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Approximation of critical regularity functions on

stratified homogeneous groups

Eduard Curca

Abstract

Let G be a stratified homogeneous group with homogeneous dimension ) and whose
Lie algebra is generated by the left-invariant vector fields Xj,...,.Xg,. Let 1 < p,q < oo,
o= Q/pand § > 0. We prove that for any function f € F;P(G) there exists a function
F € L®(G) N F{"P(G) such that

k
SIS = Flligtogy < Mg
1l i@+ 1l ppny < Cslf oy

where k is the largest integer smaller than min(p,d;) and Cjs is a positive constant only
depending on §. Here, an’p(G) is a Triebel-Lizorkin type space adapted to G.

This generalizes earlier results of Bourgain, Brezis [4] and of Bousquet, Russ, Wang, Yung
[6] in the Euclidean case and answers an open problem in [6].
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1 Introduction

Let B C R (d > 2) be a Euclidean ball. It is well-known that, if f € L} (B,R) with 1 < p < oo,

loc

then the equation divY = f has a solution X € I/Vllo’p (B,R%). When p = d, this Y ”almost”

C

belongs to L (B, RY). A striking result obtained by Bourgain and Brezis (in [3]) asserts that
is possible to find Y € W1 %(B,R%) N L2, (B,RY). Their argument relies on a new type of
approximation results.

This seminal work has been followed by a number of approximation results of similar type [4],
5], [13], [6]. Our work is primarily motivated by two types of developments of the results in [13],
[6] concerning functions in critical Sobolev spaces that barely fail the embedding in L.

The first of these results (Lemma 1.7 in [13]) deals with the extension of the approximation
result given in [4] (Theorem 11) in the Euclidean case, to the more general case of stratified

homogeneous groups. Somewhat informally this reads (see Section 2 for definitions):

Theorem 1.1 Suppose G is a stratified homogeneous group whose homogeneous dimension is ()
and let Xy, ..., X, be a minimal family of vector fields generating the Lie algebra of G. Then, for
any Schwartz function f on G and any 6 > 0 there exists a function F such that:

ni—1

Z | Xi(f — F)HLQ(G) < 9 HvbeLQ(G)7
i=1

1 ooy + Vo F oy < CslIVofllpprey

where Cs is a constant only depending on 9.

Here, Vi, f = (X1 f, ..., X;,, f). Theorem 11 in [4] corresponds to the Euclidean case.

On the other hand, it was proved in [6] (Theorem 1.1) that Theorem 11 in [4] remains true,
in the Euclidean case if we replace the critical Sobolev space W'4(R%) by more general critical
spaces such as F/"P(R%). More precisely, we have the following;

Theorem 1.2 Consider the parameters 1 < p,q < 0o, o = d/p and let k be the largest positive
integer with k < min(p,d). Then, for every 6 > 0 there exists a constant Cs > 0 only depending
on 0, such that for every function f € Fg’p(Rd) there exists F € L>°(R%) N Fq""p(Rd) satisfying
the following estimates:

k
D N0i(f = Pl go-romay < 01Fliprmay-
1=1

[Fl poomay + 1Fl pormay < Cs llfllzormay -

Note that here we have a somewhat unnatural technical condition on k, which does not seem
to be optimal. Namely, we impose k < min(p, d) instead of only imposing k < d. (See [6] for a
discussion on this assumption.)

The purpose of this paper is to find a common roof to Theorem 1.1 and Theorem 1.2 and to
give an affirmative answer to Open question 1.4 in [6]. Our generalisation is an adaptation of
Theorem 1.2 above to the stratified homogeneous groups context of Theorem 1.1. In this case the
role of the Euclidean dimension is played by the homogeneous dimension ) of the group and the
critical regularity becomes, in this case, &« = @/p. The role of the derivatives is played by the
vector fields that generate the full Lie algebra of G.

The statement of our main result is:



Theorem 1.3 Consider the parameters 1 < p,q < 0o, a = Q/p and let k be the largest positive
integer with k < min(p, dy). Then, for every § > 0 there exists a constant Cs > 0 only depending
on §, such that, for every function f € Fq"’p(G), there exists ' € L>®(G) N an’p(G) satisfying the
following estimates:

K
ZHXi(f_ F)llge1vy < Ol g s
i=1

HFHL‘”(G) + ”FHF,;"”(G) < G HfHF(?”’(G) :

We will give in Section 2 precise definition of the function spaces we consider on GG. For the
time being, let us mention that we cover the case of the more familiar anisotropic homogeneous
Sobolev spaces N L™?, defined informally as containing the functions f on G for which Vi felr.

Despite the fact that we also have the unnatural restriction k < min(p, d;), as in the Euclidean
case, this suffices for some applications to divergence-like systems. Basically, all the applications
to such systems presented in [4] can be easily adapted to the stratified homogeneous group setting
and higher order Sobolev spaces. We give one example, formulated for simplicity for spaces of
integer regularity.

Theorem 1.4 Let m < Q) be a positive integer. Suppose f € NLm*LQ/m(G) and there exist
functions vy, ...,vq, € NL™Q/™(G) such that

lel + + Xdlvdl = f

Then, there exist uy, ..., ug, € L°(G) N NL™Q/™(G) such that

X1u1 + ...+ Xdludl = f

The paper is divided into two parts. The first one (Section 2) deals with the construction of
the Triebel-Lizorkin spaces on stratified homogeneous groups. We mention that the Euclidean
analogues of these spaces coincide with the classical ones and that in the general stratified ho-
mogeneous group setting, they also satisfy similar interpolation and duality properties as their
classical analogues.

Spaces of a similar kind were already defined and studied for example in [1], [10] and other
works (see also [9] for a construction of inhomogenous spaces in the more general context of Lie
groups of polynomial volume growth). Our construction is very similar to the one given in [10] (it
turns out that our spaces essentially coincide with the ones introduced in [10], as a consequence
of our Proposition 2.10). While the construction in [10] is based on spectral decomposition of
sublaplacians, our construction is based only on the relatively elementary technique developed in
[13] for obtaining a Littlewood-Paley decomposition for functions defined on the group. (We also
notice that our purpose is not to explore the properties of these spaces, but rather to prove a
minimal number of their properties, required in the proof of Theorem 1.3.)

While in [13] Littlewood-Paley decomposition is obtained by a Calderén reproducing formula
with two convolutions, we will also need similar reproducing formulas with three convolutions (we
will prove that all the definitions of the spaces with two or more convolutions coincide). This
allows us to prove the full analogue of the Littlewood-Paley inequality as well as other inequalities
needed in the proof of Theorem 1.3.



The second part (Sections 3 and 4) is devoted to the proof of Theorem 1.3. We follow closely the
proof in [6]. Several relatively minor modifications were made in order to simplify the exposition.
Some more substantial adaptations were required in order to bypass the lack of commutativity
of the vector fields. In some cases the arguments are easily adapted to the group setting, and in
these situations we only sketch the arguments or refer to the proofs in [6]. In the Appendix we
recall the Calderén-Zygmund theory on stratified homogeneous groups in order to give a direct
proof of an inequality (Proposition A1) whose Euclidean analogue was proved in the Appendix of
[6] by similar but more complicated means.

2 Function spaces on stratified homogeneous groups

2.1 Basic facts on stratified homogeneous groups

Here, we follow mainly Folland and Stein [8] and Stein [12]. We also present some auxiliary
results, possibly known to experts, that we will need in order to develop the Littlewood-Paley
theory of function spaces on stratified homogeneous groups. We will consider homogeneous groups
as defined in ([12], p. 618). For such a group G, we write the following decomposition of its Lie
algebra g:

g=Vieho..aV,
where V7, ..., V; are vector spaces of left-invariant vector fields such that
(i) [Vi,Vi] € Viy; (making the convention that V; is not trivial and any V; with j > ¢ is

trivial),
(ii) V; generates the whole algebra g (this is the so called Hérmander condition).

Dimension. We write d; := dimVj and d := d; + ... + d;; the number Q = d; + 2dy + ... + d,
is called the homogeneous dimension of G. As sets, we identify G with R%. In view of this
identification, we consider the following dilation rule: if x = (z1,...,24) € G and A > 0, then

Ar = (A"xq, ..., A\"x4), where
a:=(ay,...,aq) = (1,..,1,2,...,2, ..., 0,.... () (2.1)

is the vector of the homogeneities, each j € {1, ..., {} appearing d; times. The dilations are known
to be automorphisms of GG and, with respect to them, the following "norm” on G is homogeneous:

1
¢ 20!

