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Approximation of critical regularity functions on
strati�ed homogeneous groups

Eduard Curc�a

Abstract

Let G be a strati�ed homogeneous group with homogeneous dimension Q and whose
Lie algebra is generated by the left-invariant vector �elds X1,...,Xd1 . Let 1 < p; q < 1,
� = Q=p and � > 0. We prove that for any function f 2 _F�;pq (G) there exists a function
F 2 L1(G) \ _F�;pq (G) such that

kX
i=1

kXi(f � F )k _F��1;pq (G)
� � kfk _F�;pq (G) ,

kFkL1(G) + kFk _F�;pq (G) � C� kfk _F�;pq (G)

where k is the largest integer smaller than min(p; d1) and C� is a positive constant only
depending on �. Here, _F�;pq (G) is a Triebel-Lizorkin type space adapted to G.
This generalizes earlier results of Bourgain, Brezis [4] and of Bousquet, Russ, Wang, Yung

[6] in the Euclidean case and answers an open problem in [6].
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1 Introduction

Let B � Rd (d � 2) be a Euclidean ball. It is well-known that, if f 2 Lploc(B;R) with 1 < p <1,
then the equation div Y = f has a solution X 2 W 1;p

loc (B;R
d). When p = d, this Y "almost"

belongs to L1loc(B;R
d). A striking result obtained by Bourgain and Brezis (in [3]) asserts that

is possible to �nd Y 2 W 1;d
loc (B;R

d) \ L1loc(B;R
d). Their argument relies on a new type of

approximation results.
This seminal work has been followed by a number of approximation results of similar type [4],

[5], [13], [6]. Our work is primarily motivated by two types of developments of the results in [13],
[6] concerning functions in critical Sobolev spaces that barely fail the embedding in L1.
The �rst of these results (Lemma 1.7 in [13]) deals with the extension of the approximation

result given in [4] (Theorem 11) in the Euclidean case, to the more general case of strati�ed
homogeneous groups. Somewhat informally this reads (see Section 2 for de�nitions):

Theorem 1.1 Suppose G is a strati�ed homogeneous group whose homogeneous dimension is Q
and let X1; :::; Xn1 be a minimal family of vector �elds generating the Lie algebra of G. Then, for
any Schwartz function f on G and any � > 0 there exists a function F such that:

n1�1X
i=1

kXi(f � F )kLQ(G) � � krbfkLQ(G) ,

kFkL1(G) + krbFkLQ(G) � C� krbfk _F�;pq (G) ,

where C� is a constant only depending on �.

Here, rbf = (X1f; :::; Xn1f). Theorem 11 in [4] corresponds to the Euclidean case.
On the other hand, it was proved in [6] (Theorem 1.1) that Theorem 11 in [4] remains true,

in the Euclidean case if we replace the critical Sobolev space _W 1;d(Rd) by more general critical

spaces such as _F
d=p;p
q (Rd). More precisely, we have the following:

Theorem 1.2 Consider the parameters 1 < p; q <1, � = d=p and let k be the largest positive
integer with k < min(p; d). Then, for every � > 0 there exists a constant C� > 0 only depending
on �, such that for every function f 2 _F�;pq (Rd) there exists F 2 L1(Rd) \ _F�;pq (Rd) satisfying
the following estimates:

kX
i=1

k@i(f � F )k _F��1;pq (Rd) � � kfk _F�;pq (Rd) ,

kFkL1(Rd) + kFk _F�;pq (Rd) � C� kfk _F�;pq (Rd) .

Note that here we have a somewhat unnatural technical condition on k, which does not seem
to be optimal. Namely, we impose k < min(p; d) instead of only imposing k < d. (See [6] for a
discussion on this assumption.)

The purpose of this paper is to �nd a common roof to Theorem 1.1 and Theorem 1.2 and to
give an a�rmative answer to Open question 1.4 in [6]. Our generalisation is an adaptation of
Theorem 1.2 above to the strati�ed homogeneous groups context of Theorem 1.1. In this case the
role of the Euclidean dimension is played by the homogeneous dimension Q of the group and the
critical regularity becomes, in this case, � = Q=p. The role of the derivatives is played by the
vector �elds that generate the full Lie algebra of G.
The statement of our main result is:
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Theorem 1.3 Consider the parameters 1 < p; q <1, � = Q=p and let k be the largest positive
integer with k < min(p; d1). Then, for every � > 0 there exists a constant C� > 0 only depending
on �, such that, for every function f 2 _F�;pq (G), there exists F 2 L1(G) \ _F�;pq (G) satisfying the
following estimates:

kX
i=1

kXi(f � F )k _F��1;pq (G) � � kfk _F�;pq (G) ,

kFkL1(G) + kFk _F�;pq (G) � C� kfk _F�;pq (G) .

We will give in Section 2 precise de�nition of the function spaces we consider on G. For the
time being, let us mention that we cover the case of the more familiar anisotropic homogeneous
Sobolev spaces _NLm;p, de�ned informally as containing the functions f on G for which rm

b f 2 Lp.
Despite the fact that we also have the unnatural restriction k < min(p; d1), as in the Euclidean

case, this su�ces for some applications to divergence-like systems. Basically, all the applications
to such systems presented in [4] can be easily adapted to the strati�ed homogeneous group setting
and higher order Sobolev spaces. We give one example, formulated for simplicity for spaces of
integer regularity.

Theorem 1.4 Let m < Q be a positive integer. Suppose f 2 _NLm�1;Q=m(G) and there exist
functions v1; :::; vd1 2 _NLm;Q=m(G) such that

X1v1 + :::+Xd1vd1 = f .

Then, there exist u1; :::; ud1 2 L1(G) \ _NLm;Q=m(G) such that

X1u1 + :::+Xd1ud1 = f .

The paper is divided into two parts. The �rst one (Section 2) deals with the construction of
the Triebel-Lizorkin spaces on strati�ed homogeneous groups. We mention that the Euclidean
analogues of these spaces coincide with the classical ones and that in the general strati�ed ho-
mogeneous group setting, they also satisfy similar interpolation and duality properties as their
classical analogues.
Spaces of a similar kind were already de�ned and studied for example in [1], [10] and other

works (see also [9] for a construction of inhomogenous spaces in the more general context of Lie
groups of polynomial volume growth). Our construction is very similar to the one given in [10] (it
turns out that our spaces essentially coincide with the ones introduced in [10], as a consequence
of our Proposition 2.10). While the construction in [10] is based on spectral decomposition of
sublaplacians, our construction is based only on the relatively elementary technique developed in
[13] for obtaining a Littlewood-Paley decomposition for functions de�ned on the group. (We also
notice that our purpose is not to explore the properties of these spaces, but rather to prove a
minimal number of their properties, required in the proof of Theorem 1.3.)
While in [13] Littlewood-Paley decomposition is obtained by a Calder�on reproducing formula

with two convolutions, we will also need similar reproducing formulas with three convolutions (we
will prove that all the de�nitions of the spaces with two or more convolutions coincide). This
allows us to prove the full analogue of the Littlewood-Paley inequality as well as other inequalities
needed in the proof of Theorem 1.3.
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The second part (Sections 3 and 4) is devoted to the proof of Theorem 1.3. We follow closely the
proof in [6]. Several relatively minor modi�cations were made in order to simplify the exposition.
Some more substantial adaptations were required in order to bypass the lack of commutativity
of the vector �elds. In some cases the arguments are easily adapted to the group setting, and in
these situations we only sketch the arguments or refer to the proofs in [6]. In the Appendix we
recall the Calder�on-Zygmund theory on strati�ed homogeneous groups in order to give a direct
proof of an inequality (Proposition A1) whose Euclidean analogue was proved in the Appendix of
[6] by similar but more complicated means.

2 Function spaces on strati�ed homogeneous groups

2.1 Basic facts on strati�ed homogeneous groups

Here, we follow mainly Folland and Stein [8] and Stein [12]. We also present some auxiliary
results, possibly known to experts, that we will need in order to develop the Littlewood-Paley
theory of function spaces on strati�ed homogeneous groups. We will consider homogeneous groups
as de�ned in ([12], p. 618). For such a group G, we write the following decomposition of its Lie
algebra g:

g = V1 � V2 � :::� V`,

where V1; :::; V` are vector spaces of left-invariant vector �elds such that

(i) [Vi; Vj] � Vi+j (making the convention that V` is not trivial and any Vj with j > ` is
trivial),
(ii) V1 generates the whole algebra g (this is the so called H�ormander condition).

Dimension. We write dj := dimVj and d := d1 + ::: + d`; the number Q = d1 + 2d2 + ::: + `d`
is called the homogeneous dimension of G. As sets, we identify G with Rd. In view of this
identi�cation, we consider the following dilation rule: if x = (x1; :::; xd) 2 G and � > 0, then
�x = (�a1x1; :::; �

adxd), where

a := (a1; :::; ad) = (1; :::; 1; 2; :::; 2; :::; `; :::; `) (2.1)

is the vector of the homogeneities, each j 2 f1; :::; `g appearing dj times. The dilations are known
to be automorphisms of G and, with respect to them, the following "norm" on G is homogeneous:

kxkG :=

0@X̀
j=1

X
d1+:::+dj�1<i�d1+:::+dj

jxij
2`!
j

1A 1
2`!

. (2.2)

We have also the quasi-triangle inequality

kx � ykG . kxkG + kykG , for x; y 2 G.

Subgradient. We write X1; X2; :::; Xd for the left-invariant vector �elds forming the standard
basis of g, with X1; X2; :::; Xd1 forming a basis of V1. We will call full gradient and subgradient
respectively the following operators

r := (X1; X2; :::; Xd) , rb := (X1; X2; :::; Xd1) .

4



Note that, whenever f is a Schwartz function on Rd with rbf � 0 then, thanks to the
H�ormander condition, we get rf � 0. Hence, in a sense, the subgradient encodes all the di�er-
ential information about f . We will always be concerned with the subgradient of functions rather
than with the full gradient. We will consider for example the Sobolev-type space _NL1;Q, which
informally is a space of functions on G whose subgradient is in LQ. Note that this space is not
the same as _W 1;Q on G seen as a manifold.
Similar considerations hold for right-invariant vector �elds. We will write XR

j for the right-
invariant analogue of Xj.

An important aspect is that, with the identi�cation G = Rd, we have that x �y is a polynomial
in x; y and (x � y)k = xk + yk for any x; y 2 G as long as 1 � k � d1. Also we have x

�1 = �x for
all x 2 G.

Balls and the maximal function. We consider balls on G de�ned by the quasimetric � on G,
given by

�(x; y) =


y�1 � x



G

for x; y 2 G. The open ball centered in x and of radius � > 0 is the set

B(x; �) = fy 2 Gj�(y; x) < �g ,

whose Lebesgue measure is jB(x; �)j � �Q. For all balls B = B(x; �) and � > 0 we will write
�B = B(x; ��).
We also consider the Hardy-Littlewood maximal function M on G, de�ned by

Mf(x) = sup
B3x

1

jBj

Z
B

jf(y)j dy,

for all functions f 2 L1loc(G), where the supremum is taken over all balls B � G containing x.

We recall the following classical facts (for proofs see Chapter 2 in [12]):

Proposition 2.1 (i) If ' is a nonnegative decreasing function on [0;1), such that C =
R
G
'(kykG)dy <

1 and � is a measurable function on G such that j�(y)j � '(kykG) on G, then

jf � �j . CMf on G,

for any Schwartz f . Here the convolution on G is de�ned by

f � �(x) =
Z
Rd

f(y)�(y�1 � x)dy =
Z
Rd

f(x � y�1)�(y)dy.

(ii) M is of weak type (1; 1) and of strong type (p; p) for all 1 < p � 1.
(iii) (the Fe�erman-Stein inequality) Consider a sequence of Schwartz functions (fj)j2Z. Then,

for 1 < p; q <1, we have 


kMfjklqj




Lp
.p;q




kfjklqj


Lp .
Vector �elds and polynomials. We remind the following elementary formula ([12], p. 621):

Xjf(x) :=
@f(x � y)
@yj

����
y=0

= @jf(x) +
X
k>j

qj;k(x)@kf(x) (2.3)
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where y = (0; :::0; yj; 0; :::0) and qj;k are homogeneous polynomials of degree ak � aj.
Another elementary fact is that the integral of the functions of the form Xjf , where f is a

Schwartz function is, as in the Euclidean case, equal to 0. Here is a proof of this fact. For any
y = (0; :::0; yj; 0; :::0) 2 G, with yj 6= 0, using the fact that the Lebesgue measure on Rd is a
bi-invariant Haar measure on G ([8], Proposition (1.2), p. 3), we haveZ

Rd

f(x � y)� f(x)

yj
dx =

1

yj

�Z
Rd

f(x � y)dx�
Z
Rd

f(x)dx

�
= 0.

