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Abstract. Nowadays, datacenters are one of the most energy consuming
facilities due to the increase of cloud, web-services and high performance
computing demands all over the world. To be clean and to be with no
connection to the grid, datacenters projects try to feed electricity with
renewable energy sources and storage elements. Nevertheless, due to the
intermittent nature of these power sources, most of the works still rely
on grid as a backup. This paper presents a model that considers the
datacenter workload and the several moments where renewable energy
could be engaged by the power side without grid. We propose to optimize
the IT scheduling to execute tasks within a given power envelope of only
renewable energy as a constraint.

Keywords: Cloud computing · Renewable energy · Scheduling

1 Introduction

Datacenters are now known to be one of the biggest actors when talking about 
energy consumption [1]. In 2006, particularly, datacenters were responsible for 
consuming 61.4 billion kWh in the United States [2]. In another study [3], dat-
acenters are in charge of consuming about 1.3% of world’s electricity consump-
tion. Datacenters are currently consuming more energy than the entire United 
Kingdom, and our needs are increasing.

Supplying datacenters with clean-to-use renewable energy is therefore essen-
tial to help mitigate climate change. The vast majority of cloud provider com-
panies that claim to use green energy supply on their datacenters consider the 
classical grid, and deploy the solar panels/wind turbines somewhere else and sell 
the energy to electricity companies [4], which incurs in energy losses when the 
electricity travels throughout the grid. Even though several efforts have been 
conducted at the computing level in datacenters partially powered by renewable 
energy sources, the scheduling considering the variations in the power produc-
tion without the grid can still be widely explored. In this paper we consider a 
datacenter powered only with renewable energy.

_https://doi.org/10.1007/978-3-319-96983-1 24



Since energy efficiency in datacenters is directly related to the resource con-
sumption of a computing node [5], performance optimization and an efficient
load scheduling is essential for energy saving. Today, we observe the use of cloud
computing as the basis of datacenters, either in a public or private fashion. The
task management is first optimized by Virtual Machine (VM) management [6],
where a task should be placed considering an energy consumption model to
describe the task’s consumption, depending on the resource description (pro-
cessor and memory power characteristics) and task’s demand (resources usage)
while respecting the Quality of Service (QoS - in our case their due dates).

To address the IT load scheduling while considering the renewable energy
available we propose Renewable Energy Constrained Optimization (RECO).
RECO is a module to schedule batch tasks, which are characterized by their
release time, due date and resource demand, in a cloud datacenter while respect-
ing a power envelope. This envelope represents an estimation which would be
provided by a power decision module and is the expected power production based
on weather forecasts, states of charge of storage elements and other power pro-
duction characteristics. We also highlight that this RECO module is intended
to be used as part of the ANR Datazero project1. RECO aims at maximizing
the Quality of Service with a constraint on electrical power. There are sev-
eral possible power envelopes which could be generated using only renewable
energy sources and the different moments when storage elements can be engaged.
This interaction between datacenter electrical consumption and electrical power
sources part is fundamental to profit as much as possible from the renewable
energy sources. We propose and evaluate this RECO module with a comparison
between classical greedy algorithms and meta-heuristics constrained by power
envelopes.

The remainder of this article will present the classical approaches on schedul-
ing with and without renewable energy sources in Sect. 2. In Sect. 3 the problem
formulation is presented in details, followed by the resolution in Sect. 4 and the
evaluation methodology as well as the results obtained are presented in Sect. 5.
Finally, Sect. 6 presents final remarks, highlights the contributions with quanti-
tative data and also directions for future works.

2 Related Work

Several techniques exist to save energy [5,7]. In this section some of these research
initiatives are presented, mainly related to the energy aware task scheduling in
datacenters. In this sense, several authors tackle this problem using heuristics to
schedule tasks trying to reduce the energy consumption in a cloud datacenter,
some of which consider also the use of renewable energy. Below we present some
initiatives that utilizes green energy to the datacenter in order to maximize the
green energy usage.