Izl =Y Y w7 | (2.2)

7j=1 d1+...+d]'71 <i§d1+.‘.+dj

We have also the quasi-triangle inequality
- ylle S llzllg +lyllg, for z,y € G.

Subgradient. We write X, Xs, ..., X for the left-invariant vector fields forming the standard
basis of g, with X3, X5, ..., X4, forming a basis of V;. We will call full gradient and subgradient
respectively the following operators

v = <X17X27 ...,Xd), vb = (Xl,XQ, ...,Xd1> .



Note that, whenever f is a Schwartz function on R? with V,f = 0 then, thanks to the
Hormander condition, we get Vf = 0. Hence, in a sense, the subgradient encodes all the differ-
ential information about f. We will always be concerned with the subgradient of functions rather
than with the full gradient. We will consider for example the Sobolev-type space NL%?, which
informally is a space of functions on G whose subgradient is in L?. Note that this space is not
the same as W'® on G seen as a manifold.

Similar considerations hold for right-invariant vector fields. We will write X JR for the right-
invariant analogue of X.

An important aspect is that, with the identification G = R, we have that z -y is a polynomial
in 2,y and (z-y), = x) + yi for any 2,y € G as long as 1 < k < d;. Also we have 27 = —z for
all x € G.

Balls and the maximal function. We consider balls on GG defined by the quasimetric p on G,
given by
plz,y) =y |,
for z,y € G. The open ball centered in x and of radius § > 0 is the set
B(z,6) ={y € Glp(y, ) <},

whose Lebesgue measure is |B(z,6)| ~ 9. For all balls B = B(x,d) and A > 0 we will write
AB = B(z, \J).
We also consider the Hardy-Littlewood maximal function M on G, defined by

M f(x) —Sup|B|/!f )| dy,

for all functions f € L},.(G), where the supremum is taken over all balls B C G containing .

We recall the following classical facts (for proofs see Chapter 2 in [12]):

Proposition 2.1 (i) If ¢ is a nonnegative decreasing function on [0, 00), such that C' = [, o(||y|ls)dy <
oo and ¢ is a measurable function on G such that |p(y)| < ¢(||ylls) on G, then

f*dl SCMf on G,

for any Schwartz f. Here the convolution on G is defined by

fro(@) = | flyely™ " -a)dy= | flz-y)o(y)dy.
Rd Rd
(ii) M is of weak type (1,1) and of strong type (p,p) for all 1 < p < co.
(i11) (the Fefferman-Stein inequality) Consider a sequence of Schwartz functions (f;)
or 1 < p,q < oo, we have
for 1 h

Then,

JEZ"

Sva |[I1fillus ]|,

l1a2sill|

Vector fields and polynomials. We remind the following elementary formula ([12], p. 621):

_ Of(z-y)

o = 0;f(x +Zq]k ) f (x (2.3)

X;f(x):




where y = (0, ...0,y;,0,...0) and g;; are homogeneous polynomials of degree a;, — a;.

Another elementary fact is that the integral of the functions of the form X f, where f is a
Schwartz function is, as in the Euclidean case, equal to 0. Here is a proof of this fact. For any
y = (0,...0,y;,0,..0) € G, with y; # 0, using the fact that the Lebesgue measure on R? is a
bi-invariant Haar measure on G ([8], Proposition (1.2), p. 3), we have

He D= 10y - L ([ o gpie— [ ity ) <o

R Yj Y

Using now the formula (2.3), the classical mean value theorem in the (Euclidean) R? and the
dominated convergence theorem, we can pass to the limit when y; — 0 in the above formula to
obtain

X f(z)dx = 0.
Rd

A similar formula holds for right-invariant vector fields. As an immediate consequence of this

and the Leibniz rule we get the formula (see [8], p. 21)

/Rd (X;f) gdw = — /Rd [ (X;9)dz (2.4)

whenever f and g are Schwartz functions or one of them is Schwartz and the other one is poly-
nomial.

Before going to the next step let us fix some notation. For a real valued function f sufficiently
smooth on G and a positive integer m, we write V;'f for the vector valued function whose
components are

V) f = (XﬁXgé...X;fl) (XﬁXﬁ...X;fl) <X¥TX;31...X;?1> f (2.5)

listed in the lexicographic order given by v = (71,...,7%) € N x ... x N (m times) with

=Y. .~ = m. Note that by embedding N% x ... x N% in (N®% N, we can define V) f by the
v ig Vi y g pJ DY
above formula whenever |y| < co.

We will also use many times the notation V' - ¢ where ¢ = (4,07) is a finite family of

[v|=m
Schwartz functions. This has the following meaning

Vitpi= > Vi, (2.6)

[v]=m

Let us see that high powers of the subgradient are able to anihilate low degree polynomials.
More specifically,

Proposition 2.2 Suppose p € R [z, ..., x4] is a polynomial and consider m € N*. Then V}'p is a
vector valued polynomial with deg Vy'p < £degp—m. In particular, if m is such that m > {degp,
then we have that Vy'p = 0.

The similar assertion for the right-invariant subgradient also holds.

Proof. It suffices to prove the statement when p is a monomial. Suppose p(z) = 2® = 27*...25*
for some a = (ay,...,aq) € N? and consider the function ¢ = V;'p. We can see from the
formula (2.3) that ¢ is a vector valued polynomial on R?. Writing Az for the group dilation of



x € G with the parameter A > 0, we immediately see from the definition of the subgradient that
Vit (p(Ax)) = A"V p(Ax). Also, we have

p(Az) = (A 2)T L (A%2)5e = A p(x).
From this we conclude that, for all z € G,
q(Ax) = (Vi'p) (Ax) = A"V} (p(Ax)) = A7 Vp(x) = A "g(x).

If ¢x? is a monomial (¢ # 0) of maximum degree in g, as before we get (Az)” = A28 for
all A > 0. Choosing from these monomials one for which (a, ) is maximum, we get by the above
formula that (a, ) = (a,«) — m and hence degq = |5| < (a,5) < {|a| — m. O

Let us next recall a fundamental formula that makes a connection between the derivatives on
R and the vector fields from g. More specifically, for any 1 <14 < d we have ([8], p. 25)

d
0= PeiXs, (2.7)
k=1

where P ; are homogeneous polynomials of degree a; — a;.
We will also need the following.

Proposition 2.3 We have that
dy

0; =Y XiDj,. (2.8)

k=1
where the operators Dy ; are the adjoints of some operators of the form Zﬁ/ pﬁ,V;d for appropriate
polynomials p, and multi-indezes v in a finite subset of N°.

Proof. Since the vector fields X;, Xo, ..., X4, are generating the full Lie algebra of the group, we
can write each X in terms of X, Xy, ..., X4, using commutators, which are linear combinations

of expressions of the form V; = Vg/Xk for some 1 < k < d; and some indexes v, 7' € (Ndl)N.
Keeping the last vector field from such an expression and using (2.3) to express VZ/ in terms of
derivatives on R? and polynomials, we can rewrite (2.7) as

d1

0= DyiXk, (2.9)

k=1

where each operator Dy, ; is of the form ZW pWVAd for some polynomials p, and v in a finite subset
of IN¢.

Now, if f and g are arbitrary Schwartz functions we can write (see (2.4)):

d1 dl
fogde = [ (@) gdo ==Y [ (DuXifode =" [ 7X(Dig) s
Rd R4 k=1 RI k=17 R
and hence, by identification,
dy
ai - Z XkDZ,i?
k=1
which proves the Proposition 2.3. U



Proposition 2.4 Let m € N and f be a Schwartz function.

(i) If f = V' - for a family of Schwartz functions p, then for any polynomial p with
degp < m/l we have [,pfdz = 0.

(ii) There exists an m' € N only depending on m and G such that if we have fG pfdx =0 for
any polynomial p with degp < m/, then there exists a family of Schwartz functions ¢ such that
=V e

The same is also true in the case of the right-invariant subgradient.

Remarks. (1) Since the assertion of (ii) in the above proposition remains true for any integer
larger than m’, when applying this part of the proposition, we will assume for technical reasons
that m’ > m/.

(2) In particular, Proposition 2.4 gives the following (informally speaking): if ¢, is a Schwartz
family, then there exists another Schwartz family ¢, such that:

(V)" 1= V5"
This property will be used several times.