Using now the formula (2.3), the classical mean value theorem in the (Euclidean) Rd and the
dominated convergence theorem, we can pass to the limit when yj ! 0 in the above formula to
obtain Z

Rd

Xjf(x)dx = 0.

A similar formula holds for right-invariant vector �elds. As an immediate consequence of this
and the Leibniz rule we get the formula (see [8], p. 21)Z

Rd

(Xjf) gdx = �
Z
Rd

f (Xjg) dx (2.4)

whenever f and g are Schwartz functions or one of them is Schwartz and the other one is poly-
nomial.

Before going to the next step let us �x some notation. For a real valued function f su�ciently
smooth on G and a positive integer m, we write rm

b f for the vector valued function whose
components are

r

bf :=

�
X

11
1 X


12
2 :::X


1d1
d1

��
X

21
1 X


22
2 :::X


2d1
d1

�
:::
�
X

m1
1 X


m2
2 :::X


md1
d1

�
f (2.5)

listed in the lexicographic order given by 
 =
�

11; :::; 


m
d1

�
2 Nd1 � ::: � Nd1 (m times) with

j
j =
P

i;j 

i
j = m. Note that by embedding Nd1 � :::�Nd1 in

�
Nd1

�N
, we can de�ne r


bf by the
above formula whenever j
j <1.
We will also use many times the notation rm

b � ' where ' =
�
'

�
j
j=m is a �nite family of

Schwartz functions. This has the following meaning

rm
b � ' :=

X
j
j=m

r

b'
. (2.6)

Let us see that high powers of the subgradient are able to anihilate low degree polynomials.
More speci�cally,

Proposition 2.2 Suppose p 2 R [x1; :::; xd] is a polynomial and consider m 2 N�. Then rm
b p is a

vector valued polynomial with degrm
b p � ` deg p�m. In particular, if m is such that m > ` deg p,

then we have that rm
b p � 0.

The similar assertion for the right-invariant subgradient also holds.

Proof. It su�ces to prove the statement when p is a monomial. Suppose p(x) = x� = x�11 :::x
�d
d

for some � = (�1; :::; �d) 2 Nd and consider the function q = rm
b p. We can see from the

formula (2.3) that q is a vector valued polynomial on Rd. Writing �x for the group dilation of
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x 2 G with the parameter � > 0, we immediately see from the de�nition of the subgradient that
rm
b (p(�x)) = �mrm

b p(�x). Also, we have

p(�x) = (�a1x)�11 ::: (�adx)�dd = �ha;�ip(x).

From this we conclude that, for all x 2 G,

q(�x) = (rm
b p) (�x) = ��mrm

b (p(�x)) = �ha;�i�mrm
b p(x) = �ha;�i�mq(x):

If cx� is a monomial (c 6= 0) of maximum degree in q, as before we get (�x)� = �ha;�ix� for
all � > 0. Choosing from these monomials one for which ha; �i is maximum, we get by the above
formula that ha; �i = ha; �i �m and hence deg q = j�j � ha; �i � ` j�j �m. �

Let us next recall a fundamental formula that makes a connection between the derivatives on
Rd and the vector �elds from g. More speci�cally, for any 1 � i � d we have ([8], p. 25)

@i =

dX
k=1

Pk;iXk, (2.7)

where Pk;i are homogeneous polynomials of degree ak � ai.
We will also need the following.

Proposition 2.3 We have that

@i =

d1X
k=1

XkD
�
k;i. (2.8)

where the operators D�
k;i are the adjoints of some operators of the form

P

 p
r



Rd for appropriate

polynomials p
 and multi-indexes 
 in a �nite subset of N
d.

Proof. Since the vector �elds X1; X2; :::; Xd1 are generating the full Lie algebra of the group, we
can write each Xj in terms of X1; X2; :::; Xd1 using commutators, which are linear combinations

of expressions of the form r

b = r


0

b Xk for some 1 � k � d1 and some indexes 
, 

0 2
�
Nd1

�N
.

Keeping the last vector �eld from such an expression and using (2.3) to express r
0

b in terms of
derivatives on Rd and polynomials, we can rewrite (2.7) as

@i =

d1X
k=1

Dk;iXk, (2.9)

where each operator Dk;i is of the form
P


 p
r


Rd for some polynomials p
 and 
 in a �nite subset

of Nd.

Now, if f and g are arbitrary Schwartz functions we can write (see (2.4)):Z
Rd

f@igdx = �
Z
Rd

(@if) gdx = �
d1X
k=1

Z
Rd

(Dk;iXkf) gdx =

d1X
k=1

Z
Rd

fXk

�
D�
k;ig
�
dx

and hence, by identi�cation,

@i =

d1X
k=1

XkD
�
k;i,

which proves the Proposition 2.3. �
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Proposition 2.4 Let m 2 N and f be a Schwartz function.

(i) If f = rm
b � ' for a family of Schwartz functions ', then for any polynomial p with

deg p < m=` we have
R
G
pfdx = 0.

(ii) There exists an m0 2 N only depending on m and G such that if we have
R
G
pfdx = 0 for

any polynomial p with deg p � m0, then there exists a family of Schwartz functions ' such that
f = rm

b � '.
The same is also true in the case of the right-invariant subgradient.

Remarks. (1) Since the assertion of (ii) in the above proposition remains true for any integer
larger than m0, when applying this part of the proposition, we will assume for technical reasons
that m0 > m`.
(2) In particular, Proposition 2.4 gives the following (informally speaking): if '1 is a Schwartz

family, then there exists another Schwartz family '2 such that:�
rR
b

�m0
� '1 = rm

b � '2.

This property will be used several times.

Proof. Part (i) follows from Proposition 2.2 and by a repeated application of the formula (2.4).
Part (ii) will be proved by induction on m. The case m = 0 is trivial (we take by convention
m0 = 0). Fix m � 1 and suppose we have the statement of (ii) for m � 1. Consider the number
m0 := (m� 1)0 +M + 2, where M is the maximum degree reached by a polynomial p
 entering
in the expression of the operators Dk;i that occur in (2.9). If

R
G
pfdx = 0 for any polynomial p

of degree at most m0, then we can use the well-known fact that in the Euclidean case there exists
a collection of Schwartz families (�i)1�i�d such that

f =
dX
i=1

@i

�
rm0�1
Rd � �i

�
.

Using now formula (2.8) we can write:

f =

dX
i=1

@i

�
rm0�1
Rd � �i

�
=

dX
i=1

d1X
k=1

XkD
�
k;i

�
rm0�1
Rd � �i

�
=

d1X
k=1

Xk

 
dX
i=1

D�
k;irm0�1

Rd � �i

!
=

d1X
k=1

Xk
~�k,

where ~�k are the Schwartz functions
~�k =

Pd
i=1D

�
k;irm0�1

Rd ��i. It is easy to see that
R
G
p~�kdx = 0

for all polynomials p of degree at most (m� 1)0. By the induction hypothesis, we get that for
each k there exists a family of Schwartz functions 'k such that

~�k = rm�1
b � 'k. From this and

the above formula, we get the conclusion. �

Convolutions. We recall that, for two Schwartz functions f; g their convolution is de�ned by
the formula:

f � g(x) =
Z
Rd

f(y)g(y�1 � x)dy =
Z
Rd

f(x � y�1)g(y)dy.

It can be veri�ed directly that the convolution is associative.

Concerning the interaction of vector �elds with the convolution, it is known that ([8], p. 22):

Proposition 2.5 For all Schwartz functions f; g we have:

Xj (f � g) = f � (Xjg) , XR
j (f � g) =

�
XR
j f
�
� g, (Xjf) � g = f �

�
XR
j g
�
. (2.10)
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We have also the following elementary fact.

Proposition 2.6 If �1;�2 are two Schwartz functions, then �1 � �2 is also Schwartz.

Proof. We can easily observe that, since each component of x � y is a polynomial in x and y, we
can �nd a large number nG 2 N� such that 1 + jx � yj . (1 + jxj)nG (1 + jyj)nG for all x; y 2 Rd.
This implies that, for example, we have

sup
x
(1 + jxj)N j�1 � �2(x)j � sup

x

Z
Rd

�
1 +

��x � y�1 � y���N ���1(x � y�1)�� j�2(y)j dy
. sup

x

Z
Rd

�
1 +

��x � y�1���NnG ���1(x � y�1)�� (1 + jyj)NnG j�2(y)j dy
.

Z
Rd

(1 + jyj)NnG j�2(y)j dy <1.

More generally, the estimate of supx (1 + jxj)
N
��@� (�1 � �2) (x)�� is reduced to the above cal-

culation using the connection between the derivatives and the vector �elds on G via (2.7) and
(2.3). �

2.2 The Littlewood-Paley decomposition

We introduce the following notation. Whenever � is a Schwartz function on G and j is an integer,
we write �j for the function de�ned by �j(x) = 2

jQ�(2jx). Also, if f is another Schwartz function,
we write �jf = f � �j.

Proposition 2.7 Given m 2 N, there exist Schwartz families �1, �2, �3 on Rd such thatR
Rd P (x)�

1(x)dx =
R
Rd P (x)�

2(x)dx =
R
Rd P (x)�

3(x)dx = 0 for all the polynomials P of de-
gree � m0 (with m0 as in Proposition 2.4) and such that for all Schwartz functions f we have

f =
X
j2Z

f � �1j � �2j � �3j =
X
j2Z

�3j�
2
j�

1
jf , (2.11)

the convergence being in any Lp(Rd) for 1 < p < 1. In particular, according to Proposition 2.4
(ii), there exist families of Schwartz families 'i, �i (i = 1; 2; 3) such that �

i = Omb �'i =
�
ORb
�m ��i

for each i = 1; 2; 3.

Remark. Some explanations are in order. The proposition literally states that there exist three
�nite Schwartz families �i = (�i;a)a2A (A is a �nite set), i = 1; 2; 3, such that all the moments of
order up to m0 of each �i;a are zero and

f =
X
j2Z

X
a2A

f � �1;aj � �2;aj � �3;aj =
X
j2Z

X
a2A

�3;aj �
2;a
j �

1;a
j f .

The last assertion means that there exists 6jAj Schwartz families 'i;a, �i;a such that

�i;a = Omb � 'i;a =
�
ORb
�m � �i;a

for all a 2 A and i = 1; 2; 3 (see (2.6)). Since the use of the familly A leads to heavy notation, we
prefer the form of the above proposition which turns out to be more convenient in the calculations
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that follow. This can be compared with the summation convention in geometry. We also note
that the absolute value of expressions like �jf , where � = (�a)a2A is a Schwartz family, will have
the following meaning: ���1jf �� =X

a2A

���1;aj f
�� .

Similarly, we set ���2j�1jf �� =X
a2A

���2;aj �1;aj f
�� ,

and so on.
These conventions, together with (2.6), will enable us to estimate expressions involving Schwartz

families as if they were functions. We will also abuse the notation in other situations, where the
distinction between functions and �nite families of functions will be clearly irrelevant (see also
the conventions in [13]).

Proof. This proof follows the lines of Proposition 5.5 in [13]. We consider a radial Schwartz
function 	 with 	̂ � 1 on BRd(0; 1) and supp 	̂ � BRd(0; 2) (here BRd(0; 1) and BRd(0; 2) are
Euclidean balls). We need now the easy argument of Proposition 5.1 from [13] which we reproduce
below for the convenience of the reader.

Lemma 2.8 Let � be a Schwartz function on Rd such that
R
Rd �dx = 1 and �x some 1 < p <1.

Then, for any Schwartz function f , we have

f =
X
j2Z

f � (�j � �j�1),

the convergence being in Lp.

Proof. We have, for any N 2 N�,X
jjj�N

f � (�j � �j�1) = f � �N � f � ��N�1.