Goiri et al. proposes GreenSlot [8] which focus on batch jobs and Green-
Hadoop [9] focused on MapReduce jobs scheduling for a datacenter powered

1 http://www.datazero.org.



by photovoltaic panels and the electrical grid. The schedulers are based on a
predicted amount of solar energy that will be available, and aims to maximize
the green energy consumption while meeting the jobs constraints. If grid energy
must be used to avoid due date violations, the scheduler finds the cheapest point.
Aksanli et al. [10] proposes an adaptive datacenter job scheduler which also uti-
lizes short term prediction but in the case of solar and wind energy production.
The aim of the scheduler is to reduce the number of canceled or violated jobs,
and improve the efficiency of the green energy usage. Liu et al. [11] investigates
the feasibility of powering cloud datacenters using renewable energy. The study
focus on geographical load balancing, and the optimal mix of renewable energy
using a concept called “follow the renewables” in which the workload is migrated
among datacenters to improve the renewable energy usage. Finally, Beldiceanu
et al. [4] presents EpoCloud, a prototype aims at optimizing the energy consump-
tion of mono-site cloud datacenters connected to the regular electrical grid and
to renewable energy sources, aiming to find the best trade-off between energy
cost and QoS degradation using application reconfiguration or jobs suspension
along with Vary-On/Vary-Off (VOVO) policy which dynamically turn on/off
the computing resources. Sharma et al. [12] presents Blink, a way to handle
intermittent power constraints activating and deactivating servers. For example,
a system that blinks every 30 seconds is on for 30 seconds and then off for 30
seconds. This approach can be useful for some web applications, but not realistic
for the vast majority of applications running in cloud platforms.

As it can be observed, techniques are employed in order to reduce the brown
energy consumption [5], such as node consolidation, DVFS (processor voltage
and frequency variation) and some authors also take profit of heterogeneity in
the datacenter. Nevertheless, with exception of Sharma et al. [12] the authors
always consider the grid as a backup and not a datacenter powered only by
renewable energy sources, and the fluctuations that could occur in the power
production. The scheduling over several possible power profiles allow us to see
the impact on metrics such as QoS and the usage of renewable energy. To do
so, a module to schedule tasks in a cloud datacenter is proposed in this paper
while respecting the several possible power envelopes, minimizing the number
of due date violations. For comparison purposes we also explore classical greedy
algorithms and meta-heuristics constrained by a provided power envelope.

3 Core Problem Formulation

3.1 The Principles of the RECO Module

IT scheduling problems consist in allocating tasks on the IT resources under
constraints depending on the IT platform current state and on energy availabil-
ity. Several levels of decision are concerned as IT resource management (server
switch on/off, process migration, voltage and frequency scaling, etc.). On the
other side, we have the power systems where several power profiles could be
provided, depending on the moment when the renewable energy is produced and
the batteries are engaged for instance.



RECO focuses on integrating both power and computing systems to provide
a power constrained optimization using power envelopes, which is applicable in
the context of projects such as Datazero. The power envelope is considered as
an input of the IT scheduling problem. The objective is to optimize the tasks
placement in a cloud datacenter respecting a power envelope provided by the
Power Management while maximizing the QoS (in our case, minimizing the due
date violations).

RECO can be triggered when a new task arrives or due to some changes in
the power envelope. It decides which task will be executed on which resource,
when and at which frequency (using DVFS), and also when each node will be
turned on or off. RECO ensures that the placement will respect a power envelope
engaged by a power module, while minimizing the number of tasks that will be
violated (finishing after the due date).

In the next sections, the models for IT and power characteristics and the
proposed scheduling approaches are exposed in details.

3.2 IT Management Model

In this work we focus mainly on batch tasks. The IT system receives a set of n

tasks {Tj}j∈{1,...,n}, characterized by the following information: etj represents

the execution time of task Tj running at a reference frequency F
(1)
1,1 (see later),

memj is the requested memory, rtj represents the release time of the task (the
moment when Tj can start to be executed), and dj represents the due date of
this task (the moment when Tj must be finished).