Proof. Part (i) follows from Proposition 2.2 and by a repeated application of the formula (2.4).
Part (ii) will be proved by induction on m. The case m = 0 is trivial (we take by convention

m’ = 0). Fix m > 1 and suppose we have the statement of (ii) for m — 1. Consider the number

m' := (m — 1)+ M + 2, where M is the maximum degree reached by a polynomial p~ entering

in the expression of the operators Dy ; that occur in (2.9). If fG pfdx = 0 for any polynomial p
of degree at most m’, then we can use the well-known fact that in the Euclidean case there exists
a collection of Schwartz families (¢;),;, such that

d

F=3 0 (vVarto).

i=1
Using now formula (2.8) we can write:
d d d1 d1 d dl ~
f= Zai ( gdil ’ (bi) = Z ZXkDZ,z‘ ( TRndil ) ¢z‘> = ZXk (Z DZ,i ﬁil ) 9251') = ZXk%,
i=1 i=1 k=1 k=1 i=1 k=1

where ¢, are the Schwartz functions ¢, = Z?Zl i E;’l -¢;. It is easy to see that [, podz =0
for all polynomials p of degree at most (m — 1). By the induction hypothesis, we get that for
cach k there exists a family of Schwartz functions ¢, such that ¢, = V"' ¢,. From this and
the above formula, we get the conclusion. U

Convolutions. We recall that, for two Schwartz functions f, g their convolution is defined by
the formula:

frgl@)= [ fgly " -a)dy= | flz-y )gly)dy.
R R¢
It can be verified directly that the convolution is associative.

Concerning the interaction of vector fields with the convolution, it is known that ([8], p. 22):

Proposition 2.5 For all Schwartz functions f, g we have:

X;(fxg)=f*(X;9), X' (frg)=(X[f)*g, (X;f)xg=f*(Xg). (2.10)



We have also the following elementary fact.
Proposition 2.6 If 1, ®y are two Schwartz functions, then ®1 x @5 is also Schwartz.

Proof. We can easily observe that, since each component of x - y is a polynomial in z and y, we
can find a large number ng € N* such that 1+ |z -y| < (14 [2])"¢ (1 + |y|)" for all 2,y € RY.
This implies that, for example, we have

sup (1+ [2])™ [y % Do(x)| < sup/d(1+|x-y‘1-y\)N|<1>1(x-y )| 1®2(y)] dy
x T R

S s [ (1t laey ) @y ] (0 10D (@00 dy

xT

S [ 1) @aly) dy < oo
R

More generally, the estimate of sup, (1 + |z|)" 9% (@1 % ®) ()| is reduced to the above cal-
culation using the connection between the derivatives and the vector fields on G via (2.7) and
(2.3). O

2.2 The Littlewood-Paley decomposition

We introduce the following notation. Whenever A is a Schwartz function on G and j is an integer,
we write A; for the function defined by A;(z) = 2/9A(27z). Also, if f is another Schwartz function,
we write Ajf = f*x A;j.

Proposition 2.7 Given m € N, there exist Schwartz families A, A%, A*> on R? such that

Jra P( r)dr = fRd (2)A*(x)dx = [qa P(x)A*(x)dx = O for all the polynomials P of de-
gree § m/ (wzth m' as in Proposztwn 2.4) and such that for all Schwartz functions f we have
F=Y)_fxAf« A2« AP =D ASNPALS, (2.11)
JEZ JEZ

the convergence being in any LP(R?) for 1 < p < co. In particular, according to Proposition 2.4
(ii), there exist families of Schwartz families ¢;, ¢; (i = 1,2,3) such that A' = V', = (V)" - ¢,
for each 1 =1,2,3.

Remark. Some explanations are in order. The proposition literally states that there exist three
finite Schwartz families A’ = (A"*),_, (A is a finite set), i = 1,2, 3, such that all the moments of
order up to m’ of each A“® are zero and

F=D 3 FrAyt s AT AT =) D AGUATUAGCS

JEZ a€A JEZ a€A

The last assertion means that there exists 6|A| Schwartz families ¢, ,, ¢; , such that

Ai,a = vlr)n : 901',0, = (vll)%)m ' ¢i,a
forall a € A and i =1,2,3 (see (2.6)). Since the use of the familly A leads to heavy notation, we
prefer the form of the above proposition which turns out to be more convenient in the calculations

9



that follow. This can be compared with the summation convention in geometry. We also note
that the absolute value of expressions like A; f , where A = (A,),. 4 is a Schwartz family, will have
the following meaning:

IIEDBILVE

a€A

Similarly, we set

ATAGFL = D AT A

a€A

)

and so on.

These conventions, together with (2.6), will enable us to estimate expressions involving Schwartz
families as if they were functions. We will also abuse the notation in other situations, where the
distinction between functions and finite families of functions will be clearly irrelevant (see also
the conventions in [13]).

Proof. This proof follows the lines of Proposition 5.5 in [13]. We consider a radial Schwartz
function U with U = 1 on Bgra(0,1) and supp ¥ C Bra(0,2) (here Bra(0,1) and Bgra(0,2) are
Euclidean balls). We need now the easy argument of Proposition 5.1 from [13] which we reproduce
below for the convenience of the reader.

Lemma 2.8 Let ® be a Schwartz function on R? such that fRd ®dxr =1 and fix some 1 < p < 00.
Then, for any Schwartz function f, we have

F=> fx(@ -2

JEZ

the convergence being in LP.

Proof. We have, for any N € N*,

Z f*(éj_q)j—l):f*q)N_f*q)—N—l-

lil<N

Hence it remains to see that fx« ®y — f and f*x®_n — 0in L” when N — oo. In order to
prove the first claim we write, using Minkowski’s inequality,

If* oy —fll, = \

| (a7 = 5(@) @)y

L:

< [l @) = @)l 19 dy — 0

(this can be seen by using the dominated convergence theorem).
In order to prove the second claim, again by Minkowski’s inequality we have

1F % @ nll e < [ Fllpa 1@-nll = 27NV | ]| 11— 0,

proving the lemma. O

Proof of Proposition 2.7 continued.

10



The above Lemma applied to ® = U « U % U (see Proposition 2.6) yields

f = Zf*((\lf*\lf*\lf) (U 1 xW_ 5T 4 > Zf \If*\ll*\ll—\ll_l*\ll_l*llf_l)j
JEZ JEZ
= D frUr U (U =T )+ T (T - W) x U+ (T—T_) Ty xTy),,  (212)

JEZ

the convergence being in LP(R?) with 1 < p < oo. Since we have Y-V ,=0ina neighborhood
of 0, the function ¥ — W_; is orthogonal to all polynomials. By applying Proposition 2.4 (ii) we
can find a Schwartz family ¢ such that U—0_; = (V) ana -, with ny := (2n1) where ny := (m')".
Using (2.10) we can write schematically, abusing the notation,

n2

Vs Us(U—U ) = Uslx (VH™ . o=0xV2U« (V"o
= Ux (VbR)2n1 U x (Vf)m o=V, % (Vf)nl U x (Vf)m ®

where W is a Schwartz family such that (Vf)m1 U = V,2W; this can be seen to exist thanks
to Proposition 2.4 (see Remark (2)). The other terms in (2.12), namely ¥ % (U — U_;) %« U_,
and (U —W_;) %« W_; %« U_; can be handled in a similar way. We find that each one of them is
a finite sum in which each term is of the form Yl(ml)/ C gy * Yz(ml)/ g * Y})(ml)/ - ¢4 where ¢, are
Schwartz families and Y; is V, or V. This implies (2.11) via Proposition 2.4 (i), once we note
that (m')" > m/l (see the Remark (1) after Proposition 2.4). O

Remarks. (1) We will use sometimes the function A = U« U« W — W_; x« ¥_; x ¥_; for which,
as we can see in the above proof, we have the estimate |A; f| < ‘A;A?A} f| for all integers j and
all Schwartz functions f. From (2.12), we have

F=)_Nf inIP1<p<oc.
JEZ
Schematically we write A = A3A?A!. We will also consider its weaker analogue,
Al = AZAL (2.13)
(2) It is easy to see that we can obtain decompositions of the form

=Y ALLAINALS
JEZ

with arbitrary & > 1 and A',..., A* as in Proposition 2.7. It turns out that, for the estimates we
need in this work, convolutions involving k£ > 3 terms are in some cases very convenient. Note
that a decomposition formula as above with k£ > 2 convolutions implies a decomposition with k—1
convolutions. In this regard we note that even if in most cases a decomposition formula with two
convolutions suffices (to define Triebel-Lizorkin spaces and to prove several of their properties),
the proof of Theorem 1.3 relies on decomposition formulas with three convolutions (this will be
used, for example to prove the Bernstein type inequalities (3.3)).