Hence it remains to see that f � �N ! f and f � ��N ! 0 in Lp when N ! 1. In order to
prove the �rst claim we write, using Minkowski's inequality,

kf � �N � fkLp =





Z
Rd

�
f(x � (2�Ny)�1)� f(x)

�
�(y)dy






Lpx

�
Z
Rd



f(x � (2�Ny)�1)� f(x)



Lpx
j�(y)j dy ! 0

(this can be seen by using the dominated convergence theorem).
In order to prove the second claim, again by Minkowski's inequality we have

kf � ��NkLp � kfkL1 k��NkLp = 2�NQ(1�1=p) kfkL1 ! 0,

proving the lemma. �

Proof of Proposition 2.7 continued.
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The above Lemma applied to � = 	 �	 �	 (see Proposition 2.6) yields

f =
X
j2Z

f �
�
(	 �	 �	)j � (	�1 �	�1 �	�1)j

�
=
X
j2Z

f � (	 �	 �	�	�1 �	�1 �	�1)j

=
X
j2Z

f � (	 �	 � (	�	�1) + 	 � (	�	�1) �	�1 + (	�	�1) �	�1 �	�1)j , (2.12)

the convergence being in Lp(Rd) with 1 < p <1. Since we have 	̂� 	̂�1 � 0 in a neighborhood
of 0, the function 	� 	�1 is orthogonal to all polynomials. By applying Proposition 2.4 (ii) we
can �nd a Schwartz family ' such that 	�	�1 =

�
rR
b

�2n2 �', with n2 := (2n1)0 where n1 := (m0)0.
Using (2.10) we can write schematically, abusing the notation,

	 �	 � (	�	�1) = 	 �	 �
�
rR
b

�2n2 � ' = 	 � rn2
b 	 �

�
rR
b

�n2
'

= 	 �
�
rR
b

�2n1 ~	 � �rR
b

�n2
' = rn1

b 	 �
�
rR
b

�n1 ~	 � �rR
b

�n2
',

where ~	 is a Schwartz family such that
�
rR
b

�2n1 ~	 = rn2
b 	; this can be seen to exist thanks

to Proposition 2.4 (see Remark (2)). The other terms in (2.12), namely 	 � (	�	�1) � 	�1
and (	�	�1) � 	�1 � 	�1 can be handled in a similar way. We �nd that each one of them is

a �nite sum in which each term is of the form Y
(m0)0

1 � �1 � Y
(m0)0

2 � �2 � Y
(m0)0

3 � �3 where �i are
Schwartz families and Yi is rb or rR

b . This implies (2.11) via Proposition 2.4 (i), once we note
that (m0)0 > m0` (see the Remark (1) after Proposition 2.4). �

Remarks. (1) We will use sometimes the function � = 	 �	 �	�	�1 �	�1 �	�1 for which,
as we can see in the above proof, we have the estimate j�jf j �

���3j�2j�1jf �� for all integers j and
all Schwartz functions f . From (2.12), we have

f =
X
j2Z

�jf in Lp, 1 < p <1.

Schematically we write � = �3�2�1. We will also consider its weaker analogue,

�1 := �2�1. (2.13)

(2) It is easy to see that we can obtain decompositions of the form

f =
X
j2Z

�kj :::�
3
j�

2
j�

1
jf ,

with arbitrary k � 1 and �1,..., �k as in Proposition 2.7. It turns out that, for the estimates we
need in this work, convolutions involving k � 3 terms are in some cases very convenient. Note
that a decomposition formula as above with k � 2 convolutions implies a decomposition with k�1
convolutions. In this regard we note that even if in most cases a decomposition formula with two
convolutions su�ces (to de�ne Triebel-Lizorkin spaces and to prove several of their properties),
the proof of Theorem 1.3 relies on decomposition formulas with three convolutions (this will be
used, for example to prove the Bernstein type inequalities (3.3)).

2.3 De�nition of function spaces on strati�ed homogeneous groups

Let s 2 R, p; q 2 (1;1) and �x m > jsj and some Schwartz families �1, �2 whose moments up to
order m0 are zero (see Proposition 2.7 and the Remarks after) and such that we have the following
decomposition formula with two convolutions:

f =
X
j2Z

�2j�
1
jf ,
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for any Schwartz function f .
We de�ne the spaces _F s;pq and _Bs;p

q as being the spaces of tempered distributions f on Rd

whose (semi)norms, respectively de�ned as:

kfk _F s;pq
=








 X
j2Z

2sjq
���1jf ��q

!1=q






Lp

,

kfk _Bs;pq =

 X
j2Z

2sjq


�1jf

qLp

!1=q
,

are �nite.
We notice that at �rst sight these de�nitions seem to depend on the families �1,�2. We will

show however (Proposition 2.10), that the de�nition of _F s;pq (and of _Bs;p
q ) does not depend on �

1,

�2. We will also show (Proposition 2.14) that, as expected, the space _F n;p2 with n a nonnegative
integer, is the same as the more "classical" Sobolev space _NLn;p.

Independence of the de�nition. We will need the following simple lemma:

Lemma 2.9 Consider a sequence (fk)k2Z of Schwartz functions such that all but a �nite number
of them are zero. Consider also an s 2 R, an integer m > jsj and two �nite Schwartz families �
and � for which all the moments up to the order m0 are zero. Then, for 1 < p; q <1, we have:








 X

k

2skq

������kX
j

�jfj

�����
q!1=q







Lp

.








 X

k

2skq jfkjq
!1=q







Lp

. (2.14)

Proof. From the assumptions on � and �, and Proposition 2.4, we know there are some Schwartz
families � and ' such that � = rm

b � � and � =
�
rR
b

�m � '. With compact notation,
�j � �k = (� � �k�j)j = (r

m
b � � � �k�j)j = 2

m(k�j)
�
� �
��
rR
b

�m
�
�
k�j

�
j
,

hence,
�j � �k = 2m(k�j)�j �

��
rR
b

�m
�
�
k
. (2.15)

In a similar way, we get

�j � �k = 2m(j�k) ((rb)
m�)j � 'k. (2.16)

Note that, if g, � and  are Schwartz and j, k are two integers, then��g � �j �  k�� .M(g � �j) .MMg,

where the implicit multiplicative constants only depend on � and  . Using this observation and
(2.15), (2.16), we can write

j�k�jfjj . 2�mjk�jjMMfj.

Choosing � 2 (0; 1) such that �m > jsj, and using H�older's inequality, we can write:X
k

2skq

�����X
j

�k�jfj

�����
q

.
X
k

2skq

 X
j

2�mjk�jjMMfj

!q

=
X
k

2skq

 X
j

2�(1��)mjk�jj2��mjk�jjMMfj

!q

.
X
k

2skq
X
j

2�q�mjk�jj jMMfjjq =
X
j

 X
k

2skq2�q�mjk�jj

!
(MMfj)

q ,
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where we had used, in the third line, the fact that X
j

2�q
0(1��)mjk�jj

!q=q0
<1.

We have now, for all j 2 Z,X
k

2skq2�q�mjk�jj =
X
k�j

:::+
X
k<j

::: =
X
k�0

2sqj2(s��m)qk +
X
k<0

2sqj2(s+�m)qk � 2sjq

and, as a consequence of the above inequality, X
k

2skq

�����X
j

�k�jfj

�����
q!1=q

.
 X

j

2sjq (MMfj)
q

!1=q
.

Applying twice the Fe�erman-Stein inequality we get (2.14). �

Now we can see that the above lemma implies the independence of the de�nition of the spaces
of Triebel-Lizorkin type with respect to the choice of �1, �2. (The following statement is similar
to Theorem 7 in [10].)

Proposition 2.10 Given the parameters s 2 R, p; q 2 (1;1), the space _F s;pq does not depend on
the auxiliary functions �1, �2.

Proof. Indeed, let s 2 R, p; q 2 (1;1), and m1;m2 > jsj. Consider, as in the de�nition of
the Triebel-Lizorkin spaces, two couples of functions �1, �2 and �1, �2 corresponding to m1;m2

respectively. We can construct, using the �rst and the second couples of functions, the spaces�
_F s;pq

�
�
and

�
_F s;pq

�
�
respectively. Using Proposition 2.7 and Lemma 2.9 for � = �1, � = �2

and fj = �
1
jf for a Schwartz function f , we get, after a limiting argument that:

kfk( _F s;pq )
�

=








 X

k

2skq

������1kX
j

�2j
�
�1jf

������
q!1=q







Lp

.








 X

k

2skq
���1kf ��q

!1=q






Lp

= kfk( _F s;pq )
�

.

Note that in a similar way we can obtain the converse inequality. Hence, by density, we have

that
�
_F s;pq

�
�
=
�
_F s;pq

�
�
with equivalent norms. �

Remarks. (1) The same type of independence can be proved, in a very similar way, for the Besov
spaces _Bs;p

q . In this case the analogue of Lemma 2.9 is

Lemma 2.11 Consider a sequence (fk)k2Z of Schwartz functions such that all but a �nite number
of them are zero. Consider also an s 2 R, an integer m > jsj and two �nite Schwartz families �
and � for which all the moments up to the order m0 are zero. Then, for 1 < p; q � 1, we have:

0@X
k

2skq






�kX
j

�jfj







q

Lp

1A1=q

.
 X

k

2skq kfkkqLp

!1=q
.
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Note that here we allow the values p =1, q =1. This is due to the fact that the Fe�erman-
Stein inequality is no longer needed.

(2) Lemma 2.9 can also be used to prove real and complex interpolation results for the Triebel-
Lizorkin spaces with the same method of retract as for the classical spaces. In this case, the
extension and retract operators E : _F s;pq ! Lp( _lqs) and R : Lp( _lqs) ! _F s;pq are de�ned by Ef :=
(�1kf)k2Z and R (fk)k2Z :=

P
j2Z �

2
jfj. Lemma 2.9 is used to prove that R is well-de�ned and

bounded, while these properties are obvious for E. Similarly for Besov spaces, relying on Lemma
2.11.

Inspecting the above proof of Proposition 2.10, we can see immediately that, by a very similar
reasoning, we get the following:

Corollary 2.12 Consider some parameters 1 < p; q < 1, s 2 R. Also consider an integer
m > jsj and a Schwartz family ~� such that all its moments of order up to m0 are zero. Then, for
any Schwartz function f , we have:







 X
k

2skq
���~�kf ���q!1=q








Lp

. kfk _F s;pq
.

The lifting property. Let us now see how Corollary 2.12 implies the lifting property for the
spaces _F s;pq (the following statement is similar to Corollary 21 in [10]).

Proposition 2.13 For any Schwartz function f , we have

krbfk _F s;pq
� kfk _F s+1;pq

.

Proof. Consider some Schwartz functions �1j , �
2
j for which all the moments of order up to m

0

are zero (s 2 R and the integer m > jsj being �xed) and such that

f =
X
j2Z

�2j�
1
jf ,

for any Schwartz function f . Combining the de�nition of the Triebel-Lizorkin spaces, Proposition
2.5 and Corollary 2.12, we have

krbfk _F s;pq
�








 X
j2Z

2sqj
��(rbf) � �1j

��q!1=q






Lp

=








 X
j2Z

2sqj
��f � �rR

b �
1
j

���q!1=q






Lp

=








 X
j2Z

2(s+1)qj
���f � �rR

b �
1
�
j

���q!1=q







Lp

=








 X
j2Z

2(s+1)qj
���~�1jf ���q

!1=q






Lp

. kfk _F s+1;pq
,

where ~�1 = rR
b �

1.
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For the opposite inequality, using Proposition 2.4 and the independence of the de�nition

(Proposition 2.10), we can assume that �1 = rR
b � where � =

�
rR
b

�m0
 for some Schwartz

function  , and then we have:

kfk _F s+1;pq
�








 X
j2Z

2(s+1)qj
��f � �1j ��q

!1=q






Lp

=








 X
j2Z

2(s+1)qj
���f � �rR

b �
�
j

���q!1=q







Lp

=








 X
j2Z

2sqj
��f � rR

b �j
��q!1=q







Lp

=








 X
j2Z

2sqj
��rbf � �j

��q!1=q






Lp

=








 X
j2Z

2sqj
���j (rbf)

��q!1=q






Lp

. krbfk _F s;pq
.

Hence, for all Schwartz functions f we have krbfk _F s;pq
� kfk _F s+1;pq

. �

The identi�cation _F n;p2 = _NLn;p. The following statement is a generalisation of Proposition
5.7 in [13].