M multi-processor hosts {Hh}h∈{1,...,M} populate the datacenter, while each
host Hh is composed of Ch processors equipped with DVFS, each of them
exposing Mh memory. The power dissipated by Hh can be computed based
on Mudge [13]:

Ph =











P
(idle)
h +

Ch
∑

h=1

runh,p · P
(dyn)
h · (fh,p)

3
if sh = on

0 otherwise

(1)

where sh determines whether Hh is on or off , P
(idle)
h is the idle power, runh,p

is a boolean describing whether there is a task running on the processor, P
(dyn)
h

is a host-dependent coefficient, and fh,p is the clock frequency of processor p on
host h.

Every processor have a set of available frequencies Fh,p =
{

F
(1)
h,p , . . . ,

F
(FMh,p)
h,p

}

, in such a way that at any instant, fh,p ∈ Fh,p. Finally, note that

under any clock frequency, a power overhead of P
(on)
h (resp. P

(off )
h ) is paid dur-

ing t
(on)
h (resp. t

(off )
h ) when Hh is turned on (resp. off ).

We consider that an external Power Management module sends a set of
piecewise power envelopes in a time window [ti,min , ti,max ] where each envelope i

is described with time steps {ti,l}l∈{0,...,N} (where ti,0 = ti,min and ti,N = ti,max )



and power values. The available electrical power, constant on each [ti,l, ti,l+1], is
given in Watts and N represents the granularity. Here we also loosely call these
time intervals as steps.

3.3 Objective

The aim is to find when and at which frequency to run every task, i.e. to find
assignment functions σproc , σhost and σfreq expressing that Tj runs on processor

σproc(j) of host σhost(j) at frequency F
(σfreq(j))

σhost(j),σproc(j)
, and a starting point

function st expressing that Tj starts at time st(j). We denote by ft(j) the
finish time of Tj , hence, for all j:

ft(j) = st(j) +
F

(σfreq(j))

σhost(j),σproc(j)

F
(1)
1,1

· etj . (2)

The problem can then be formulated as follows: minimize
∑

j max (0, ft(j) − dj),
while fulfilling memory and power constraints.

4 Core Problem Resolution

Finding a mapping of the tasks onto the processors such that no due date con-
straint is violated is an NP-complete problem, while DVFS is not enabled and
memory is not taken into account, even with two processors. In this way, we
focus on approximation methods. More specifically, we explore Greedy Heuris-
tics (GH) and Genetic Algorithms (GA) as a way to validate our proposal. GH
can provide locally optimal decisions, and in general have a short execution time.
On the other hand, the combinations of choices locally optimal do not always
lead to a global optimum. The second approach (GA), can provide a large num-
ber of adapted solutions and also makes possible to approach a local minimum
starting from an existing solution. Nevertheless, the problem of GA methods
can be the execution time on large scale problems. In this work we propose a
time window approach. More specifically, an off-line resource allocation problem
is considered with a fixed set of tasks that have constant resource needs.

The difference from regular scheduling algorithms is that in this case we
need considering the power envelope as a constraint. To do so, the implemented
algorithms use a power check function which is responsible for evaluating if a
task can be scheduled in a given processing element on the desired time interval.
It returns how much power would be consumed to schedule the task using a
specific processor and frequency. Hereafter, two different approaches that provide
scheduling possibilities are presented but this model is not limited to it and new
approaches could be used as long as they rely on the presented function.

For GH, we considered three versions of the Best Fit, where we use different
sort task functions. It tries to fit the tasks in the node that presents the smallest
power consumption, respecting the power envelope and resource constraints,
and three versions of the First Fit algorithm which schedules a task at the first



available node which can finish the task before the due date. The difference
among the three versions of each algorithm is the way that the tasks are sorted:
(i) Due date, closest task first; (ii) Arrival time, first task that arrives is the first
to be scheduled; and (iii) Task size, longest one first. Even though the changes
occur only in the task ordering, the impact on the results can be significant.
All considered GH algorithms must respect the power envelope, meaning that
if there is not enough power in a given time step to power a machine, this task
will be delayed until the next time step in which a possible solution is found
(increasing the start step).