2.3 Definition of function spaces on stratified homogeneous groups

Let s € R, p,q € (1,00) and fix m > |s| and some Schwartz families A', A* whose moments up to
order m' are zero (see Proposition 2.7 and the Remarks after) and such that we have the following
decomposition formula with two convolutions:

=Y AAf

JEZ

11



for any Schwartz function f. .
We define the spaces F;? and Bj? as being the spaces of tempered distributions f on R?
whose (semi)norms, respectively defined as:

1/q
fler = <228”\A§f|q> |

JEZ .

/]

1/q
. sznA;fuzp) |

jez

are finite.
We notice that at first sight these definitions seem to depend on the families A',A%. We will
show however (Proposition 2.10), that the definition of F*P (and of Bj*) does not depend on A,

A?. We will also show (Proposition 2.14) that, as expected, the space FJP with n a nonnegative
integer, is the same as the more ”classical” Sobolev space N L™P.

Independence of the definition. We will need the following simple lemma:

Lemma 2.9 Consider a sequence (fi),cq of Schwartz functions such that all but a finite number
of them are zero. Consider also an s € R, an integer m > |s| and two finite Schwartz families A
and © for which all the moments up to the order m' are zero. Then, for 1 < p,q < 0o, we have:

a\ 1/4q 1/q
<Z 2 1A YO, f ) < (Z 25k | fk|‘I> . (2.14)
k J Ip k Ip

Proof. From the assumptions on © and A, and Proposition 2.4, we know there are some Schwartz
families ¢ and ¢ such that © = V" - ¢ and A = (Vf)m - . With compact notation,

0; % A= (0% Apj), = (Vi' - o x Agy), = 27 <¢* ((Vf)mA)k—) E

J
hence,

0, * Ay = 2" g« (V)™ A) (2.15)

L
In a similar way, we get

0 x Ay =2"07H ((V,)™ ©), * . (2.16)
Note that, if g, ¢ and v are Schwartz and j, k are two integers, then

9% & x| S M(g*¢;) S MMy,
where the implicit multiplicative constants only depend on ¢ and . Using this observation and
(2.15), (2.16), we can write
MO, £ S 27 MM .

Choosing 8 € (0,1) such that fm > |s|, and using Holder’s inequality, we can write:
q
IERD MWD e
k J k J
q
= Z 9skq (Z 2—(1—6)m|k—j|2—6m|k—j|Mij)
- ,

J

Z 9skq Z 9—aBm|k—j| MM, |7 = Z (Z stqz—qﬁmk—j> (Mij)q :
k j k

J

q

N

12



where we had used, in the third line, the fact that

/

qa/q
(Z 2—q’(1—ﬁ)mk—j) < o0,
J
We have now, for all j € Z,

Z 23kq2—qﬁm\k—j\ _ Z ot Z = Z 28qj2(s—5m)qk + Z 25qj2(s+,3m)qk ~ 25jq
k

k>j k<j k>0 k<0

and, as a consequence of the above inequality,

q\ 1/aq
(Z 2% |3 " A0, f; ) S (Z 294 <Mij>Q>
k J J

Applying twice the Fefferman-Stein inequality we get (2.14). OJ

1/q

Now we can see that the above lemma implies the independence of the definition of the spaces
of Triebel-Lizorkin type with respect to the choice of A', A% (The following statement is similar
to Theorem 7 in [10].)

Proposition 2.10 Given the parameters s € R, p,q € (1,00), the space Fqs’p does not depend on
the auxiliary functions A', A2.

Proof. Indeed, let s € R, p,q € (1,00), and my, my > |s|. Consider, as in the definition of
the Triebel-Lizorkin spaces, two couples of functions A!, A? and ©!, ©2 corresponding to m;, ms
respectively. We can construct, using the first and the second couples of functions, the spaces

<F;’p)A and (F;’p>® respectively. Using Proposition 2.7 and Lemma 2.9 for A = A!, © = 62

and f; = @} f for a Schwartz function f, we get, after a limiting argument that:

a\ 1/ 1/q
) s|(zlen) | =i,

Lp k p

SACH

171y, = H (Z 2t

Note that in a similar way we can obtain the converse inequality. Hence, by density, we have
that (F qs’p) = (F qs’p> with equivalent norms. U
A e

Remarks. (1) The same type of independence can be proved, in a very similar way, for the Besov
spaces ByP. In this case the analogue of Lemma 2.9 is

Lemma 2.11 Consider a sequence (fi),cq of Schwartz functions such that all but a finite number
of them are zero. Consider also an s € R, an integer m > |s| and two finite Schwartz families A
and © for which all the moments up to the order m’ are zero. Then, for 1 < p,q < oo, we have:

q \

Z 25kq

k

1/q
S (Z gk ||fk||ip) .

k

Ak Z(%'fj
j

Lr

13



Note that here we allow the values p = 0o, ¢ = co. This is due to the fact that the Fefferman-
Stein inequality is no longer needed.

(2) Lemma 2.9 can also be used to prove real and complex interpolation results for the Triebel-
Lizorkin spaces with the same method of retract as for the classical spaces. In this case, the
extension and retract operators £ : P — LP(I7) and R : LP(I?) — F;? are defined by Ef :=
(Mef ez and R (fi)peg = 2ojez Ajfj. Lemma 2.9 is used to prove that R is well-defined and
bounded, while these properties are obvious for F. Similarly for Besov spaces, relying on Lemma
2.11.

Inspecting the above proof of Proposition 2.10, we can see immediately that, by a very similar
reasoning, we get the following:

Corollary 2.12 Consider some parameters 1 < p,q < oo, s € R. Also consider an integer
m > |s| and a Schwartz family A such that all its moments of order up to m' are zero. Then, for

any Schwartz function f, we have:
. 1/q
Ae| ) 1

P

25kq

8,0 .
Fq

The lifting property. Let us now see how Corollary 2.12 implies the lifting property for the
spaces F;7 (the following statement is similar to Corollary 21 in [10]).

Proposition 2.13 For any Schwartz function f, we have

IVofll gz ~ 1]

~s+1,p .
Fq

Proof. Consider some Schwartz functions A}, AJQ- for which all the moments of order up to m’
are zero (s € R and the integer m > |s| being fixed) and such that

f=)Y MAf
JEZ

for any Schwartz function f. Combining the definition of the Triebel-Lizorkin spaces, Proposition
2.5 and Corollary 2.12, we have

1/q
IVofllzr ~ (Z 290 |(V, ) A}}q Z 207 | £ 5 (VEAL)] )
JEZ JjEZ e
— <Z 2(s+1 qj Vé’%Al) > (Z 2 (s+1)qj Alf‘ )
JEZ Ip JEZ Iy

< g

where Al = VEAL

14



For the opposite inequality, using Proposition 2.4 and the independence of the definition

(Proposition 2.10), we can assume that A' = V}'¢ where ¢ = (VbR)mlqb for some Schwartz
function ¢, and then we have:

1/q g
. ' ,
[ fllggers ~ (Z 26+ | f A%V) = (Z 26043 | 4 (VFig). )
Jj€Z e JjeZ L
1/q 1/q
N(Seiremar) | - |(Sevmeear)
JEZ Ip JEZ .
1/q
) (Z 2016 (V] W) < IV fllgsr
JEZ .
Hence, for all Schwartz functions f we have ||V f| fror ™ | £] fraes B

The identification F}"” = NL™P. The following statement is a generalisation of Proposition
5.7 in [13].

Proposition 2.14 Fiz an m € N* and consider Schwartz families A*, A? corresponding to m as
in Proposition 2.7. Then, for any Schwartz function f we have

1/2
(Z 22ni \A}f|2> ~ NVl s

JEZ .

for allm € N withn < m—1and 1 < p < oco. In other words, we have FQ"’p = NL" with
equivalent norms.

Proof. We follow the lines of Proposition 5.7 in [13], which proves a similar statement in the case

n = 1. The estimate " <" easily follows by writing A! = (VbR) mH ¢ for a Schwartz family ¢ and
then applying Proposition 5.4 in [13], whose statement is reproduced below in a simplified form
(see also [12], Chapter 13, section 5.3):

Lemma 2.15 If D is a Schwartz function such that fG Ddx = 0, then for a fired 1 < p < oo and
any Schwartz function f we have:

1/2
(ZIDjf|2> SN -
JEZ v

Using this we immediately obtain:

1/2
<Z \2njA;f|2> = (Z ‘V’gf* (v{f.gp)j

JEZ I JEZ

) 1/2
) SVl -

p

15



For the reverse estimate we need to observe that, according to the proof of Proposition 5.5 in
[13], whenever we have a decomposition of the form f =3, f * A; x ©; with A and © Schwartz
and having zero integral, we get for any Schwartz function f that

1/2
1fllzr S (Z IAjf\2> : (2.17)

JEZ .