Proposition 2.14 Fix an m 2 N� and consider Schwartz families �1, �2 corresponding to m as
in Proposition 2.7. Then, for any Schwartz function f we have







 X
j2Z

22nj
���1jf ��2

!1=2






Lp

� krn
b fkLp ,

for all n 2 N with n � m � 1 and 1 < p < 1. In other words, we have _F n;p2 = _NLn;p with
equivalent norms.

Proof. We follow the lines of Proposition 5.7 in [13], which proves a similar statement in the case

n = 1. The estimate "." easily follows by writing �1 =
�
rR
b

�n+1 � ' for a Schwartz family ' and
then applying Proposition 5.4 in [13], whose statement is reproduced below in a simpli�ed form
(see also [12], Chapter 13, section 5.3):

Lemma 2.15 If D is a Schwartz function such that
R
G
Ddx = 0, then for a �xed 1 < p <1 and

any Schwartz function f we have:








 X
j2Z

jDjf j2
!1=2







Lp

. kfkLp .

Using this we immediately obtain:






 X
j2Z

��2nj�1jf ��2
!1=2







Lp

=








 X
j2Z

���rn
b f �

�
rR
b � '

�
j

���2!1=2







Lp

. krn
b fkLp .
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For the reverse estimate we need to observe that, according to the proof of Proposition 5.5 in
[13], whenever we have a decomposition of the form f =

P
j f � �j � �j with � and � Schwartz

and having zero integral, we get for any Schwartz function f that

kfkLp .








 X
j2Z

j�jf j2
!1=2







Lp

. (2.17)

Before going further, we sketch, for the convenience of the reader the standard duality argu-
ment to prove (2.17). For all Schwartz functions g write, using the above Lemma 2.15,

hf; gi =
X
j

h�j�jf; gi =
X
j



�jf;�

�
jg
�
�
Z
G

 X
j

j�jf j2
!1=2 X

j

����jg��2
!1=2

dx

�








 X
j2Z

j�jf j2
!1=2







Lp








 X
j2Z

����jg��2
!1=2







Lp0

.








 X
j2Z

j�jf j2
!1=2







Lp

kgkLp0 .(2.18)

We obtain (2.17) by taking, in (2.18), the supremum over g such that kgkLp0 � 1.

Using (2.17) with � = �1 and � = �2, replacing f by rn
b f and using (2.10) together with

Corollary 2.12, we obtain:

krn
b fkLp .








 X
j2Z

��rn
b f � �1j

��2!1=2






Lp

=








 X
j2Z

��f � ��rR
b

�n
�1j
���2!1=2







Lp

=








 X
j2Z

���2jnf � ��rR
b

�n
�1
�
j

���2!1=2







Lp

=








 X
j2Z

���2jn~�1jf ���2
!1=2







Lp

. kfk _Fn;p2
�








 X
j2Z

��2jn�1jf ��2
!1=2







Lp

,

where ~�1 =
�
rR
b

�n
�1. This proves the proposition. �

3 Estimates of the auxiliary functions

3.1 Remark concerning the approximations

Following [6], our purpose is to prove the approximation property stated in Theorem 1.3. In the
remaining part of the paper we will use decompositions formulas with three convolutions, as in
Proposition 2.7.
It su�ces to prove this approximation property for functions of a special form:

fJ :=
X
jjj�J

�3j�
2
j�

1
jf =

X
jjj�J

�jf ,

where �1j , �
2
j , �

3
j and m > � are �xed. (This particular form of the functions fJ will ensure, as

we will see, that some expressions involving in�nite sums and products are well-de�ned.) Indeed,
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suppose that f is a �xed Schwartz function and for each positive integer J we can �nd an FJ
satisfying the estimates:

kX
i=1

kXi(fJ � FJ)k _F��1;pq
� � kfJk _F�;pq

,

kFJkL1 + kFJk _F�;pq
� C� kfJk _F�;pq

.

Note that Lemma 2.9 immediately implies that kf � fJk _F�;pq
! 0 when J ! 1. By the se-

quential Banach-Alaoglu theorem, we can choose a subsequence (Jk)k�1 such that FJk converges
weakly star in L1 to a function F 2 L1. Together with the last estimate and the above obser-
vation, this easily implies that F 2 _F�;pq as follows. For any positive integer N and any compact
set K � G we have








0@X
jjj�N

2�qj
���1jFJk��q

1A1=q








Lp(K)

� C� kfJkk _F�;pq
.� kfk _F�;pq

,

where by .� we indicate that the implicit multiplicative constany may depend on �.
Since, kFJkkL1 .� kfk _F�;pq

we get


�1jFJk

L1 .� kfk _F�;pq

for all j. We also can see that

�1jFJk(x)! �1jF (x) for every x 2 G. Hence, the above inequality and the dominated convergence
theorem imply that 








0@X
jjj�N

2�qj
���1jF ��q

1A1=q








Lp(K)

.� kfk _F�;pq
,

and from this we get the claim. Also we obtain that

kFkL1 + kFk _F�;pq
.� kfk _F�;pq

and, in a similar way,
kX
i=1

kXi(f � F )k _F��1;pq
� � kfk _F�;pq

.

From now, we consider J is a �xed positive integer.

3.2 De�nitions and properties of some auxiliary functions

For a real number � and x 2 G we will write x� := (2
��x1; :::; 2

��xk; xk+1; :::; xd). Consider the
functions S;E : G! R de�ned by:

S(x) := min(1; kxk�Q�1G ) and E(x) := exp
�
�(1 + kx�k2`!G )1=2`!

�
,

We will also consider the functions

Sj(x) := 2
jQS(2jx), Ej(x) := 2

jQE(2jx)

and set Sjf = f � Sj. With this notation we introduce the new functions (where �1 was de�ned
in (2.13)):

!j(x) :=

�Z
Rd

��
Sj
���1

jf
��� (2�jr)E(r�1 � (2jx))�p dr�1=p , if jjj � J and 0 otherwise.
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Consider a smooth function � : [0;1)! [0; 1] such that � � 1 on [0; 1=2] and � � 0 on [1;1).
Following [13], we de�ne the functions �j as follows:

�j :=

(
�
�

2�j!jP
k<j;k�j(modR) 2

�k!k

�
, if

P
k<j;k�j(modR) 2

�k!k 6= 0,
0 , otherwise,

where R is a large positive integer that will be chosen later.
Using the �j's, we decompose a �nite sum fJ =

P
jjj�J �jf as follows:

fJ =
X
jjj�J

�jf =
X
jjj�J

(1� �j)�jf +
X
jjj�J

�j�jf =
X
j

hj +
X
j

gj = h+ g

where

h :=
X
j

hj, with hj := (1� �j)�jf if jjj � J and 0 otherwise,

g :=
X
j

gj, with gj := �j�jf if jjj � J and 0 otherwise.

Then we put

~h :=
X
j

hj
Y
j0>j

(1� Uj0), with Uj := (1� �j)!j,

~g :=
R�1X
c=0

X
j�c(modR)

gj
Y
j0>j

j0�c(modR)

(1�Gj0), with Gj :=
X
t>0

t�0(modR)

2��t!j�t.

The heart of the proof of Theorem 1.3 consists in establishing the fact that FJ := ~h + ~g is a
"good approximation" of fJ = h+ g.

Pointwise and integral estimates on !j. Here we collect several useful estimates on !j in
which we will see an instance of the role played by the critical condition on the exponents: �p = Q.
In what follows we will need the following elementary approximation property proved in [13]

(Proposition 3.6):

Proposition 3.1 For any � 2 R and x; � 2 G we have:��k(x � �)�kG � kx�kG�� � C k�kG and
��k(� � x)�kG � kx�kG�� � C k�kG .

In particular

jkx � �kG � kxkGj � C k�kG and jk� � xkG � kxkGj � C k�kG .

Proposition 3.2 Let � > 0. With the above notation we have:

(i) !j . EjSj
���1

jf
�� . 2Q�MM

�
�1
jf
�
for all j 2 Z;

(ii) j�jf j . !j for all j 2 Z;
(iii) k!jkL1 . 2k� kfk _F�;pq

for all j 2 Z;
(iv) kUjkL1 . 2k� kfk _F�;pq

for all j 2 Z;
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(v)



k2�j!jklqj


Lp . 2Q� kfk _F�;pq

.

Proof. It is not hard to see that there exist measurable pairwise disjoint sets M1;M2; ::: covering
G, such that we have Bi � Mi � 3C � Bi for some balls Bi of radius 1=3 in G, where 3C � Bi
is the ball of the same center as Bi and of radius 3C. (Here C > 1 is a constant such that
� (x; y) � C (� (x; z) + � (z; y)) for all x; y; z 2 G.) Indeed, let (xn)n�1 be a C-net in G. That
is, the balls (B (xn; C))n�1 cover G, and � (xi; xj) � C for all i 6= j. We note that, if i 6= j,
then the balls B (xi; 1=3) and B (xj; 1=3) are disjoint. Now we put Bi := B (xi; 1=3) and M1 :=
B (x1; C) n ([j 6=1Bj), and Mk := (B (xk; C) n (M1 [ ::: [Mk�1)) n ([j 6=kBj) for all k � 2.

We observe that Proposition 3.1 implies that, for each x; � 2 G with k�kG . 1 we have
E(x � �) � E(� � x) � E(x) and S(x � �) � S(� � x) � S(x). It follows, that

Sj
���1

jf
�� (x � �) = 2jQ

Z
Rd

���1
jf
�� (y)S ��2jy�1� � �2jx� � �2j��� dy

� 2jQ
Z
Rd

���1
jf
�� (y)S ��2jy�1� � �2jx�� dy

= Sj
���1

jf
�� (x),

for all x 2 G, provided k�kG . 2�j.
If ri is the center of Bi, then for all r in 2Bi, and hence for all r in Mi, we can write r =

ri � � for some � depending on r with k�kG � 2. Now, considering the above estimates and the
decomposition G =

S
iMi we can write, since jMij � 1,

!j(x) =

 1X
i=1

Z
Mi

�
Sj
���1

jf
�� (2�jr)E(r�1 � (2jx))�p dr!1=p

�
 1X
i=1

�
Sj
���1

jf
�� (2�jri)E(r�1i � (2jx))

�p!1=p

�
1X
i=1

Sj
���1

jf
�� (2�jri)E(r�1i � (2jx))

�
1X
i=1

Z
Mi

Sj
���1

jf
�� (2�jr)E(r�1 � (2jx))dr

=

Z
G

Sj
���1

jf
�� (2�jr)E(r�1 � (2jx))dr = EjSj

���1
jf
�� (x). (3.1)

Next we note that E(x) � ~E(x) := exp(�k2��xkG) and therefore (using Proposition 2.1)

EjSj
���1

jf
�� � ~EjSj

���1
jf
�� . ~EjM

���1
jf
�� . 


 ~Ej




L1
MM

���1
jf
�� . 2Q�MM

���1
jf
�� . (3.2)

We obtain (i), from (3.1) and (3.2).
Now we prove (ii). By the change of variables s�1 = r�1 � (2jx) we can write, as before,

!j(x) =

 1X
i=1

Z
Mi

�
Sj
���1

jf
�� �x � (2�js)�E(s�1)�p ds!1=p

�
�Z

M1

�
Sj
���1

jf
�� �x � (2�js)�E(s�1)�p ds�1=p � Sj

���1
jf
�� (x) .
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To conclude we observe that, for all j 2 Z,

j�jf j �
���3j�2j�1jf �� = ����2j�1jf� � �3j �� � ���2j�1jf �� � ���3j ��

=
���1

jf
�� � ���3j �� . ���1

jf
�� � Sj = Sj

���1
jf
�� ,

where we used the fact that, since �3 is Schwartz, we have j�3j . S and hence
���3j �� . Sj.

In order to prove (iii) we observe that, since �p = Q,



�1
jf



L1

.


�1jf � �2j

L1 . 

�1jf

Lp 

�2j

Lp0

. 2�j


�1jf

Lp . kfk _F�;pq

, (3.3)

which together with (i), the fact that kEjkL1 . 2k� and the Young inequality gives the estimate.
Item (iii) and the de�nition of Uj immediately imply (iv).
In order to prove (v), we observe that






2�j�1
jf



lqj





Lp

=





2�j�2j�1jf

lqj


Lp .






2�jM�1jf

lqj


Lp
.