Regarding the GA we propose two variations, the first one where the fitness
function consists only in reducing the number of due date violations, and the
second one uses a weight based approach, also trying to minimize the power
consumption in a Mixed Objective (hereafter called MPGA - MultiPhase Genetic
Algorithm and MPGA-MO - MultiPhase Genetic Algorithm Mixed Objective,
respectively). Equation 3 is used to normalize all metrics considered for each
chromosome Ck, described below, where M (max) is the maximum value for a given
metric, M (min) is the minimum, and Mk is the value of the kth chromosome. The
normalized values are then inputs in Eq. 4 where DDk is the normalized due date
violations and Ek is the normalized energy consumption. The metrics should be
weighted using α, depending on the importance of the objective (for MPGA the
only metric considered is the number of due date violations, i.e. α is equal to 1).

M
(norm)
k =

M (max) − Mk

M (max) − M (min)
(3)

fitnessk = α × DDk + (1 − α) × Ek (4)

In both cases each chromosome represents a scheduling possibility for the
given power profile. Figure 1 presents an example of crossover operation (Algo-
rithm1) where each gene represents a task and the value is the node where it
will be executed. For the crossover operation we consider two points crossover
since it allows the change of a higher number of genes in a single operation, and
the selection consists in tournament selection, which allows the best fitted genes
to survive. After that, the processor, frequency and time are assigned using a
greedy algorithm. To improve the execution time of both GAs (the verification
of the power available occurs for each step in the power envelope) we also use
two different power envelopes, the first one provides a rough scheduling based
on an aggregation of the initially provided envelope, reducing in this case the
number of steps. After obtaining an initial placement, a fine grained power enve-
lope (smaller steps) is used to absorb power peaks and respect the given power
envelope.

Node 0Node 2 Node 3

T1 T3T2

Node 3 Node 0 Node 2

T1 T3T2

Node 0 Node 2 Node 3

T1 T3T2

Node 3 Node 0 Node 2

T1 T3T2

Parents O springs
Crossover/Mutation

Fig. 1. Genetic algorithm chromosome representation and crossover example.



A pseudocode of the GA used is presented in Algorithm 1 where it can be
seen the generation of the simplified envelope in line 2 (assigned to individuals
in line 4), the first execution from line 6 to 11, and the execution with the
detailed power envelope and the respective stopping criteria from line 12 to 19.
The stopping criteria for the MPGA, since it only considers the number of due
date violations, is when it has at least one chromosome that has no violation the
execution can be stopped, or the maximum number of generations is reached. For
the second algorithm (MPGA-MO) the stopping criteria is only the number of
generations, since the minimum energy to schedule the tasks in advance cannot
be defined easily.

Algorithm 1. Multiphase genetic algorithm pseudocode.
input : Set of tasks in queue, set of resources available, power envelope for the

window, selection method, population size, number of generations first phase,

number of generations second phase, number of simplified steps, mutation

probability, crossover probability

output: Tasks scheduled, actions to be performed in nodes, QoS metrics, power

consumption estimation

1 begin

2 simplifiedPowerEnvelope = generateSimplifiedEnvelope(powerEnvelope,nSteps);

/* First Phase - Simplified Power Envelope */

3 foreach Individual i in population do

4 i.setPowerEnvelope(simplifiedPowerEnvelope.copy);

5 end

6 generateInitialPopulation();

7 for (g=0; g < generationsFirstPhase; g++) do

8 scheduleAndCheckConstraints(individuals);
9 calculateFitness(individuals);

10 selectionMethod.select(individuals);

11 end

/* Second Phase - Detailed Power Envelope */

12 foreach Individual i in population do

13 i.setPowerEnvelope(powerEnvelope.copy);

14 end

15 while StopCriteriaNotReached do

16 scheduleAndCheckConstraints(individuals);

17 calculateFitness(individuals);

18 selectionMethod.select(individuals);