Before going further, we sketch, for the convenience of the reader the standard duality argu-
ment to prove (2.17). For all Schwartz functions g write, using the above Lemma 2.15,

1/2 1/2
(f.9) = Z(G-A'f 9y =2 (A;f.659) < /G (me?) (Z)@;gﬁ) de

J J
/2 1/2 1/2
. 12
< Z\A fI (Z}@jgl> N (Z!Ajf\2> gl o -(2.18)
JEZ p J€EZ Ly JeZ r

We obtain (2.17) by taking, in (2.18), the supremum over g such that ||g||,,» < 1.

Using (2.17) with A = A' and © = A2, replacing f by V} f and using (2.10) together with

Corollary 2.12; we obtain:
1/2 1/2
wi < | (Smerenr) | = |(Sie o)
JEZ

JEZ Iy Ip

o\ 172 O\
- (Zlrremraf) |- |(Sla)
jEZ jeZ

Lpr r
1/2
; 2
S Nfllpge ~ (Z |27 A} /| ) 7
jEZ .
where Al = (VbR)n A'. This proves the proposition. O

3 Estimates of the auxiliary functions

3.1 Remark concerning the approximations

Following [6], our purpose is to prove the approximation property stated in Theorem 1.3. In the
remaining part of the paper we will use decompositions formulas with three convolutions, as in
Proposition 2.7.

It suffices to prove this approximation property for functions of a special form:

fro=Y_ NN =" Af,

l71<J lil<J

where Aj, A%, A% and m > « are fixed. (This particular form of the functions f; will ensure, as
we will see, that some expressions involving infinite sums and products are well-defined.) Indeed,

16



suppose that f is a fixed Schwartz function and for each positive integer J we can find an F);
satisfying the estimates:

k
D NXfr = Ellgee < Sl fallgor s
=1

[E N oo + [1Esl[ e < Cs [ f5ll g -

Note that Lemma 2.9 immediately implies that |[|f — f[|ze» — 0 when J — co. By the se-

quential Banach-Alaoglu theorem, we can choose a subsequence (Ji),~, such that F;, converges
weakly star in L™ to a function F € L>. Together with the last estimate and the above obser-
vation, this easily implies that F' € an’p as follows. For any positive integer N and any compact
set K C G we have

Z 9aqj ]A}ij\q < Cs ||ka||F;‘*P So I fllggr s

l7I<N

1/q

LP(K)

where by <s we indicate that the implicit multiplicative constany may depend on 4.
Since, [[Fy,llpee So [[f|por we get ||A]1-FJkHLOO Ss || fllgor for all j. We also can see that

AjFy (z) — AjF(z) for every x € G. Hence, the above inequality and the dominated convergence

theorem imply that
1/q

> 2% AR So £l gor
lj|<N
Lr(K)

and from this we get the claim. Also we obtain that
[EN oo + 1N o o (1] e

and, in a similar way,

k
SIS = )l < 81 gen

=1

From now, we consider J is a fixed positive integer.

3.2 Definitions and properties of some auxiliary functions

For a real number o and z € G we will write z, := (27721, ..., 272k, Tx11, .., £q). Consider the
functions S, F : G — R defined by:

S(a) = min(L, 252 1) and B(x) = exp (~(1+ [, [2)2").
We will also consider the functions
Si(x) == 2198(27x), Ej(z) :=219E(2x)

and set S;f = f *.S;. With this notation we introduce the new functions (where A' was defined
in (2.13)):

1/p
wi(z) == (/Rd [(S;|ASfF)) @7 r)E(r - (2jx))]pdr) ,if |j] < J and 0 otherwise.

17



Consider a smooth function ¢ : [0,00) — [0, 1] such that ( =1 on [0,1/2] and ¢ = 0 on [1, c0).
Following [13], we define the functions (; as follows:

2ajw7' : a
C. = { C( : > , if Zk<j,k5j(modR) 2°%wy, # 0,
;e

k< k=j(mod R) 2°FWi
0, otherwise,

where R is a large positive integer that will be chosen later.
Using the (,’s, we decompose a finite sum f; = ZUKJ A;f as follows:

Fr=> 0= (1=C)Af+ ZCjAjfZZhj+Zgj:h+g

l71<J li|<J l71<J J
where
h = Zhj’ with h; := (1 - ¢;)A;f if |j| < J and 0 otherwise,
J
g = Zgj, with g; := (;A;f if |j| < J and 0 otherwise.
J
Then we put

he=> h [[A=Up), with U;:=(1-¢w;,
J

3>
R—-1
g = Z Z gj H (1 - Gj/), with G] = Z 27at(,dj,t.
c=0 j=c(mod R) j'>j t>0

j'=c(mod R) t=0(mod R)

The heart of the proof of Theorem 1.3 consists in establishing the fact that F; := h + § is a
”good approximation” of f; = h + g.

Pointwise and integral estimates on w;. Here we collect several useful estimates on w; in
which we will see an instance of the role played by the critical condition on the exponents: ap = Q.

In what follows we will need the following elementary approximation property proved in [13]
(Proposition 3.6):

Proposition 3.1 For any o € R and x,0 € G we have:
(@ 0),llg—llzollg| < Clole  and [[[(0-2),llg — llzslle] < Cll6ll -
In particular

llz-0llg = llzllal < Clfllg and [[|0-zllg —[lzllel < Clfllg-

Proposition 3.2 Let 0 > 0. With the above notation we have:

(1) w; S E;S; }Ajlf| <299 MM (Ajlf) forall j € Z;
(i) |5y f| S oy for all ] € Z;

(i) 5l o < 25 | f o for all j € Z;

(i) 1Ujll oo S 25 (| fllow for all j € Z;

18



() [1229l]| S 297 11l g

Proof. It is not hard to see that there exist measurable pairwise disjoint sets My, Ms, ... covering
G, such that we have B; C M; C 3C - B; for some balls B; of radius 1/3 in G, where 3C' - B;
is the ball of the same center as B; and of radius 3C. (Here C' > 1 is a constant such that
p(x,y) < C(p(z,2)+p(2,y)) for all z,y,2 € G.) Indeed, let (x,),-,; be a C-net in G. That
is, the balls (B (z,,C)),~, cover G, and p(z;,x;) > C for all i # j. We note that, if i # j,
then the balls B (x;,1/3) and B (z;,1/3) are disjoint. Now we put B; := B (z;,1/3) and M; :=
B (x1,C)\ (Ujz1B;), and My, := (B (2, C) \ (My U ...U My_1)) \ (UjzB;) for all & > 2.

We observe that Proposition 3.1 implies that, for each z,6 € G with ||f|, < 1 we have
E(x-0)~ E(@-x)~ E(z) and S(xz-0) ~ S(0-z) ~ S(z). It follows, that

5,184 0) = 2 [ AL WS () - () - (26)) dy
~ 29 [ Al )S () (22) dy
Rd

= S;|Ajf[(2)

for all z € G, provided |6, < 277.

If r; is the center of B;, then for all r in 2B;, and hence for all r in M;, we can write r =
1; - @ for some 6 depending on r with ||6]|, < 2. Now, considering the above estimates and the
decomposition G = |J, M; we can write, since |M;| ~ 1,

wi(w) = (Z / (S, |ALf] (2797) (2%)))19%)1/,3
. <Z (S|4 F1 @ r B <2fx)>)p> W
] ZS A5 @) B (22)
N Z/ S| A3 @) EGTE - (2w))dr
- /G S5 |ALF| @) Bt - (22)dr = E;S; |AL] (2). (3.1)

Next we note that F(z) < E(z) := exp(— ||2~72||;) and therefore (using Proposition 2.1)

E;S;|AJf| < E;S; |Ajf| S EB;M AT f| S

Ej|l  MMI[Af| S 297 MM |ALf]. (3.2)

We obtain (i), from (3.1) and (3.2).

Now we prove (ii). By the change of variables s™' = r~! - (2/x) we can write, as before,

00 1/p
wj(x) = (Z /M (S;|ALf] (z- (2775)) E(sl))pds>

> </Ml (S ‘A;f| (z-(2775)) E(sl))pds) " ~ S ‘A;f| (x)
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To conclude we observe that, for all j € Z,

A ] < [ASNSALF| = [(ASALS) # A2 < [ASALF| = |A3

- 7770770

= A3+ A5 S 1Af] + 85 = 85| Aj ]

where we used the fact that, since A® is Schwartz, we have |A%| < S and hence [A?| < S;.
In order to prove (iii) we observe that, since ap = @,

125l e S A5 * A5 e S IAGA L (1851

2% || A5 £l S 1N (3-3)
which together with (i), the fact that ||E}||,, < 2%7 and the Young inequality gives the estimate.
Item (iii) and the definition of U; immediately imply (iv).

