manel and Kang Choi, Juyeon
and Sèdes, Florence Using k-means for redundancy and
inconsistency detection: application to industrial requirements.
(2018) In: 23rd International conference on Applications of Natural
Language Processing to Information Systems (NLDB 2018), 13
June 2018 - 15 June 2018 (Paris, France).

Using k-Means for Redundancy

and Inconsistency Detection: Application

to Industrial Requirements

Manel Mezghani1,2(B), Juyeon Kang2, and Florence Sèdes1

1 IRIT, University of Toulouse, CNRS, INPT, UPS, UT1, UT2J, Toulouse, France
mezghani.manel@gmail.com, florence.sedes@irit.fr

2 Prometil, 52 Rue Jacques Babinet, 31100 Toulouse, France
j.kang@semiosapp.com

Abstract. Requirements are usually “hand-written” and suffers from
several problems like redundancy and inconsistency. These problems
between requirements or sets of requirements impact negatively the suc-
cess of final products. Manually processing these issues requires too much
time and it is very costly. We propose in this paper to automatically han-
dle redundancy and inconsistency issues in a classification approach. The
main contribution of this paper is the use of k-means algorithm for redun-
dancy and inconsistency detection in a new context, which is Require-
ments Engineering context. Also, we introduce a preprocessing step based
on the Natural Language Processing techniques in order to see the impact
of this latter to the k-means results. We use Part-Of-Speech (POS) tag-
ging and noun chunking in order to detect technical business terms asso-
ciated with the requirements documents that we analyze. We experiment
this approach on real industrial datasets. The results show the efficiency
of the k-means clustering algorithm, especially with the preprocessing.

Keywords: K-means · Requirements engineering · POS tagging
Redundancy · Inconsistency

1 Introduction

In order for a system to become operational in real applications, several stages
of conception, development, production, use, support and retirement must be
followed (ISO/IEC TR 24748-1, 2010). During the conception stage, we identify
and document the stakeholder’s needs in the system requirements specification
[1]. Writing clearly all required elements without ambiguities [2] in the specifica-
tions is an essential task before passing to the development stage [3,4]. According
to the 2015 Chaos report by the Standish Group1, only 29% of projects were
successful2, 50% of the challenged projects are related to the errors from the

1 http://www.standishgroup.com.
2 They studied 50,000 projects around the world, ranging from tiny enhancements to

massive systems re-engineering implementations.

_https://doi.org/10.1007/978-3-319-91947-8 52

Requirements Engineering (RE) and 70% of them come from the difficulties of
understanding implicit requirements. All these errors do not lead to the failure,
but generate useless information. It is well known that the costs to fix errors
increase much more after that the product is built than it would if the require-
ments errors were discovered during the requirements phase of a project [5,6].

When writing or revising a set of requirements, or any technical document,
it is particularly challenging to make sure that texts are easily readable and
are unambiguous for any domain actor [1]. Experience shows that even with
several levels of proofreading and validation, most texts still contain a large
number of language errors (lexical, grammatical, style), and also a lack of over-
all concordance, or redundancy and inconsistency in the underlying meaning
of requirements. In particular, manually identifying redundant or inconsistent
requirements is an obviously time-consuming and costly task.

We focus in this paper on two critical issues in writing high quality require-
ments that can generate fatal errors in a product development stage: redun-
dancy and inconsistency. We tackle these problems in terms of similarity between
the requirements since more than two similar requirements can be classified as
redundant or inconsistent. The problems of redundancy and inconsistency can
be handled according to different technologies. We focus on artificial intelligence
approaches and more precisely classification approaches. Automatic classifica-
tion of requirements is widely used in the literature using Convolutional Neural
Networks (i.e. [7]) Naives Bayes classifier [8] and text classification algorithms [9].
Data classification approaches could be data clustering through algorithm such
as K-means. This latter is studied in different contexts due to its efficiency [10].
However, in Requirements Engineering (RE) context, we could not find advanced
works on the redundancy and inconsistency issues using k-means algorithm.

The main contribution of this paper is the use of k-means algorithm for a
redundancy and inconsistency detection in a new context, which is RE con-
text. Also, we introduce a preprocessing step based on the Natural Language
Processing (NLP) techniques in order to assess the impact of this latter to the
k-means results. We use Part-Of-Speech (POS) tagging and noun chunking to
detect technical business terms associated with the requirements documents.

This paper is structured as follows: Sect. 2 presents related works on the
redundancy and inconsistency detection, preprocessing approaches and k-means.
Section 3 presents our clustering approach and the associated results. In Sect. 4,
we discuss the obtained results and in Sect. 5, conclude and give some future
research directions.

2 Related Works

In this section, we first present related works associated with redundancy and
inconsistency detection in specifications documents or technical documents. Sec-
ond, we give some researches focusing on text preprocessing in requirements
engineering context. Finally, we focus on approaches using k-means clustering in
the latter context.