19 end

20 end

When a set of individuals of a generation is computed, the greedy
algorithms is used to perform the time schedule and DVFS adjustment
(scheduleAndCheckConstraints called in lines 8 and 16). In a simplified man-
ner, how the tasks would be allocated in a processor is presented in Fig. 2 where
we illustrate a node with two processors. In (a) we present the scheduling after



the greedy algorithm that defines the time and processor inside a node is exe-
cuted. The aim of this greedy algorithm is to align the execution of the processors
of the same node to be able to switch it off. First we populate an associative
array with all the tasks and the time intervals where they can be scheduled.
After, we get the first unscheduled task and compare if there is another task
which the time to be schedule intercepts this time interval. The algorithm eval-
uates then, what is the earliest start step in which the tasks can be allocated
and not violated. Finally, the algorithm finds a free processor inside the node
and schedule the tasks in parallel (as illustrated in (b) by T1 in Processor 1 and
T2 and T3 in Processor 2. We also highlight that the algorithm always verifies
the power envelope and resources constraints.

In Fig. 2(c) we show a per processors DVFS where we reduce the frequency
of Processor 2 in this case, to reduce the power consumption, and consequently
increasing the execution time of tasks T2, T3. The frequency in this case is only
reduced if the due date is not violated. This DVFS control does not impact
the idle power consumption of a node, allowing an easy consolidation of nodes
where more energy saving can be obtained. In this sense, at the end of the
task placement and DVFS adjustment we also calculate when each node can
be turned off in order to reduce the power consumption without impacting the
system performance.

T1

T2

Processor 1

Processor 2 T3

on o

T1

T2

Processor 1

Processor 2 T3

on o

(b)

(c)T1 T3T2

Node 0

Processor 1

Frequency: F1

Start: 1:00pm

End: 5:00pm

Node 0

Processor 2

Frequency: F0

Start: 1:00pm

End: 2:30pm

Node 0

Processor 2

Frequency: F3

Start: 2:30pm

End: 5:00pm

(a)

Fig. 2. Tasks allocation inside a node with two processing elements using greedy
scheduling inside GA (a), and DVFS adjustment where (b) is before DVFS and (c)
after DVFS adjustment.

5 Evaluation Methodology and Results

5.1 Methodology

To validate RECO we simulated an IT and Power production infrastructure
based on the prototype presented in the previous section. The DCWoRMS sim-
ulator and the other modules are executed on the same machine. The IT infras-
tructure inside the simulator is based on Villebonnet et al. [14], more specifically
we are using 30 hosts (15 of each kind) and the power consumption values of Par-
avance and Taurus clusters from Grid50002. We consider P (dyn) = 4.725W ·s3

2 https://www.grid5000.fr/.



(see Eq. 1) and P (idle) = 69.9W for Paravance and P (dyn) = 5.255W ·s3 and
P (idle) = 95.8W for Taurus. For Paravance we considered P (on) = 112.91W

over t(on) = 189 s and for P (off ) = 65.7W over t(off ) = 10 s . For Taurus we
considered P (on) = 125.78W over t(on) = 164 s and for P (off ) = 106.63W over
t(off ) = 11 s.

Regarding the GA, we bound the number of generations to 100 (resp. 400)
with the simplified power envelope (resp. with the original power envelope) and
the population size to 100 individuals. The probabilities for crossover and muta-
tion are 0.9 and 0.3 respectively. For the MPGA-MO we consider α = 0.9 where
the main objective is minimize the due date violations. For the Google based
workload [15] generator we use a two-day window (i.e. all the tasks have to be
executed inside this interval) to generate 3 different workloads with 234, 569
and 1029 tasks. Each workload is scheduled with 3 different power profiles as
observed in Fig. 3. Profile i with peak production of 7249 W and average of
2879W, Profile ii peak production of 7249 W and average of 2893 W and Pro-

file iii with peak production of 6387 W and average of 2756W. Even though
the values are similar, the moment in which the power is delivered is different,
as observed in Fig. 3.

Fig. 3. Graphical representation of the three power profiles.

5.2 Results Evaluation

In Fig. 4 we present the number of due date violations (a) the total time violated
(b) and energy consumption (c) for all the proposed workloads for best fit and
genetic algorithms (first fit is presented only in text for better visualization),
considering the three different power profiles.