In order to prove (v), we observe that

S
S

lizoasslll = [l2asaisll| < |l2vmass,|,
S 12938l = sl (3.4
which, again, together with (i) and the Fefferman-Stein inequality, gives the estimate. O

Remark. Items (i), (ii) and (v) do not use the fact that & = @/p. In contrast, (iii) and (iv)
require o = Q/p.

Proposition 3.3 We have Hsupjez 2ajwj||Lp < 027 ||fHanp

Proof. We follow the proof in [6] of Proposition 4.7. We have

p
sup 2%w;(z)
jez

—wp [ 5 | e @)

< / EP(r~1) (sup 205 |ALf| (- (2_jr))) dr
R4 Jj€z
/R B |28 | AL G (2| dr

IN

We note that, according to (3.4),

298,

S HfHan,p, and hence, using Proposition A1l
p

(see the Appendix) we get

e
sup 2% w;
JEZ

< [ Een|lzs s @ ol o

s ([ zemee s o) 11

By a change of variables, we can write

/ Ep(r_l) In?(2 4+ ||r||o)dr = 21“’/
Rd

R

Lp

exp ( p(1+ ||y||2£')1/2£'> In”(2 + ||y—0||G)dy < Up2kaa
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and we get the claim. O

To make the notation more compact we introduce the functions I,,(x) = 14, (x), where

Ay =y € RY2°Mw,, (y) > Z 2%ue(y) ¢, meZ.

k<m, k=m(mod R)

DN | —

With this we have:
Proposition 3.4 HHQamwmImHl?n”Lp < Ro2¥ 1S | o

Proof. Fix a j € {0,1,..., R — 1}. Since w,, = 0 for all but a finite number of m € Z, we can
choose for each = € G, the largest integer m, = j(mod R) with the property that z € A,,,, i.e
20, (1) > 3 D h<ma, k=ma (mod R) 2°%,.(z). Using this, we can write

> 2w (@)In(x) < 27w, () + > 2°F e (2)

m=j(mod R) k<mg, k=j(mod R)
< 3-29w,, () < 3sup 29w, (7)
and hence,
R-1
||||2amwmIm||lgn o < Z 2" W I < Z Z 2" W L < 3R |[sup 2°"w.,
m Lr Jj=0 ||m=j(mod R) I m Lr
By using Proposition 3.3, we get the claim. U

Estimates involving derivatives. Consider a smooth function v on G and A > 0. If a :=
(1,...1,2,...,2,...4,....0) is the vector of the homogeneities of G defined in (2.1) and v is a multi-
index, then we easily see that

VY (u(Az)) = A0 (V7u) (Az)
(where x — Az is the group dilation). If moreover u is homogeneous of degree 1, we have
A (Vi) (2) = Vi w(z)) = Vi (u(rx) = A7 (V) (Ax)

and hence
(Viu) (Ax) = AN PH(V]u) (z), for all 2 € G and A > 0.

Then, for all x # 0, writing £ = Av where A = ||z||5, v = 2/ ||z| 5, we get by the above
formula that
(Viu) (x) = NP (V3w) (v),

which implies in particular that if ||z||, > 1 and |y| > 1 then

1—
Viu(x)| <, lzllg ™ S, 1 (3.5)

Let us also note that if £ : R — R and v : G — R are some smooth functions, then
(t(w(x) =t (v(x)) Xv(x) forall 1 <j<d.
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Iterating this, we get

Vy (¢ (v (2)))] S > ) @) Y [TV e @)™, (3.6)

ml,mQ,...,ngO 71:-~~77n§’7 ]:1
mi1+2mo+...+nmyp=n |'Yk|:k

for all multi-indexes v € (Ndl)N with || = n.

These observations are the basis for proving the following proposition.

N
Proposition 3.5 For every 7/ € (Nk X {O}drk) and v € (Ndl)N with |y + Y| < oo (see
(2.5)), we have

T+ JlvloG—a)'l, .
’vb wj| Sy 27712 Wi

Proof. Replacing G with Rx G, and considering

24!

20! !
u(t,2) = [[(t, 2)lpye = (7 + llolle)>",

we get by the above observation (3.5) that when ¢ = 1, ‘Vz(l + [lz| 22| < 1 for all finite

v E (Ndl)N, v # 0 as above.
By (3.6) we obtain

Vi exp (—p(1+ 22| S exp (—p(1+ Jl2)2)2)
and as in [6], by differentiating the composition,
‘VZﬂ’Ep(T—l . (2133>)‘ < ihlgUu=l I gr(p=t. (ij))_

Consequently we have

¥y p
)Vb W

< Qj\v\g(j—a)lv’\w;’

’.’) P e get the estimate by using (3.6) again. O

and by writing w; = (w]

N
Proposition 3.6 For every ' € (Nk X {O}dl_k> and y € (Ndl)N with |y|+ 7| < 0o, we have

‘VZJW/C]" < 9illgi—a)l'| (3.7)

Proof. Since the proof of (3.7) follows very closely the similar estimate in [6], we only sketch the
argument.

We suppose ¢; # 0 and write ¢; = ((2%w;/v;), where v; = D k< jk=j(mod ) 2°%,.  From
Proposition 3.5 we get

‘Vzﬂlvj SJ 2j|7|2(j—0)h’\vj' (3.8)
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Since V;™ (v;/v;) = 0, the Leibniz rule gives us,

’ 1 I _
vV (U—) ‘ DY ‘VZH “o;
J

1
N
Ve (Uj)

B+
1BI<|vI+1']
_ r_ 1
< Z ‘VZ(]’Y B1)+(v B2)Uj ‘vfﬁ‘ﬁQ (_)‘ (39)
, Uj
B1<7,82<y

[B11+182|<[¥]+']

The inequality (3.9) used in conjunction with (3.8) leads by a straightforward induction on |y|+|v|,

to )
v (5)
Uj

Using this, Proposition 3.5 and the Faa di Bruno type formula (3.6) for the functions ¢ and
2%w; /v, we can conclude as in [6]. O

< gihlgt-aly| L

Uj

4 Estimates of the approximation function

4.1 Estimates of the L*° norm

In this subsection we are going to verify that the functions & and § are well-defined and, under a
smallness condition on || f|| for ((4.2) below), obey the L* estimates:

1] st gl s R (4.1)
In the remaining part of the paper we assume that f satisfies

1l <, (4.2)

where 7 is a sufficiently small number (only depending on ¢, R and §) that will be chosen later.
We also assume that R > 1/a.

In order to obtain the bounds (4.1), we will need the following observation. If (ay),.4 is a
sequence of finite support, then we have the identity (Lemma 3.2 in [6]):

> ap I @=ap)+ [ -0ap) =1 (4.3)

i>3 3<g’<y’ 3>

An immediate consequence of this equality is that, whenever a; € [0, 1], we must have, for all

Js
doap J] =g <1 (4.4)

i>3 3<3’<y’

The boundedness of h. First of all we easily see that h is well-defined (as a consequence of the
fact that only a finite number of functions h;, w; and U; are nonzero). Recalling the definition of
h; and using Proposition 3.2 (ii), we can write:

|hy| = (1 - Cg) A S (1 - Cj) w; = Uj.
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If f satisfies (4.2) with small 5 then, by Proposition 3.2 (iv), we get U; € [0,1] for all j € Z
and hence, by using (4.4) and the definition of h, we get the estimate:

< miTla-v) s ula-u) st

3'>7 3'>3

The boundedness of §. Let us see first that g is well-defined. We have that all but a finite
number of the functions g; are identically zero, hence it remains to discuss the nature of the
products of the form

[[a-a6). (4.5)
3'>7
Following [6], we show that these products converge uniformly. Indeed, we have w; = 0 for all
j > J. For small n in (4.2), by Proposition 3.2 (iii), we have |w;| < 1 and thus we can write:

min (27°F,2720=7)
1—2-0R

0<G< Y 27%<
>0, t>j—J
t=0(mod R)

If j is large, then we have G; Sg 2-2U=J) which proves the uniform convergence of (4.5).