2.1 Redundancy and Inconsistency Detection

Researches on redundancy detection began by traditional bag-of-words (BOW),
TF-IDF frequency matrix, and n-gram language modeling [11]. Then, researchers
like Juergens et al. [12] use ConQAT to identity copy-and-paste reuses in require-
ments specifications. Falessi et al. [13] detect similar content using information
retrieval methods such as Latent Semantic Analysis. They compare NLP tech-
niques on a given dataset to correctly identify equivalent requirements. Rago
et al. [14] extend the work presented in [13] specifically for use cases. Their tool,
ReqAlign, combines several text processing techniques such as a use case-aware
classifier and a customized algorithm for sequence alignment.

Inconsistency is analyzed in [15] by proposing a framework of a patterns-
based k-means requirements clustering, called PBURC, which makes use of
machine-learning methods for requirements validation. This approach aims to
overcome data inconsistencies and effectively determine appropriate require-
ments clusters for optimal definition of software development sprints. Frenay
et al. [16] present a survey of techniques treating data quality such as inconsis-
tency. They present different machine learning approaches and their impact on
the results. Dermeval et al. [17] present a survey about how using ontologies in
RE activities both in industry and academy is beneficial, specially for reducing
ambiguity, inconsistency and incompleteness of requirements.

2.2 Preprocessing

Some researches introduce preprocessing steps in requirements analysis context.
According to [18], the preprocessing helps reducing the inconsistency of require-
ments specifications by leveraging rich sentence features and latent co-occurrence
relations. It is applied through (i) a POS tagger [19], (ii) an entity tagging
through a supervised training data, (iii) a temporal tagging through a rule-
based temporal tagger and (iv) co-occurrence counts and regular expressions.
This preprocessing approach improved the performance of an existing classifica-
tion method.

Preprocessing data for redundancy detection is used in [20] by performing
standard NLP techniques such as removing English stop words and striping off
the newsgroup related meta-data (including noisy headers, footers and quotes)
and normalized bag-of-words (BOW).

2.3 K-Means

K-means clustering is a type of unsupervised learning approach, which is used
on unlabeled data (i.e., data without defined categories or groups). The goal of
this algorithm is to cluster the data into k groups. However, it needs a predefined
value of k as an input, which is the main issue about using this algorithm. Some
researchers focus on this issue and present solutions based on the graphical (e.g.
elbow approach, silhouette and Inertia) or numerical value (e.g. statistic gap).
The statistic gap calculates a goodness of clustering measure. The statistic gap

standardizes the graph of log(W k), where W k is the within-cluster dispersion, by
comparing it to its expectation under an appropriate null reference distribution
of the data [21].

Recently, some studies have introduced k-means in requirements classifica-
tion tasks. Notably, [18] applies different approaches such as (i) topic modeling
using Latent Dirichlet Allocation (LDA) and Biterm Topic Model (BTM) and
(ii) clustering using K-means, Hierarchical approach and Hybrid (k-means and
hierarchical) in order to classify requirements into functional and non-functional
requirements.

3 Clustering Approach

We apply the k-means algorithm already detailed in Sect. 2.3 on datasets detailed
below. We present in this section the validation approach and the comparative
results obtained with and without the preprocessing step.

3.1 Validation Approach

Since we use an unsupervised clustering approach, we do not have any ground
truth about the redundancy and/or the inconsistency of the requirements. So,
we give the results related to the best value of k to our domain expert in order
that the expert evaluates the relevance of the generated clusters. A cluster may
contains one or more requirement(s). For a given k value, the validation is done
according to two methods:

– “Strict” validation (SV): we assume that a relevant cluster contains 100%
correct requirements (fully redundant requirements), which means that we
discard clusters with partially relevant requirements. We consider only clusters
with more than one requirement.

– “Average” validation (AV): we calculate the average of relevant requirements
per cluster.

AVk =

∑
N

i=k
precision(ci)

k′
(1)

where AVk is the average validation for a given value of k. k is the number
of clusters. k’ is the number of clusters which their number of requirements is
>1. i ∈ {1, k} is the value of k and precision(ci) is defined as:

precision(ci) =
Number Of RelevantRequirements

Total Number Of Requirements
(2)

3.2 Classification Results

In this section, we present the obtained results of applying the k-means algo-
rithm. In order to test our approach, we extracted requirements from 22 indus-
trial specifications (∼2000 pages). From this, we constructed three different

datasets (corpus1, corpus2 and corpus3) explained below. For confidentiality
issues, we are not allowed to reveal the identity of the companies. The main
features considered to validate our datasets are: (1) texts following various kinds
of business style and format guidelines imposed by companies, (2) texts coming
from various industrial areas: aeronautic, automobile, spatial, telecommunica-
tion, finance, energy. Theses datasets enable us to analyze different types of
redundancy and inconsistency in terms of frequency and context. We present
characteristics of these datasets (written in English) as follows:

– Corpus1: dataset that contains 38 requirements fully redundant according to
our expert,

– Corpus2: dataset that contains 42 requirements fully inconsistent according
to our expert,

– Corpus3: dataset that contains 337 requirements randomly chosen with no a
priori information of redundancy and inconsistency,

We choose to apply the statistic gap approach which allows to obtain a numerical
value reflecting the coherence of the clusters. Table 1 shows, for each dataset, the
number of requirements, the best value of k (according to the statistic gap), the
results of the “strict” validation (SV) and the associated number of relevant
clusters, and the results of the “average” validation (AV) and the associated
number of relevant clusters.

Table 1. Results: best value of K, validation results and the associated number of
relevant clusters for each dataset

Dataset Best value of K SV (Nb. of relevant clusters) AV (Nb. of relevant clusters)

Corpus1 30 100% (8) 100% (8)

Corpus2 17 100% (15) 100% (15)

Corpus3 26 22% (4) 30.96% (18)

In Corpus1 and Corpus2 dataset, the result is very interesting since we know
the characteristics of these datasets, which are fully redundant/fully inconsis-
tent and then the clustering approach is appropriate to this kind of datasets. In
Corpus3 dataset, we have less good results, but this is explained by the nature
of this dataset which is not fully redundant or inconsistent. So, we do not know
in reality, how much redundancy or inconsistency has this dataset. From this
dataset, very close to a real industrial dataset, we can conclude that the clus-
tering approach has detected redundancy/inconsistency, but we do not know if
it had detected the whole redundancy/inconsistency information.

3.3 Classification Results with the Preprocessing Step

For the preprocessing step, we use the POS tagging and Noun chunking from
spaCy3 as a popular tool in natural language processing field. spaCy is a free

3 https://spacy.io/.

open-source library featuring state-of-the-art speed and accuracy and a powerful
Python API. After applying this tagging approach, we proceed to detect techni-
cal terms, according to some combination of tags. According to our RE expert,
technical business terms are often expressed in open or hyphenated compound
words (e.g. high speed, safety-critical) and we observe that they are always part
of a noun chunk4. In this paper, we first extracted all noun chunks from our
Corpus1, then observed the syntactic patterns inside noun chunks referring to
POStags, obtained by spaCy. The most used 13 combination patterns in busi-
ness terms are selected and validated in collaboration with our RE expert: for
example, noun-noun (e.g. runway overrun), adjective-noun (e.g. normal mode),
proper noun-noun (e.g.BSP data), etc. So, we apply the k-means algorithm on
the same datasets with the identified technical terms in order to see the impact
of this preprocessing on the results. Table 2 summarizes the different results
obtained from the same experiments presented in Sect. 3.1.

Table 2. Results with preprocessing: best value of K, validation results and the
associated number of relevant clusters for each dataset

Dataset Best value of K SV (Nb. of relevant clusters) AV (Nb. of relevant clusters)

Corpus1 28 100% (10) 100% (10)

Corpus2 24 92.85% (13) 92.85% (13)

Corpus3 36 22.22% (6) 39.20% (27)

In Corpus1 dataset, the POS tagging has shown its efficiency to improve
redundancy/inconsistency detection results with two more relevant clusters than
the results without preprocessing. In Corpus2 dataset, we obtain two less relevant
clusters than the clustering without preprocessing. In this case, the preprocessing
has shown its inefficiency to improve inconsistency detection results. In Corpus3
dataset, we have the same relevant value of the strict validation comparing to
the Table 1. However, the number of relevant clusters is higher. For the average
validation, we clearly see an improvement of the percentage of relevant clusters
and also the total number of relevant clusters. The preprocessing has improved
the rate of the redundancy/inconsistency detection.

4 Discussion

The k-means results are given to our domain expert to judge the best value of
k from his/her own domain-based expertise. We found a difference between the
generated k value (according to the statistic gap) and the best value according
to our expert. For the results without preprocessing, the results are as follows:
for to Corpus1, our expert assume that 23 (instead of 30) is the best value of
k with 100% of relevance (for SV) and with 13 relevant clusters (instead of 8).

4 A noun chunk is a noun plus the words describing the noun.

For Corpus2, our expert assume that 18 (instead of 17) is the best value of k
with 100% of relevance (for SV) and with 16 relevant clusters (instead of 15).
For the results with preprocessing, the results are as follows: for to Corpus1,
our expert assume that 23 (instead of 28) is the best value of k with 100% of
relevance (for SV) and with 14 relevant clusters (instead of 13). For Corpus2,
our expert assume that 25 (instead of 24) is the best value of k with 100% of
relevance (for SV) and with 15 relevant clusters (instead of 13). In our case, the
statistic gap did not found the best k value for our domain.