2�j�1jf

lqj


Lp = kfk _F�;pq
, (3.4)

which, again, together with (i) and the Fe�erman-Stein inequality, gives the estimate. �

Remark. Items (i), (ii) and (v) do not use the fact that � = Q=p. In contrast, (iii) and (iv)
require � = Q=p.

Proposition 3.3 We have


supj2Z 2�j!j

Lp . �2

k�
p kfk _F�;pq

.

Proof. We follow the proof in [6] of Proposition 4.7. We have

����sup
j2Z

2�j!j(x)

����p = sup
j2Z

Z
Rd

�
2�jSj

���1
jf
�� (2�jr)E(r�1 � (2jx))�p dr

�
Z
Rd

Ep(r�1)

�
sup
j2Z

2�jSj
���1

jf
�� (x � �2�jr�)�p dr

�
Z
Rd

Ep(r�1)


2�jSj ���1

jf
�� (x � �2�jr�)

p

lqj
dr.

We note that, according to (3.4),





2�j�1

jf



lqj





Lp
. kfk _F�;pq

, and hence, using Proposition A1

(see the Appendix) we get





sup
j2Z

2�j!j





p
Lp

�
Z
Rd

Ep(r�1)





2�jSj ���1

jf
�� (x � �2�jr�)



lqj




p
Lpx

dr

.
�Z

Rd

Ep(r�1) lnp(2 + krkG)dr
�
kfkp_F�;pq

.

By a change of variables, we can writeZ
Rd

Ep(r�1) lnp(2 + krkG)dr = 2k�
Z
Rd

exp
�
�p(1 + kyk2`!G )1=2`!

�
lnp(2 + ky��kG)dy . �p2k�,
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and we get the claim. �

To make the notation more compact we introduce the functions Im(x) = 1Am(x), where

Am :=

8<:y 2 Rd

������2�m!m(y) > 1

2

X
k<m; k�m(modR)

2�k!k(y)

9=; , m 2 Z.

With this we have:

Proposition 3.4


k2�m!mImklqm

Lp . R�2

k�
p kfk _F�;pq

.

Proof. Fix a j 2 f0; 1; :::; R� 1g. Since !m � 0 for all but a �nite number of m 2 Z, we can
choose for each x 2 G, the largest integer mx � j(modR) with the property that x 2 Amx , i.e
2�mx!mx(x) >

1
2

P
k<mx; k�mx(modR)

2�k!k(x). Using this, we can write

X
m�j(modR)

2�m!m(x)Im(x) � 2�mx!mx(x) +
X

k<mx; k�j(modR)

2�k!k(x)

� 3 � 2�mx!mx(x) � 3 sup
m
2�m!m(x)

and hence,



k2�m!mImklqm

Lp �





X
m

2�m!mIm







Lp

�
R�1X
j=0








X

m�j(modR)

2�m!mIm








Lp

� 3R




sup
m
2�m!m






Lp
.

By using Proposition 3.3, we get the claim. �

Estimates involving derivatives. Consider a smooth function u on G and � > 0. If a :=
(1; :::1; 2; :::; 2; :::`; :::; `) is the vector of the homogeneities of G de�ned in (2.1) and 
 is a multi-
index, then we easily see that

r
(u(�x)) = �h
;ai (r
u) (�x)

(where x! �x is the group dilation). If moreover u is homogeneous of degree 1, we have

� (r

bu) (x) = r



b (�u(x)) = r



b (u(�x)) = �j
j (r


bu) (�x)

and hence
(r


bu) (�x) = �1�j
j (r

bu) (x), for all x 2 G and � > 0.

Then, for all x 6= 0, writing x = �� where � = kxkG, � = x= kxkG, we get by the above
formula that

(r

bu) (x) = �1�j
j (r


bu) (�),

which implies in particular that if kxkG � 1 and j
j � 1 then

jr

bu(x)j .
 kxk

1�j
j
G .
 1. (3.5)

Let us also note that if t : R! R and v : G! R are some smooth functions, then

Xj (t (v (x))) = t0 (v (x))Xjv (x) for all 1 � j � d.
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Iterating this, we get

jr

b (t (v (x)))j .


X
m1;m2;:::;mn�0

m1+2m2+:::+nmn=n

��t(m1+:::+mn) (v (x))
�� X

1;:::;
n�

j
kj=k

nY
j=1

��r
j
b v (x)

��mj
, (3.6)

for all multi-indexes 
 2
�
Nd1

�N
with j
j = n.

These observations are the basis for proving the following proposition.

Proposition 3.5 For every 
0 2
�
Nk � f0gd1�k

�N
and 
 2

�
Nd1

�N
with j
j + j
0j < 1 (see

(2.5)), we have

���r
+
0

b !j

��� .
;
0 2jj
j2(j��)j
0j!j.
Proof. Replacing G with R�G, and considering

u(t; x) = k(t; x)kR�G = (jtj
2`! + kxk2`!G )1=2`!,

we get by the above observation (3.5) that when t = 1,
���r


b (1 + kxk
2`!
G )

1=2`!
��� . 1 for all �nite


 2
�
Nd1

�N
, 
 6= 0 as above.

By (3.6) we obtain���r

b exp

�
�p(1 + kxk2`!G )1=2`!

���� . exp��p(1 + kxk2`!G )1=2`!�
and as in [6], by di�erentiating the composition,���r
+
0

b Ep(r�1 �
�
2jx
�
)
��� . 2jj
j2(j��)j
0jEp(r�1 � �2jx�).

Consequently we have ���r
+
0

b !pj

��� . 2jj
j2(j��)j
0j!pj
and by writing !j =

�
!pj
�1=p

we get the estimate by using (3.6) again. �

Proposition 3.6 For every 
0 2
�
Nk � f0gd1�k

�N
and 
 2

�
Nd1

�N
with j
j+ j
0j <1, we have���r
+
0

b �j

��� .
;
0 2jj
j2(j��)j
0j. (3.7)

Proof. Since the proof of (3.7) follows very closely the similar estimate in [6], we only sketch the
argument.
We suppose �j 6= 0 and write �j = �(2�j!j=vj), where vj =

P
k<j;k�j(modR) 2

�k!k. From
Proposition 3.5 we get ���r
+
0

b vj

��� . 2jj
j2(j��)j
0jvj. (3.8)
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Since r
+
0

b (vj=vj) = 0, the Leibniz rule gives us,����vjr
+
0

b

�
1

vj

����� .
X

��
+
0
j�j<j
j+j
0j

���r
+
0��
b vj

��� ����r�
b

�
1

vj

�����
�

X
�1�
;�2�
0

j�1j+j�2j<j
j+j
0j

���r(
��1)+(
0��2)
b vj

��� ����r�1+�2
b

�
1

vj

����� . (3.9)

The inequality (3.9) used in conjunction with (3.8) leads by a straightforward induction on j
j+j
0j,
to ����r
+
0

b

�
1

vj

����� . 2jj
j2(j��)j
0j 1vj .
Using this, Proposition 3.5 and the Fa�a di Bruno type formula (3.6) for the functions � and

2�j!j=vj, we can conclude as in [6]. �

4 Estimates of the approximation function

4.1 Estimates of the L1 norm

In this subsection we are going to verify that the functions ~h and ~g are well-de�ned and, under a
smallness condition on kfk _F�;pq

((4.2) below), obey the L1 estimates:


~h



L1
. 1, k~gkL1 . R. (4.1)

In the remaining part of the paper we assume that f satis�es

kfk _F�;pq
� �, (4.2)

where � is a su�ciently small number (only depending on �, R and �) that will be chosen later.
We also assume that R > 1=�.

In order to obtain the bounds (4.1), we will need the following observation. If (ak)k2Z is a
sequence of �nite support, then we have the identity (Lemma 3.2 in [6]):X

j0>j

aj0
Y

j<j00<j0

(1� aj00) +
Y
j0>j

(1� aj0) = 1. (4.3)

An immediate consequence of this equality is that, whenever ak 2 [0; 1], we must have, for all
j, X

j0>j

aj0
Y

j<j00<j0

(1� aj00) � 1. (4.4)

The boundedness of ~h. First of all we easily see that ~h is well-de�ned (as a consequence of the
fact that only a �nite number of functions hj, !j and Uj are nonzero). Recalling the de�nition of
hj and using Proposition 3.2 (ii), we can write:

jhjj =
�
1� �j

�
j�jf j .

�
1� �j

�
!j = Uj.
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If f satis�es (4.2) with small � then, by Proposition 3.2 (iv), we get Uj 2 [0; 1] for all j 2 Z
and hence, by using (4.4) and the de�nition of ~h, we get the estimate:���~h��� �X

j

jhjj
Y
j0>j

(1� Uj0) .
X
j

Uj
Y
j0>j

(1� Uj0) . 1.

The boundedness of ~g. Let us see �rst that ~g is well-de�ned. We have that all but a �nite
number of the functions gj are identically zero, hence it remains to discuss the nature of the
products of the form Y

j0>j

(1�Gj0). (4.5)

Following [6], we show that these products converge uniformly. Indeed, we have !j � 0 for all
j > J . For small � in (4.2), by Proposition 3.2 (iii), we have j!jj < 1 and thus we can write:

0 � Gj <
X

t>0; t�j�J
t�0(modR)

2��t �
min

�
2��R; 2��(j�J)

�
1� 2��R .

If j is large, then we have Gj .R 2��(j�J) which proves the uniform convergence of (4.5).

Now we estimate the L1 norm of ~g. When R > 1=�, from the above inequality we get
Gj 2 [0; 1] for all j. By the de�nition of �j, we see that �j(x) 6= 0 only if

2�j!j(x) �
X
k<j

k�j(modR)

2�k!k(x).

Hence,

jgj(x)j . �j(x)!j(x) .
X
k<j

k�j(modR)

2�(k�j)!k(x) = Gj,

and by using (4.4) and the de�nition of ~g we obtain,

j~gj �
R�1X
c=0

X
j�c(modR)

jgjj
Y
j0>j

j0�c(modR)

(1�Gj0) .
R�1X
c=0

X
j�c(modR)

Gj
Y
j0>j

j0�c(modR)

(1�Gj0) � R.

4.2 Estimating h� ~h

Our goal in this subsection is to prove the following estimates:

Proposition 4.1 Suppose �, p, q and k are as in Theorem 1.3. Then we have

(i)
kX
i=1




Xi(h� ~h)




_F��1;pq

. R�22��min(1;�)+
k�
p kfk _F�;pq

+R�22�max(1��;0)+(1+[�]+
1
p)k� kfk2_F�;pq

;

(ii)

d1X
i=1




Xi(h� ~h)




_F��1;pq

. R�22
k�
p kfk _F�;pq

+R�22�max(1��;0)+(1+[�]+
1
p)k� kfk2_F�;pq

.
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(Here, [�] stands for the integer part of �.)

Before starting the proof, we note that, writing:

Vj :=
X
j0<j

hj0
Y

j0<j00<j

(1� Uj00),

and by using the de�nition of ~h together with the identity (4.3) (as in [13], p. 19), one obtains

h� ~h =
X
j

VjUj. (4.6)

In order to obtain Proposition 4.1, we �rst collect some estimates satis�ed by Uj and Vj.

Lemma 4.2 For every 
0 2
�
Nk � f0gd1�k

�N
and 
 2

�
Nd1

�N
with j
j+ j
0j <1, we have

(i)
���r
+
0

b Um

��� . 2mj
j2(m��)j

0j!mIm;

(ii) kr

bUmkL1 . 2mj
j2k� kfk _F�;pq

.

Proof. As in [6], this follows from Propositions 3.2, 3.5 and 3.6. �

Lemma 4.3 For all m 2 Z, 
 2
�
Nd1

�N
with j
j <1 we have

kr

bhmkL1 . 2mj
j kfk _F�;pq

.

Proof. This is a direct consequence of the de�nition of hm, (3.7) and of the Bernstein type
inequality (3.3), since we have

k�jfkL1 =


�3j�1

jf



L1
.


�1

jf



L1
. kfk _F�;pq

, (4.7)

for all j. �

Lemma 4.4 Under the smallness assumption (4.2), we have

(i) jVmj . 1,
(ii) for all 
 2

�
Nd1

�N
with j
j <1, kr


bVmkL1 . 2mj
j2�j
jk kfk _F�;pq
.