Now we estimate the L norm of g. When R > 1/«, from the above inequality we get
G; € [0,1] for all j. By the definition of (;, we see that (;(z) # 0 only if

2%w;(z) < Z 2w ().
k<j
k=j(mod R)

Hence,
19;(@)] S Gawi(e) S D 22 wy(z) = G,

k<j
k=j(mod R)

and by using (4.4) and the definition of § we obtain,

i<y Yl I 0-6sY Y 6 I a-Gosr

=c(mod R) §'>j ¢=0 j=c(mod R) 3>
j'=c(mod R) j'=c(mod R)

=
—

Il
=)

4.2 Estimating h — h

Our goal in this subsection is to prove the following estimates:

Proposition 4.1 Suppose «, p, ¢ and k are as in Theorem 1.3. Then we have

< R0_22—amin(1,oz)+% HfHF;"p + R0_22Umax(l—a,O)-&-(l-&-[a]-&-%)ka ||f||§?q‘"1’ :

(i) iHXxh—ﬁ)\

Fgmtr
dl ~ k. 1
i) Y- | Xt =0 .., S B2 NSl g + R (I g
i=1 a
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(Here, [a] stands for the integer part of «.)

Before starting the proof, we note that, writing:

Vi=> hy [ =0,

i<y <<y

and by using the definition of A together with the identity (4.3) (as in [13], p. 19), one obtains

h—h=> VU, (4.6)
J

In order to obtain Proposition 4.1, we first collect some estimates satisfied by U; and V.

N
Lemma 4.2 For every ' € <Nk X {0}d17k> and v € (Ndl)N with |y 4+ Y| < oo, we have

(i) ‘VZ”Um‘ < 2mhi2m=olly, T,,;
(i) |V3Unll e S 271257 || £]| g

Proof. Asin [6], this follows from Propositions 3.2, 3.5 and 3.6. g

Lemma 4.3 Forallm € Z, v € (Ndl)N with |y] < oo we have

V3 hunll oo S 27N (1 f o

Proof. This is a direct consequence of the definition of h,,, (3.7) and of the Bernstein type
inequality (3.3), since we have

14, 1l oo = [[ASATF|| e SNAT ] e S AN (4.7)

for all j. U

Lemma 4.4 Under the smallness assumption (4.2), we have

(i) [Vl S 1,
(ii) for all v € (N)™ with 5] < 00, [V} Vil pew S 271271 [| ] .

Proof. We just follow the proof in [6]. Item (i) follows directly from the construction and by
using (4.4). The arguments are very similar to the ones used to prove (4.1). This item is also
already proved in [13] (the inequality (6.6)).

We prove now item (ii). By induction we can write (see [6] or [13], Section 6)

ViV = > <v;;hm,— > cwvam,vg—ﬁvm,) I -0 (4.8)

m/'<m 0<p<y m/'<m!’’ <m

This can be seen as follows. Suppose (Ay,),,cz and (Bp,),,cz are two sequences of smooth
functions on G, such that for all integers m we have

Anw=> Bw [ (-Uw) (4.9)

m/<m m/<m/'<m
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(also we assume ”good” convergence properties for all the derivatives).
Then, if X is a left-invariant vector field from the Lie algebra of GG, we can write

XAm = Y (XByn) [] Q-Uw)

m/<m m/<m/' <m
=Y Bw > xU) ][] -Uw) [[ Q-Uw)
mm<’m m’<11//<m m/<m!'<v v<m!' <m
= Y (XBw) ] (-Uw)
m/'<m m/'<m’’ <m
Y (XU)D> Bw [ =Uw) [ Q-Uw)
Vé’m m7;n<’u m/'<m’’ <m v<m'’' <m
= Y (XBn) ] -Uwm=> XU A [] Q-Uw)
m/<m m'<m’’ <m Vzm v<m’' <m
= Z (XBm’) H (1 - Um”) - Z (XUm’) A H (1 - Um”)u
m/<m m/<m’’ <m m/<m m/<m’’ <m

and hence, we get

XAm =Y (XBw) = (XUw)Aw) [ 1= Un).
m/<m m/<m’’ <m
We observe that this equality is of the same form as (4.9); in the sense that, if we now define

Al = XA, and B} :=(XB,) - (XU,) A,

then

AL=>"B, [ -Uw).

m/<m m/<m’’ <m

Appliyng this iteratively, using the definition of V,,,, we get (4.8).

Now, by using Lemmas 4.3 and 4.2,

AP (nvzhm/HLw > | vivw| [ v v Lw) s
m/<m 0<y' <
o C T e LA R T
m’'<m 0<p<Ly L

and by induction on |y| we get the inequality in item (ii). (Recall that we work under the
smallness assumption (4.2).) O

We are now in position to complete the proof of Proposition 4.1.
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Proof of Proposition 4.1. We prove (i) in detail, following closely [6]. As in [6], for all
1 < k <k, we write

HXAh—Eﬂ = |[[[2evmAL X, (h — R)

Ha—1,p q
Fq ’ Im

) ——

Lr

jez X Lp
— 2(06—1)mA}nXk (Z ‘/:r—i-mUr—&-m)
reZ e

S ZHH2(0471)771‘/\71712(16(Uv7“+mv;"+m)ngI I

reZ

We split this last sum in three terms Y ., > o, D o<,<o-

(I) Estimate of ) _ . Following [6] and using (2.10), we have:

H “Q(Q_l)mAinXk(Ur-i-mV;-i-m) Hl?n I

H H2 o 1)m Ur-i-mv;"-i-m) * leA:nqu

12 Vi) + (KAL) L |

S 127 MU Vesm) g,
Sj H||2am Ur—&—m‘/?“—i-m)Hl,qn Ip ~ H||2amUr+m||lq ”
= 27| (4.10)
Recalling that U; = (1 — (;)w; and using Proposition 3.4 we get
127 Tl [ < 2" omBonlli [ S B2 N g
and summing up,
> S (27RO | fllgn) S Ro2OT | £ g
r>o0 r>o
(II) Estimate of 3, _,. If a := [a] then, as we have already seen, we can write A' = (V)" ¢

for a Schwartz family ¢, and then A} =277 (Vf)a ©,,- Hence, if X}, is a vector field in a "good”
direction, i.e. 1 < k <k, we have

m

H H2(a_1)mA}nXk (Um—f—rvm—l—r)

— H2(a_1)m2_man(Um+7‘Vm+r) % (vllfi)

m || [p 7n Lp

HZ(ail)m27ma [Vng(UererJrT)] * SOmH#n L

5 "2(afl)m2*maMVZ’Xk(Um+rvm+7') | 1o
5 H2(a—1)m2_m“VZXk(Um+rvm+7‘)Hl?n L
< et gt amve @, vl |

where we have used the Fefferman-Stein inequality in the third line.
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As in [6], using the Leibniz rule and Lemmas 4.2 and 4.4, we obtain
IViXi(UnVi)| S Vi (VEXe U + D | VoUs| [Ve V|
1=0

SJ 2ma2m—awm1m+ Z (2mlwmIm) (zm(a+1—l)2k(a+1—l)cr ||f||F;‘P>
=0

S gm(a+1) (270 + ok(atl)o HfHanp> WLy

Now we get, via Proposition 3.4,

N

H ||2(a_1)mAinXk(Um+er+T) Hl?n

5 2 (27 M s ) (127 Ll

A

ko —(a—1—a)r —0 a g
Ro2% | || pon 277170 (2 + okla+D) ||f||an,p)
and, summing up,

ot ke at1+1)o
> SR (27 (g + 2K )

r<0

(III) Estimate of .. . This is similar to the preceding estimate. Here, instead of taking a
to be the integer part of a, we consider a = 0. As above we conclude that

H ||2(a71)mA11nXk(Um+rvm+r) ngn

ko
< =z . —(a—1)r —o ko .
S RO2T | fllgpr 27 (277 42| g )

and by summing up,

—o+ ke o
-5 Cul0) R (277 | g + 205D 11

0<r<o

where C,, (o) ~1if a > 1, C, (0) ~ o if a =1 and C, (o) ~ 20797 if o < 1.

With this we have proved (i). The proof of (ii) follows the same lines as the one of (i). The
main difference is that since we are no longer restricted to the case of derivatives in ”good”
directions, we have to use, instead of Lemma 4.2 (i) applied with |7'| = 1 (as in (II) and implicitly
in (III) above), the weaker statement for the case || = 0. This will produce almost the same

ko
estimates, the difference being that the coefficient 277" % of | f|| for in the corresponding parts

(I), (II) becomes 2% . O

4.3 Estimating g — ¢

Our goal in this section is to prove the following counterpart of Proposition 4.1.