5 Conclusion

In this paper, we used k-means algorithm for redundancy and inconsistency
detection in RE context. We used POS tagging and noun chunking in order
to detect technical business terms associated to the requirements documents
that we analyze. This approach is tested on real industrial datasets with differ-
ent characteristics of redundancy and/or inconsistency. According to Corpus1
(redundant) and Corpus2 (inconsistent), k-means provides very relevant results.
Preprocessing has improved the rate of redundancy detection but not the rate of
the inconsistency detection. According to Corpus3, the results show the impor-
tance of the preprocessing step to improve the clustering results in terms of pre-
cision and also the number of detected clusters. Even with high quality results
on Corpus1 and Corpus2, we are not able yet to differentiate redundancy or
inconsistency in very similar clusters in Corpus3. So, we plan to apply another
clustering approach based on semantic features. After improvements, this work
will be integrated in the industrial tool: Semios for requirements5.

Acknowledgements. This work is financially supported by the Occitanie region of
France in the framework of CLE (Contrat de recherche Laboratoires-Entreprises)-
ELENAA (des Exigences en LanguEs Naturelles à leurs Analyses Automatiques)
project.

References

1. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer-Verlag, London
(2011)

2. Daniel, M., Berry, E.K., Krieger, M.M.: From Contract Drafting to Software Spec-
ification: Linguistic Sources of Ambiguity (2003)

3. Galin, D.: Software Quality Assurance: From Theory to Implementation (2003)
4. Bourque, P.: Guide to the Software Engineering Body of Knowledge (SWEBOK

Guide) (2004)
5. Glas, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley Profes-

sional, Reading (2002)
6. Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R., Moroney, G.: Error

cost escalation through the project life cycle. In: Proceedings of the 14th Annual
International Symposium, Toulouse, France (2004)

5 http://www.semiosapp.com/index.php?lang=en.

7. Winkler, J., Vogelsang, A.: Automatic classification of requirements based on con-
volutional neural networks. In: 2016 IEEE 24th International Requirements Engi-
neering Conference Workshops (REW), pp. 39–45, September 2016

8. Knauss, E., Damian, D., Poo-Caamao, G., Cleland-Huang, J.: Detecting and clas-
sifying patterns of requirements clarifications. In: 2012 20th IEEE International
Requirements Engineering Conference (RE), pp. 251–260, September 2012

9. Ott, D.: Automatic requirement categorization of large natural language specifica-
tions at mercedes-benz for review improvements. In: Doerr, J., Opdahl, A.L. (eds.)
REFSQ 2013. LNCS, vol. 7830, pp. 50–64. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37422-7 4

10. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010). Award winning papers from the 19th International Conference on
Pattern Recognition (ICPR)

11. Allan, J., Lavrenko, V., Malin, D., Swan, R.: Detections, bounds, and timelines:
umass and tdt-3. In: Proceedings of Topic Detection and Tracking Workshop
(TDT-3), Vienna, VA, pp. 167–174 (2000)

12. Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B., Schaetz, B., Wagner,
S., Domann, C., Streit, J.: Can clone detection support quality assessments of
requirements specifications? In: Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering, vol. 2. ICSE 2010, New York, USA, pp. 79–88.
ACM (2010)

13. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Trans. Softw. Eng. 39(1), 18–44 (2013)

14. Rago, A., Marcos, C., Diaz-Pace, J.A.: Identifying duplicate functionality in textual
use cases by aligning semantic actions. Softw. Syst. Model. 15(2), 579–603 (2016)

15. Belsis, P., Koutoumanos, A., Sgouropoulou, C.: Pburc: a patterns-based, unsu-
pervised requirements clustering framework for distributed agile software develop-
ment. Requir. Eng. 19(2), 213–225 (2014)

16. Frenay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

17. Dermeval, D., Vilela, J., Bittencourt, I.I., Castro, J., Isotani, S., Brito, P., Silva,
A.: Applications of ontologies in requirements engineering: a systematic review of
the literature. Requir. Eng. 21(4), 405–437 (2016)

18. Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K.: What
works better? a study of classifying requirements. In: 2017 IEEE 25th International
Requirements Engineering Conference (RE), pp. 496–501, September 2017

19. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics, vol. 1. ACL
2003, Stroudsburg, PA, USA, pp. 423–430. Association for Computational Linguis-
tics (2003)

20. Fu, X., Ch’ng, E., Aickelin, U., See, S.: CRNN: a joint neural network for redun-
dancy detection. In: 2017 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 1–8, May 2017

21. Mohajer, M., Englmeier, K.H., Schmid, V.J.: A comparison of gap statistic defini-
tions with and without logarithm function (2010)