Proof. We just follow the proof in [6]. Item (i) follows directly from the construction and by
using (4.4). The arguments are very similar to the ones used to prove (4.1). This item is also
already proved in [13] (the inequality (6.6)).
We prove now item (ii). By induction we can write (see [6] or [13], Section 6)

r

bVm =

X
m0<m

 
r

bhm0 �

X
0<��


c
0;
r�
bUm0r
��

b Vm0

! Y
m0<m00<m

(1� Um00). (4.8)

This can be seen as follows. Suppose (Am)m2Z and (Bm)m2Z are two sequences of smooth
functions on G, such that for all integers m we have

Am =
X
m0<m

Bm0

Y
m0<m00<m

(1� Um00) (4.9)
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(also we assume "good" convergence properties for all the derivatives).
Then, if X is a left-invariant vector �eld from the Lie algebra of G, we can write

XAm =
X
m0<m

(XBm0)
Y

m0<m00<m

(1� Um00)

�
X
m0

m0<m

Bm0

X
�

m0<�<m

(XU�)
Y

m0<m00<�

(1� Um00)
Y

�<m00<m

(1� Um00)

=
X
m0<m

(XBm0)
Y

m0<m00<m

(1� Um00)

�
X
�

�<m

(XU�)
X
m0
m0<�

Bm0

Y
m0<m00<m

(1� Um00)
Y

�<m00<m

(1� Um00)

=
X
m0<m

(XBm0)
Y

m0<m00<m

(1� Um00)�
X
�

�<m

(XU�)A�
Y

�<m00<m

(1� Um00)

=
X
m0<m

(XBm0)
Y

m0<m00<m

(1� Um00)�
X
m0<m

(XUm0)Am0

Y
m0<m00<m

(1� Um00),

and hence, we get

XAm =
X
m0<m

((XBm0)� (XUm0)Am0)
Y

m0<m00<m

(1� Um00).

We observe that this equality is of the same form as (4.9); in the sense that, if we now de�ne

A1m := XAm and B1
m := (XBm)� (XUm)Am,

then
A1m =

X
m0<m

B1
m0

Y
m0<m00<m

(1� Um00).

Appliyng this iteratively, using the de�nition of Vm, we get (4.8).

Now, by using Lemmas 4.3 and 4.2,

kr

bVmkL1 .

X
m0<m

 
kr


bhm0kL1 +
X

0<
0�





r�
bUm0





L1




r
��
b Vm0





L1

!
kfk _F�;pq

.
X
m0<m

 
2m

0j
j +
X
0<��


2m
0j�j2k�




r
��
b Vm0





L1

!
kfk _F�;pq

and by induction on j
j we get the inequality in item (ii). (Recall that we work under the
smallness assumption (4.2).) �

We are now in position to complete the proof of Proposition 4.1.
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Proof of Proposition 4.1. We prove (i) in detail, following closely [6]. As in [6], for all
1 � k � k, we write


Xk(h� ~h)





_F��1;pq

=








2(��1)m�1mXk(h� ~h)




lqm






Lp

=













2(��1)m�1mXk

 X
j2Z

VjUj

!





lqm








Lp

=













2(��1)m�1mXk

 X
r2Z

Vr+mUr+m

!





lqm








Lp

�
X
r2Z






2(��1)m�1mXk(Ur+mVr+m)



lqm





Lp
.

We split this last sum in three terms
P

r>�,
P

r<0,
P

0�r��.

(I) Estimate of
P

r>�. Following [6] and using (2.10), we have:




2(��1)m�1mXk(Ur+mVr+m)



lqm





Lp

=





2(��1)m(Ur+mVr+m) �XR

k �
1
m




lqm





Lp

=





2�m(Ur+mVr+m) � �XR

k �
1
�
m




lqm





Lp

.


k2�mM(Ur+mVr+m)klqm

Lp

.


k2�m(Ur+mVr+m)klqm

Lp . 

k2�mUr+mklqm

Lp

= 2��r


k2�mUmklqm

Lp . (4.10)

Recalling that Uj = (1� �j)!j and using Proposition 3.4 we get

k2�mUmklqm

Lp . 

k2�m!mImklqm

Lp . R�2k�=p kfk _F�;pq
,

and summing up,X
r>�

::: .
X
r>�

�
2��rR�2k�=p kfk _F�;pq

�
. R�2���+k�=p kfk _F�;pq

.

(II) Estimate of
P

r<0. If a := [�] then, as we have already seen, we can write �
1 =

�
rR
b

�a
'

for a Schwartz family ', and then �1m = 2
�ma �rR

b

�a
'm. Hence, if Xk is a vector �eld in a "good"

direction, i.e. 1 � k � k, we have




2(��1)m�1mXk(Um+rVm+r)



lqm





Lp

=





2(��1)m2�maXk(Um+rVm+r) �

�
rR
b

�a
'm



lqm





Lp

=





2(��1)m2�ma [ra

bXk(Um+rVm+r)] � 'm



lqm





Lp

.





2(��1)m2�maMra

bXk(Um+rVm+r)



lqm





Lp

.





2(��1)m2�mara

bXk(Um+rVm+r)



lqm





Lp

. 2�(��1�a)r





2(��1�a)mra

bXk(UmVm)



lqm





Lp
,

where we have used the Fe�erman-Stein inequality in the third line.
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As in [6], using the Leibniz rule and Lemmas 4.2 and 4.4, we obtain

jra
bXk(UmVm)j . jVm (ra

bXkUm)j+
aX
l=0

��rl
bUm

�� ��ra+1�l
b Vm

��
. 2ma2m��!mIm+

aX
l=0

�
2ml!mIm

� �
2m(a+1�l)2k(a+1�l)� kfk _F�;pq

�
. 2m(a+1)

�
2�� + 2k(a+1)� kfk _F�;pq

�
!mIm.

Now we get, via Proposition 3.4,




2(��1)m�1mXk(Um+rVm+r)



lqm





Lp

. 2�(��1�a)r
�
2�� + 2k(a+1)� kfk _F�;pq

�

k2�m!mImklqm

Lp
. R�2

k�
p kfk _F�;pq

2�(��1�a)r
�
2�� + 2k(a+1)� kfk _F�;pq

�
and, summing up, X

r<0

::: . R�
�
2��+

k�
p kfk _F�;pq

+ 2k(a+1+
1
p)� kfk2_F�;pq

�
.

(III) Estimate of
P

0�r��. This is similar to the preceding estimate. Here, instead of taking a
to be the integer part of �, we consider a = 0. As above we conclude that




2(��1)m�1mXk(Um+rVm+r)




lqm





Lp
. R�2

k�
p kfk _F�;pq

2�(��1)r
�
2�� + 2k� kfk _F�;pq

�
,

and by summing up,X
0�r��

::: . C� (�)R�
�
2��+

k�
p kfk _F�;pq

+ 2k(1+
1
p)� kfk2_F�;pq

�
where C� (�) � 1 if � > 1, C� (�) � � if � = 1 and C� (�) � 2(1��)� if � < 1.

With this we have proved (i). The proof of (ii) follows the same lines as the one of (i). The
main di�erence is that since we are no longer restricted to the case of derivatives in "good"
directions, we have to use, instead of Lemma 4.2 (i) applied with j
0j = 1 (as in (II) and implicitly
in (III) above), the weaker statement for the case j
0j = 0. This will produce almost the same

estimates, the di�erence being that the coe�cient 2��+
k�
p of kfk _F�;pq

in the corresponding parts

(I), (II) becomes 2
k�
p . �

4.3 Estimating g � ~g
Our goal in this section is to prove the following counterpart of Proposition 4.1.

Proposition 4.5 Consider 1 < p; q < 1 and � = Q=p. Also consider a� 2 (0; �] such that
a� < �= (1� �) if � < 1 and a� = 1 if � � 1. We have

krb(g � ~g)k
_F
��1;p
q

. 2Q�R2�min(1;�a�)R kfk _F�;pq
+ 2([�]+1)Q�R22�min(1;�a�)R kfk2_F�;pq

.
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We recall the de�nition of Gj:

Gj :=
X
t>0

t�0(modR)

2��t!j�t.

The starting point is the identity (similar to (4.6))

g � ~g =
X
j

GjHj,

where

Hj :=
X
j0<j

j0�j(modR)

gj0
Y

j0<j00<j
j00�j(modR)

(1�Gj00)

and gj = �j�jf .

Lemma 4.6 For all m 2 Z, 
 2
�
Nd1

�N
with j
j <1,

jr

bGmj .
 2Q�

X
t>0

t�0(modR)

2��t2j
j(m�t)MM
���1

m�tf
�� .

Proof. By the de�nition of Gm and Proposition 3.5,

jr

bGmj �

X
t>0

t�0(modR)

2��t jr

b!m�tj .

X
t>0

t�0(modR)

2��t2j
j(m�t)!m�t.

Note now that, according to Proposition 3.2,

!m�t . 2Q�MM
���1

m�tf
�� ,

whence the estimate. �

Lemma 4.7 For all m 2 Z, 
 2
�
Nd1

�N
with j
j <1,

jr

b gmj .
 2j
jmM

���1
mf
�� .

Proof. By Proposition 3.6 and the Leibniz rule, recalling the de�nition of gm, we have

jr

b gmj .

X
0�
0�


2j
�

0jm
���r
0

b

�
�3m
�
�1
mf
����� . X

0�
0�


2j
�

0jm
�����1

mf
�
� r
0

b �
3
m

���
.

X
0�
0�


2j
�

0jm2j


0jmM
���1

mf
�� .
 2j
jmM ���1

mf
��

(since j
 � 
0j = j
j � j
0j when 0 � 
0 � 
). �

Lemma 4.8 For all m 2 Z, 
 2
�
Nd1

�N
with j
j < 1, and under the smallness condition (4.2)

on f , we have
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(i) jHmj . 1,
(ii) jr


bHmj . 2j
jQ�
P

t>0; t�0(modR) 2
j
j(m�t)MM

���1
m�tf

��.
Proof. Item (i) follows directly from the construction. Also, it is proved in [13] (Section 11).
Item (ii) is obtained following the strategy in [6] (Lemma 6.5). The proof is similar to the one

of Lemma 4.4. It is done by induction on j
j and using Lemmas 4.6, 4.7. �

Proof of Proposition 4.5. As in the estimate of h� ~h, we can write

krb (g � ~g)k _F��1;pq
�
X
r2Z






2(��1)m�1mrb(Gr+mHr+m)



lqm





Lp
.

Recalling that

Gr+m :=
X
t>0

t�0(modR)

2��t!r+m�t,

we get

krb (g � ~g)k _F��1;pq
�

X
t>0

t�0(modR)

2��t
X
r2Z






2(��1)m�1mrb(!r+m�tHr+m)



lqm





Lp

=
X
t>0

t�0(modR)

2��t
X
r>a�t

:::+
X
t>0

t�0(modR)

2��t
X
r�0

:::+
X
t>0

t�0(modR)

2��t
X

0<r�a�t
:::.

(I) Estimate of
P

r>a�t
. Using the fact that kHmkL1 . 1 and Proposition 3.2 we have (as in

(4.10)) :




2(��1)m�1mrb(!r+m�tHr+m)



lqm





Lp
. 2��(r�t)



k2�m!mklqm

Lp . 2��(r�t)2Q� kfk _F�;pq
.

Summing up we get:

X
t>0

t�0(modR)

2��t
X
r>a�t

::: .

0B@ X
t>0

t�0(modR)

2��t
X
r>a�t

2��(r�t)

1CA 2Q� kfk _F�;pq

=

0B@ X
t>0

t�0(modR)

X
r>a�t

2��r

1CA 2Q� kfk _F�;pq

.
X
t>0

t�0(modR)

2��a�t2Q� kfk _F�;pq
. 2��a�R2Q� kfk _F�;pq

.

(II) Estimate of
P

r�0. Let a � 0 be an integer. As in the estimate (II) for h� ~h we obtain




2(��1)m�1mrb(!r+m�tHr+m)



lqm





Lp
. 2�(��1�a)r






2(��1�a)mra+1
b (!m�tHm)




lqm





Lp
.