Considering the three power profiles with only 234 tasks, almost all algo-
rithms, even with the power constraint, can reduce the number of violations to
0 and keep the energy consumption around 15 kWh. The exceptions in this case
are the first fit algorithms which have a higher energy consumption (around
18 kWh) and one violation (198s of total time violated) with Profile ii. As
the number of tasks increases an expected degradation of performance of both
first fit and best fit algorithms is observed when compared to the GA. When
considering 1029 tasks we have in Profile i 18 due date violations (114046 s)



for the best fit algorithm against 5 (545446 s) and 6 (30684 s) of the two genetic
algorithms variations, which also obtained a reduction of 6.3% in the energy
consumption. In Profile ii we observed the same behavior, reducing from 19
(189892 s) to 12 (78471 s and 114845 s) due date violations with a reduction of
4.9% in the energy consumption. The same goes for Profile iii which reduced
from 22 (169612 s) to 11 (118092 s and 118477 s) due date violations with an
economy of 5% in energy. The values for the total time violated of the tasks may
seem high but we need to consider that the scheduling is constrained by a power
envelope, and in this case the tasks need to be delayed for the next moment with
enough power available (if we consider only solar energy for instance, this may
take a whole day).

In Fig. 5 we present the power produced and consumed for Profile i. These
results were obtained when using the Best Fit Due Date (a) and MPGA-MO
(b) scheduling planners with Profile i and 1029 tasks. We can observe that
in some points (such as in the first 100 samples) the power consumption can
be similar for both algorithms due to the high number of tasks that needs to
be scheduled and so reaching the maximum power available. This justifies why
we have different number of due date violations with the same workload under
different power profiles: at some points we have too many tasks to be scheduled,
and they lack flexibility (time between release and due date) to wait the next
moment where enough power will be available (samples 100–200). This highlights
the importance of the generation of multiple power envelopes when considering
renewable energy sources and storage elements engagement. We could not only
save energy but also provide a better QoS; this behavior can be observed by
comparing the results obtained with Profile i against the two others, which
have a higher number of violations and in case of Profile ii also a higher energy
consumption.

The results become even more significant if we consider the long term impact
that it could provide. For Profile i, displayed in Fig. 5, in a period of 2 days
we could save 164.98 kWh using the MPGA-MO, instead of 155.35 kWh and
160.04 kWh for first fit and best fit due date respectively. This energy could be
stored and used in the generation of the next scheduling windows improving the
results, or sold to the grid power provider.

In Fig. 6 the average execution time of all the algorithms (with minimum
and maximum values in the bars) is presented. Despite of the smaller number
of due date violations and lower energy consumption, as expected, the Genetic
Algorithm can have an execution time exponentially higher than the greedy ones.
Nevertheless, if the scheduling requested is not a reactive action, this execution
time is not prohibitive (around 12 min in the worst case for two days scheduling).
We also highlight that it is possible to improve even more the execution time by
improving the stopping criteria, but this will have an impact of the quality of
the schedule.



Fig. 4. Power available and consumed in the power profiles using best fit and genetic
algorithm scheduling plan.

Fig. 5. Power available and consumed in the power Profile i considering two different
algorithms and 1029 tasks.



Fig. 6. Execution time of the different algorithms with different number of tasks with
Profile i.

6 Conclusion

This article focused on presenting and evaluating an optimization module called
RECO that aims to schedule tasks in a cloud datacenter while respecting the
possible power envelopes.

We presented different algorithms that try to minimize due date violations
while respecting power and resource constraints. The proposed genetic algorithm
approach (MPGA and MPGA-MO) was able to reduce from 304 (First Fit)
to 11 due date violations, in the best scenario, while also reducing the energy
consumption from 78.7 kWh to 73.15 kWh respecting one of the power envelopes
provided by a power manager. We have also presented an evaluation of the
impact the power envelopes can have in the task scheduling, and concluded that
more power does not necessarily means better QoS for the IT part, but it is
more important to know when this power is delivered.

Finally, we intend to continue our research extending RECO to support real
time task arrival, services (not only batch tasks), and variations in the amount
of resources that are consumed by the applications. We also intend to connect
RECO’s generic interface through a message queue with an electrical middleware
to receive the power envelopes.
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