In order to estimate the right hand side we recall that the following estimates hold (see
Proposition 3.2, Proposition 3.5 and Lemma 4.8):

!m�t . 2Q�MM(�1
m�tf),

��rl
b!m�t

�� . 2(m�t)l!m�t;
jHmj . 1,

��rl
bHm

�� . 2lQ�P
t>0

2(m�t)lMM
���1

m�tf
��
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for all l 2 N. By using now the Leibniz rule we get:��ra+1
b (!m�tHm)

�� . 2(m�t)(a+1)!m�t (4.11)

+2(a+1)Q�
X
t0>0

aX
l=0

2(t
0�t)l2(a+1)(m�t

0)MM
�
�1
m�tf

�
MM

�
�1
m�t0f

�
.

Using (3.3), we estimate the double sum from the right hand side as follows:

X
t0>0

aX
l=0

::: . kfk _F�;pq

 X
0<t0�t

2(a+1)(m�t
0)MM

�
�1
m�t0f

�
+
X
t0>t

2(t
0�t)a2(a+1)(m�t

0)MM
�
�1
m�tf

�!
. kfk _F�;pq

X
0<t0�t

2(a+1)(m�t
0)MM

�
�1
m�t0f

�
.

Going back to (4.11), we obtain��ra+1
b (!m�tHm)

�� . 2(m�t)(a+1)!m�t + 2(a+1)Q� kfk _F�;pq

X
0<t0�t

2(a+1)(m�t
0)MM

�
�1
m�t0f

�
and hence, using Proposition 3.2, the term






2(��1�a)mra+1
b (!m�tHm)




lqm





Lp
is bounded by

2(��1�a)t





2�(m�t)!m�t

lqm


Lp + 2(a+1)Q� kfk _F�;pq

Ba;�(t)





2�mMM

�
�1
mf
�



lqm





Lp

. 2(��1�a)t


k2�m!mklqm

Lp + 2(a+1)Q� kfk _F�;pq

Ba;�(t)





2�m�1

mf



lqm





Lp

. 2Q�2(��1�a)t kfk _F�;pq
+ 2(a+1)Q� kfk _F�;pq

Ba;�(t)





2�m�1mf

lqm


Lp

. 2Q�2(��1�a)t kfk _F�;pq
+ 2(a+1)Q�Ba;�(t) kfk2_F�;pq

,

where Ba;�(t) =
P

0<t0�t 2
(��1�a)t0 . Finally, we obtain




2(��1)m�1mrb(!r+m�tHr+m)




lqm





Lp

. 2�(��1�a)r2Q�2(��1�a)t kfk _F�;pq

+2�(��1�a)r2(a+1)Q�Ba;�(t) kfk2_F�;pq
. (4.12)

If we choose now a = [�] and we observe that in this case we have Ba;�(t) . 1, we can writeX
t>0

t�0(modR)

2��t
X
r�0

::: . 2Q�2�(a+1)R kfk _F�;pq
+ 2(a+1)Q�2��R kfk2_F�;pq

.

(III) Estimate of
P

0�r�a�t. Using the estimate (4.12) above with a = 0, we get

X
0�r�a�t






2(��1)m�1mrb(!r+m�tHr+m)



lqm





Lp
. A�(t)

�
2Q�2(��1)t kfk _F�;pq

+ 2Q�B0;�(t) kfk2_F�;pq

�
,

where

A�(t) .

8<: 2(1��)a�t if � < 1,
a�t if � = 1,
1 if � > 1,

and B0;�(t) .

8<:
1 if � < 1,
t if � = 1,
2(1��)t if � > 1.

Now summing up we get three possible bounds:
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(1) if � < 1, we have a� <
�
1�� andX

t>0
t�0(modR)

2��t
X

0�r�a�t
::: . 2Q�2�R(1�(1��)a�) kfk _F�;pq

+ 2Q�2�R(��(1��)a�) kfk2_F�;pq
;

(2) if � = 1, we have a� = 1 andX
t>0

t�0(modR)

2��t
X

0�r�a�t
::: . 2Q�R2�R kfk _F�;pq

+ 2Q�R22�R kfk2_F�;pq
;

(3) if � > 1, we have a� = 1 andX
t>0

t�0(modR)

2��t
X

0�r�a�t
::: . 2Q�2�R kfk _F�;pq

+ 2Q�2�R kfk2_F�;pq
.

Now from the above estimates, since 0 < a� < �, we haveX
t>0

t�0(modR)

2��t
X

0�r�a�t
::: . 2Q�R2�Rmin(1;�a�) kfk _F�;pq

+ 2Q�R22�Rmin(1;�a�) kfk2_F�;pq
.

Toghether with (I) and (II), this gives Proposition 4.5. �

4.4 Proof of Theorem 1.3

Now we can estimate the Triebel-Lizorkin norm of fJ � FJ = (h� ~h) + (g � ~g). By Proposition
4.1 (i) and Proposition 4.5, we have

kX
i=1

kXi(fJ � FJ)k _F��1;pq
.

kX
i=1




Xi(h� ~h)




_F��1;pq

+
kX
i=1

kXi(g � ~g)k _F��1;pq

.
�
R�22��min(1;�)�

k�
p + 2Q�R2�min(1;�a�)R

�
kfk _F�;pq

+DR;� kfk2_F�;pq
,

where DR;� is a large constant depending on R and �.
As in [6], for � 2 N, we set

R = R� :=

�
100Q

min(1; �a�)

�
�.

If � > 0 is �xed, then it is easy to see that (using the fact that k=p < min(1; �)) for a � large
enough, we have

R�22��min(1;�)+
k�
p . �=4 and 2Q�R2�min(1;�a�)R . �=4.

Hence, for a large D� we have

kX
i=1

kXi(fJ � FJ)k _F��1;pq
� �

2
kfk _F�;pq

+D� kfk2_F�;pq
,

and since we assumed that kfk _F�;pq
is small (see (4.2)), then we may take D� kfk _F�;pq

� �=2
obtaining

kX
i=1

kXi(fJ � FJ)k _F��1;pq
� � kfk _F�;pq

. (4.13)
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In a similar way, using Proposition 4.1 (ii) and Proposition 4.5 we get

d1X
i=1

kXi(fJ � FJ)k _F��1;pq
.

d1X
i=1




Xi(h� ~h)




_F��1;pq

+

d1X
i=1

kXi(g � ~g)k _F��1;pq

. D0
R;� kfk _F�;pq

+D00
R;� kfk

2
_F�;pq
,

and hence, as above,

d1X
i=1

kXi(fJ � FJ)k _F��1;pq
.� kfk _F�;pq

, (4.14)

provided that kfk _F�;pq
is small enough. From (4.14) and the lifting property (Proposition 2.13) of

the Triebel-Lizorkin norm, we get

kFJk _F�;pq
� k(fJ � FJ)k _F�;pq

+ kfJk _F�;pq
�

d1X
i=1

kXi(f � F )k _F��1;pq
+ kfk _F�;pq

.� kfk _F�;pq
. (4.15)

Now (4.13) and (4.15) together with the L1 estimates (4.1) give Theorem 1.3 under the
smallness assumption on kfk _F�;pq

(observing that the bounds proved do not depend on J and

taking J !1). We complete the proof of Theorem 1.3 via the homogeneity of the norms.

Remarks. (1) Following the same lines, it is also possible (and easier) to prove a version of
Theorem 1.3 for the Besov spaces introduced in Subsection 2.3:

Theorem 4.9 Consider the parameters 1 < p < 1, 1 < q � 1, � = Q=p and let k be the
largest positive integer with k < min(p; d1). Then, for every � > 0 there exists a constant C� > 0
only depending on �, such that for every function f 2 _B�;p

q (G) there exists F 2 L1(G) \ _B�;p
q (G)

satisfying the following estimates:

kX
i=1

kXi(f � F )k _B��1;pq (G) � � kfk _B�;pq (G) ,

kFkL1(G) + kFk _B�;pq (G) � C� kfk _B�;pq (G) .

(2) To mention one application of Theorem 1.3, we state the following generalisation of Theo-
rem 1.8 in [13] concerning the Hodge systems on the (2n+ 1)-dimensional Heisenberg group Hn.
Note that in this case d = 2n+ 1, d1 = 2n and Q = 2n+ 2.

Theorem 4.10 Consider 1 < p; q < 1, � := (2n+ 2) =p and let r be an integer with 1 � r <
min(p; n). For any (0; r)-form ' in _F�;pq (Hn), there exists a (0; r)-form Y in L1 (Hn)\ _F�;pq (Hn)
such that

@
�
bY = @

�
b'

and
kY kL1(Hn) + kY k _F�;pq (Hn) .




@�b'


 _F��1;pq (Hn)
.

(See [13] for notation.)

This is proved by using Theorem 1.3 to approximate in an e�cient way the coe�cients of the
form ' and then to conclude by using an iteration argument. Since the proof is very similar to
the one given in [13] and its Euclidean analogue in [6] (Theorem 1.2), we omit it. Theorem 1.4
can be proved following the same lines.
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5 Appendix

We collect here some facts related to the Calder�on-Zygmund theory on strati�ed homogeneous
groups for vector-valued functions. These results (Lemma A1 and Theorem A1) are well-known.
However, since it is hard to �nd the exact statements in the literature (see for example [2] for
a Euclidean version, or [7] for similar considerations on spaces of homogeneous type) hence, we
have chosen to present them here.

Consider a Banach space A. In what follows we deal with functions from the space LpA :=
Lp(G;A) where 1 � p � 1.

A �rst result is a Calder�on-Zygmund decomposition of fuctions on G (see also Th�eor�eme 2.2
in [7], Chapitre 3), obtained via the weak (1; 1) estimate for the maximal operator:

Lemma A1. Consider a function f 2 L1A and a number � > 0. Then there exist a countable
family of measurable sets (
n)n�1 which are pairwise disjoint and a decomposition f = g + b =
g +

P
n bn where g; b; bn 2 L1A for all n � 1, and such that:

(i) kgkL1A . �;

(ii) supp bn � 
n,
R
bn(x)dx = 0 and kbnkL1A . �j
nj for all n;

(iii)
P

n j
nj . 1
�
kfkL1A.

Proof. We adapt the standard proof in the Euclidean case. Consider the open set ~
 :=
fx 2 Gj M kfkA (x) > �g. For each x 2 ~
 we consider a ball Bx centered in x and such that
Bx � ~
, but 2 �Bx  ~
 (here if c > 0 and B is a ball in G centered in xB of radius RB, then c �B
is the ball in G of center xB and of radius cRB). Notice that, by Proposition 2.1,

jBxj �
���~
��� � 1

�
kfkL1A

and hence, the balls Bx have uniformly bounded radii. Using the Vitali covering lemma (which has
the same proof in G as in the Euclidean case), we can �nd a countable subfamilly of balls (Bk)k�1
of the familly (Bx)x2~
, which are pairwise disjoint and such that

~
 =
S
x2~
Bx �

S
k�1C � Bk,

where C > 2 is an absolute constant only depending on G.
We set


1 :=
�
~
 \ C �B1

�
n
 [
j 6=1

Bj

!
and inductively we de�ne


k :=

 �
~
 \ C �Bk

�
n

[
1�i�k�1


i

!
n
 [
j 6=k

Bj

!

for all k � 2. We see immediately that for all k � 1 we have Bk � 
k � C �Bk and this also give
us that j
kj � jBkj � jC �Bkj. By de�nition the sets 
k are pairwise disjoint and ~
 =

S
k�1
k.

We can de�ne the functions:

g(x) :=

�
f(x), if x =2 ~

f
k , if x 2 
k

and bk := (f � f
k) 1
k for all k � 1. Here, f
k := j
kj
�1 R


k
fdx.

To prove (i), we see that if x 2 
k we have

kg(x)kA = kf
kkA �
1

j
kj

Z

k

kf(y)kA dy .
1

jC �Bkj

Z
C�Bk

kf(y)kA dy �M kfkA (x0) � �,
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where x0 is a point in C � Bkn~
. (Such a point exists since 2 � Bk  ~
 and 2 � Bx � C � Bk.) If
x =2 ~
, by the Lebesgue di�erentiation theorem, which is a consequence of the weak estimate for
the operator M , we can write kg(x)kA �M kfkA (x) � �.
To prove (ii) and (iii), observe that by the above inequality we have

kkbkkAkL1 � j
kj
�
1

j
kj

Z

k

kf(y)kA dy + kf
kkA
�
= 2j
kj kf
kkA . j
kj�, for all k,

and, using the weak estimate for M ,

X
k

j
kj .
1X
k=1

jBkj =
�����
1[
k=1

Bk

����� � ���~
��� . 1

�
kkfkAkL1 .

We can also see from these inequalities thatX
k

kbkkL1A . �
X
k

j
kj . kfkL1A . (5.1)

This proves in particular that the series de�ning b is absolutely convergent in L1A and b; g 2 L1A
with kgkL1A + kbkL1A . kfkL1A . �

Theorem A1. Suppose A1 and A2 are two Banach spaces and K 2 L1loc(Gn f0g ! L(A1; A2))
has the following properties:
(i) there exists a constant c > 0 such that

R
kxkG�ckykG

kK(x)�K(y�1 � x)k dx � 1 for all

y 2 G;
(ii) the operator Tf = f �K is well-de�ned and bounded from LqA1 to L

q
A2
for some q 2 (1;1).

Then, T : L1A1 ! L1;1A2 is well-de�ned and bounded. By real interpolation and duality we get
that T : LpA1 ! LpA2 is well-de�ned and bounded for any p 2 (1;1).

(Here L(A1; A2) stands for the space of the bounded linear operators from A1 to A2.)

Proof. We adapt again the proof in the Euclidean case. Using Lemma A1 we can write, for
a given f 2 L1(A1) and � > 0, the decomposition at level �: f = g + b. We next note that���kTfkA2 > 2�	�� � ���kTgkA2 > �

	��+ ���kTbkA2 > �
	��. The size of the set �kTgkA2 > �

	
can be

bounded using (ii) above and the Markov inequality:

���kTgkA2 > �
	�� � ��q



kTgkA2

qLq . ��q


kgkA1

qLq = ��q



kgkqA1

L1
� ��q�q�1



kgkA1

L1 = ��1 kgkL1A1 . ��1 kfkL1A1 .

To estimate the size of the set
�
kTbkA2 > �

	
we proceed as follows. Consider the sets 
k from

the proof of Lemma A1; for each such 
k we denote by yBk the center of the ball Bk � 
k and
we set 
�k := (C1 + C) � Bk � 
k where C1 > 0 is a large constant only depending on G and c.
We write now

���kTbkA2 > �
	�� �

�����[
k


�k

�����+
�����
(
x 2 Gn

[
k


�kj kTbkA2 > �

)�����
. ��1 kfkL1A1 + ��1

Z
Gn

S
k 


�
k

kTbkA2 (x)dx,

and it remains to estimate the last term. For this purpose, we note that if x 2 Gn
�k and y 2

k, then �(x; yBk) =



y�1Bk � x

G � (C1 + C)RBk � C�1 (C1 + C) �(y; yBk) � C�1C1


y�1Bk � y

G
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(RBk is the radius of Bk) and thanks to the quasinorm property of k�kG, we �nd a constant
C2 > 0 depending on G only, such that ky�1 � xkG =



y�1 � yBk � y�1Bk � x

G � C2


y�1Bk � x

G �

ky�1 � yBkkG � (C�1C1C2 � 1)


y�1
k � y

G, where we used the equality a�1 = �a on G. If C1

is su�ciently large, we deduce ky�1 � xkG � c ky�1 � yBkkG = c



(y�1 � x) �y�1Bk � x��1


G. As a

consequence,

Z
Gn

S
k 


�
k

kTbkA2 (x)dx �
X
n

Z
Gn

S
k 


�
k





Z

n

K(y�1 � x)bn(y)dy





A2

dx

=
X
n

Z
Gn

S
k 


�
k





Z

n

�
K(y�1 � x)�K(y�1Bn � x)

�
bn(y)dy






A2

dx

�
X
n

Z

n

 Z
Gn

S
k 


�
k



K(y�1 � x)�K(y�1Bn � x)



op
dx

!
kbn(y)kA1 dy

�
X
n

Z

n

kbn(y)kA1 dy . kfkL1A1 ,

where we have used the condition (i) above and (5.1). �

Remark. We see from the proof that if kTkLqA1!L
q
A2

� 1 then we have kTkLpA1!L
p
A2

. 1. Hence if
the quantity in (i) is bounded by a number � > 0 (instead of 1) and also kTkLqA1!L

q
A2

� �, then

we have kTkLpA1!L
p
A2

. �.

Lemma A2. Suppose ' 2 L1(G) and:
(i)
R
kykG�R

j'(y)j dy . R�1 for any R � 1;
(ii)

R
G
j'(x�1 � y)� '(y)j dy . kxkG for all x 2 G with kxkG � 1.

If for r 2 G we de�ne kj(x) := 'j(x � 2�jr), where 'j(x) = 2jQ'(2jx) for all j 2 Z, then, for
a constant c > 0 only depending on G, we haveZ

kykG�ckxkG

X
j2Z

��kj(x�1 � y)� kj(y)
�� dy . ln(2 + krkG).

Proof. We follow the proof in [6]. We decompose the sum under the integral as follows:

X
j2Z

��kj(x�1 � y)� kj(y)
�� = X

2jkxkG�1

:::+
X

1<2jkxkG<2+krkG

:::+
X

2jkxkG�2+krkG

::: =: I + II + III.

We now estimate each term. Using (ii), we can estimate the �rst term as follows

Z
kykG�ckxkG

I �
Z
G

X
2jkxkG�1

2jQ
��'(�2jx�1� � �2jy� � r)� '(

�
2jy
�
� r)
�� dy

�
Z
G

X
2jkxkG�1

��'(�2jx�1� � y)� '(y)
�� dy . X

2jkxkG�1

2j kxkG . 1.

For the second term we have:
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Z
kykG�ckxkG

II �
X

1<2jkxkG<2+krkG

2

Z
G

jkj(y)j dy

= 2
X

1<2jkxkG<2+krkG

Z
G

j'(y)j dy . ln (2 + krkG) .

To estimate the third term we use (i), which yelds

Z
kykG�ckxkG

III � 2
X

2jkxkG�2+krkG

Z
kykG�c1kxkG

jkj(y)j dy

= 2
X

2jkxkG�2+krkG

Z
kykG�2jc1kxkG

j'(y � r)j dy

.
X

2jkxkG�2+krkG

1

2j kxkG
. 1

2 + krkG
. 1

where the constant c1 > 0 in the �rst line is obtained by using the quasinorm property of k�kG.
Summing up these estimates we get the claim. �

In what follows we will need to apply the above lemma to the function ' = S. It is easy to
verify that the function S(x) = min(1; kxk�Q�1G ) satis�es the conditions (i) and (ii) required by
Lemma A2. Indeed, by a change of variables, we can write for all R � 1,Z

kykG�R
jS(y)j dy = R�1

Z
kykG�1

kyk�Q�1G dy � R�1,

which proves that (i) is satis�ed. To verify (ii), we recall that jkb � akG � kakGj � C kbkG for
all a; b 2 G (see Proposition 3.1) and note that if kykG � 1 � C kxkG � 1, then kx�1 � ykG �
kykG + C kxkG � 1. Also, if kykG � 1 + C kxkG, then kx�1 � ykG � kykG � C kxkG � 1. Hence,
if kxkG � 1, we can writeZ

G

��S(x�1 � y)� S(y)
�� dy =

Z
1�CkxkG�kykG�1+CkxkG

��S(x�1 � y)� S(y)
�� dy

+

Z
kykG�1+CkxkG

��S(x�1 � y)� S(y)
�� dy

. kxkG +
Z
kykG�1+CkxkG

����� 1

kx�1 � ykQ+1G

� 1

kykQ+1G

����� dy
= kxkG +

Z
kykG�1+CkxkG

�����kx�1 � ykQ+1G � kykQ+1G

kx�1 � ykQ+1G kykQ+1G

����� dy
. kxkG + kxkG

Z
kykG�1+CkxkG

1

kykQ+2G

dy.

Proposition A1. Suppose p; q 2 (1;1). Then, for every sequence (fj)j2Z in Lp(G; lq(Z)) and
for every r 2 G we have




Sjfj(x � �2�jr�)

lqj


Lpx .p;qln(2+ krkG)




kfjklqj


Lp .
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Proof. As we already saw, the function S satis�es the requirements of Lemma A2. Let kj as in
Lemma A2 with ' = S. We see directly that, for any Schwartz function f , we have

f � kj(x) =
Z
G

f(y)Sj(y
�1 � x � (2�jr))dy = Sjf(x � (2�jr)).

Hence T (fj)j2Z(x) := (fj)j2Z � K(x) = (fj � kj)j2Z(x) = (Sjf(x � (2�jr)))j2Z, the operator
T being initially de�ned for a sequence of Schwartz functions (fj)j2Z. Considering the Banach
spaces A1 = A2 = lq(Z) we can see that the statement of the Proposition A1 is equivalent to the
fact that the operator T : LpA1 ! LpA2 is continuous, with its norm bounded by ln(2+ krkG). This
can be obtained as follows. Consider a sequence a in the unit sphere of lq(Z). We have that:



K(x)�K(y�1 � x); a

�
=

X
j2Z

�
kj(x)� kj(y

�1 � x)
�
aj �

 X
j2Z

��kj(x)� kj(y
�1 � x)

��q0!1=q0
�

X
j2Z

��kj(x)� kj(y
�1 � x)

�� ,
for all x; y 2 G. Hence kK(x)�K(y�1 � x)k �

P
j2Z jkj(x)� kj(y

�1 � x)j and thanks to Lemma
A2 we get (using the same notation):

Z
kxkG�ckykG



K(x)�K(y�1 � x)


 dx � Z

kxkG�ckykG

X
j2Z

��kj(x)� kj(y
�1 � x)

�� dx . ln(2 + krkG).
Also we can easily see that T : LqA1 ! LqA2 is bounded and of norm 1. These two last

observations together with Theorem A1 and the Remark after, give us the claim. �

Remark. Proposition A1 is reminiscent of an inequality due to Bourgain (see for example [11]).

Acknowledgements

The author thanks Petru Mironescu and Emmanuel Russ for useful discussions and suggestions.
He was supported by the LABEX MILYON (ANR-10-LABX-0070) of Universit�e de Lyon, within
the program \Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR).

Part of this work was completed while the author was visiting the Institute of Mathematics
of the Romanian Academy. He thanks the Institute for its hospitality.

References

[1] Bahouri, H., Gallagher, I., Paraproduit sur le groupe de Heisenberg et applications. Rev. Mat.
IberoAmericana 17, 69-105, 2001.

[2] Benedek, A., Calder�on, A. P., Panzone, R., Convolution operators on Banach space valued
functions. Proc. Nat. Acad. Sci., 48(3):356{365, 1962.

38



[3] Bourgain, J., Brezis, H., On the equation div Y = f and application to control of phases. J.
Amer. Math. Soc., 16(2):393{426, 2003.

[4] Bourgain, J., Brezis, H., New estimates for eliptic equations and Hodge type systems. J. Eur.
Math. Soc., 9, no. 2, 277-315, 2007.

[5] Bousquet, P., Mironescu, P., Russ, E., A limiting case for the divergence equation. Math. Z.,
274(1-2):427{460, 2013.

[6] Bousquet, P., Russ, E., Wang, Y., Yung, P-L. Approximation in fractional Sobolev spaces
and Hodge systems. J. Funct. Anal. 276, no. 5, 1430-1478, 2019.

[7] Coifman, R., Weiss, G., Analyse harmonique non commutative sur certains espaces ho-
mog�enes, Lecture notes, 242, Springer Verlag., 1971.

[8] Folland, G. B., Stein, E. M., Hardy Spaces on Homogeneous Groups, vol. 28 of Mathematical
Notes, Princeton University Press, Princeton, NJ, USA, 1982.

[9] Furioli, G., Melzi, C., Veneruso, A., Littlewood-Paley decompositions and Besov spaces on
Lie groups of polynomial growth. Math. Nachr., 279(9-10):1028{1040, 2006.

[10] Hu, G. Homogeneous Triebel-Lizorkin Spaces on Strati�ed Lie Groups. Journal of Function
Spaces and Applications, ID 475103, 2013.

[11] Hyt�onen, T. P., Foundations of vector-valued singular integrals revisited-with random dyadic
cubes. Bulletin of the Polish Academy of Sciences Mathematics 60(3), 2011.

[12] Stein, E.M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals, 695 pp. Princeton Mathematical Series 43, Princeton University Press (1993).

[13] Wang, Y., Yung, P.-L., A subelliptic Bourgain-Brezis inequality. J. Eur. Math. Soc. (JEMS),
16(4):649-693, 2014.

39