Proposition 4.5 Consider 1 < p,q < oo and o = Q/p. Also consider a, € (0,a] such that
o < af(l—a)ifa<landa, =1if a > 1. We have

V(g — 9)I < 297 R LR | £l oy 4 20T DQ0 R min(Laa) B | 1%,

sa—1,p
Fq ’
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We recall the definition of G:

Gj:= Z 2*°‘twj,t.

t>0
t=0(mod R)

The starting point is the identity (similar to (4.6))
9—§=)Y G;Hj,
J

where

Hj = Z gj' H (1-Gj)

J'<j 3'<5"<j
j7'=j(mod R) j""=j(mod R)

and gj = C]Ajf
Lemma 4.6 For allm € Z, v € (Ndl)N with || < oo,

ViGu S 2% X i |al ).
>0
t=0(mod R)
Proof. By the definition of GG, and Proposition 3.5,

ViGn| < ) 27| Viwao| S > 272hln Ty,

t>0 t>0
t=0(mod R) t=0(mod R)

Note now that, according to Proposition 3.2,
Wit S 29 MM |A),_ f],

whence the estimate.
Lemma 4.7 For allm € Z, v € (Ndl)N with |7y| < oo,
V39| S 20 M |AL S

Proof. By Proposition 3.6 and the Leibniz rule, recalling the definition of g,,, we have

Vigal S D 20|V (a3 (ALN)| S DD 20| (AL« VY AL

0<y'<y 0<y'<y
< Z 9lv=7"Imoly'Im p \Ainf\ <, 2him }Aqlnf‘
0<y/ <y

(since |y = +'| = [y| = [7'| when 0 <+ < 7).

U

Lemma 4.8 For allm € Z, v € (Ndl)Nwith |7| < o0, and under the smallness condition (4.2)

on f, we have
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(i) [Hnm| S 1,
(i) |V7H | S < 21Qs Zt>0 = OmodR)2M(m MM |A tf|

Proof. Item (i) follows directly from the construction. Also, it is proved in [13] (Section 11).
Item (ii) is obtained following the strategy in [6] (Lemma 6.5). The proof is similar to the one
of Lemma 4.4. It is done by induction on |y| and using Lemmas 4.6, 4.7. U

Proof of Proposition 4.5. As in the estimate of h — h, we can write

196 (9 = Dl gz < 3 [ 120 ALTUGrimHrsm)l, |

reZ

Recalling that
Gr-‘,—m = Z 2_atwr+m—ta
t>0
t=0(mod R)
we get

Vo0 =Dl < 32 2 2|2 Vet

t= O(modR) rez
BRI VEERD DEL D DL S
t>0 r>aqgt r<0 t>0 0<r<aant
t=0(mod R) tO(modR) t=0(mod R)

(I) Estimate of )’
(4.10)) :

Using the fact that |H,,||;« < 1 and Proposition 3.2 we have (as in

~J

r>aqt’

H 12647 ALV (@r gt Hom) |

. 5 9—a(r—t) H“Qamwm”lq HLP <27 a(r=t)9Qo ||f||Fé’p

Summing up we get:

)DEESD SIS IS DRFED pESTEt) P TIee
t>0 r>aat t>0 r>aat
t=0(mod R) t=0(mod R)

=X | 2 Wl

t>0 r>aqt
t=0(mod R)

S Y 270 fllges S 270 R2% | ]| e
£>0
t=0(mod R)
(IT) Estimate of ) _,. Let a > 0 be an integer. As in the estimate (II) for i — h we obtain

H ”2(a71)mA,171Vb(wr+m,tHr+m) qu S 27((1,1,(1)7,
m || o

e |

In order to estimate the right hand side we recall that the following estimates hold (see
Proposition 3.2, Proposition 3.5 and Lemma 4.8):

Wt S QQ"MM(A,ln_tf), |Véwm_t|§2(m_t)lwm_t;
Hal S 1, V| S 29 2200 [8),
t>

30



for all [ € N. By using now the Leibniz rule we get:

Ve (Wi Hy)| S 20Dy, (4.11)

a-‘rlQaZZQt’ a+1(thM(A1 tf)MM(A}n t/f)-

t'>0 1=0

Using (3.3), we estimate the double sum from the right hand side as follows:

ZZ < ”f”F,;‘p(Z ola+1)(m=t") pray A}n uf +22(t —t)ag(a+1)(m—t') MM(Al tf))

t'>0 1=0 o<t/ <t t'>t

S Wl Y 20 OMM (A}, f) .

o<t/ <t

Going back to (4.11), we obtain

‘Vg-H (wm,th)} 5 2(m7t)(a+1)wm7t + 2(a+1)Qo ”fHF;‘p Z 2(a+1)(m7t/)MM (A,ln t/f)

o<t'<t

and hence, using Proposition 3.2, the term H ||2(a*1*a>mvg“(wm_th)qu

is bounded by

Lr

2(a—1—a)t 2a(m—t)

2009 fll o B ) |2 MM (L) |,

Win—t Hz?n .

S 202wl [, + 2499 | fll g Baa(t) 2280 A |

< 9Qoo(a—1-a)t ||f||F;’P + 9(a+1)Qo ||f||F;7p B,w(t) ’
< 2909 | ) sy 4 20X B (1) | |

HQamA:”f”l?n .

where Bo(t) = Y g <, 277", Finally, we obtain

AN

HH2(a71)mAinvb(wr+mftHr+m)Hl% Lp 2 o a)T2Q02a = HfHFO‘p

+27 et () ||l rer . (412)

If we choose now a = [a] and we observe that in this case we have B, ,(t) < 1, we can write

—a oco—(a a oco—a 2
S YRR, o R e

t>0 r<0
t=0(mod R)

(ITI) Estimate of ), _, ,. Using the estimate (4.12) above with a = 0, we get

Z ” H2(&—1)mA71an(w7‘+m—tHr+m)||lgn Ip

< Aalt) (297207 | s + 297 Boalt) £l

0<r<aant
where
2-aaat if o < 1, 1 if @ <1,
An(t) S K ant ifa=1, and Boo(t) S q t ifa=1,
1 if > 1, 2=t if o > 1.

Now summing up we get three possible bounds:
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(1) if @ < 1, we have a, < - and

—« co—R(1—(1—a)aa co—R(a—(1—a)aa 2 .
S o < o@e RO | 9@ryRle(imedun) | f2,
t>0 0<r<ant
t=0(mod R)
(2) if @« = 1, we have a, = 1 and
—a o —R I —R 2 .
DO DL Ll 11 P S
t>0 0<r<aqt
t=0(mod R)
(3) if @ > 1, we have a, = 1 and
—« co—R co—R 2
S o 090 f s 2902 f
t>0 0<r<ant

t=0(mod R)

Now from the above estimates, since 0 < a, < «, we have

- —Rmin(1l,caa 20—Rmin(l,0aq 2
> 2t Y S 2%R2 (Late) || || paw + 297 R?2 (base) || e -
t>0 0<r<ant
t=0(mod R)

Toghether with (I) and (II), this gives Proposition 4.5. O

4.4 Proof of Theorem 1.3

Now we can estimate the Triebel-Lizorkin norm of f; — F; = (h — h) + (g — §). By Proposition
4.1 (i) and Proposition 4.5, we have

k k k
SoIXlfs = Flgge S D |[Xih=B)| .y, + D1 Xilg = Dlljeas
i=1 i=1 a4 i=1

S (Rotrrmn)=t | o@r Ry-minhon)®) | o + Dy |l

where Dp, is a large constant depending on R and o.
As in [6], for o € N, we set

R:RU::{ 100Q) ]

min(1, aa,)

If § > 0 is fixed, then it is easy to see that (using the fact that k/p < min(1, «)) for a o large
enough, we have

Ro22 o mnelt5 < 574 and  2@7 Ro-min(lase)R < 5/

Hence, for a large Ds we have

N S

k
> IXilfs = Fpll g <

=1

2
1l + Ds 12

and since we assumed that | f|ze» is small (see (4.2)), then we may take Ds || f||zor < /2
obtaining

k
D IXi(fs = )l oo < 8 fll o - (4.13)
=1
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In a similar way, using Proposition 4.1 (ii) and Proposition 4.5 we get

E]W’ —F)lperr S ) +2NX9 I -1
=1

S D;%,U Hf”F;"p + D;,%,U Hf”pé%p,

and hence, as above,

d1
S X = Enll e So 11l gor (4.14)
=1

provided that || f||zo» is small enough. From (4.14) and the lifting property (Proposition 2.13) of
the Triebel-Lizorkin norm, we get

dy
1Esll oo < N (Fs = Enllggr + sl or ~ D IXilf = F)l oo + 1 gor Ss 1fllggr - (4.15)
i=1
Now (4.13) and (4.15) together with the L* estimates (4.1) give Theorem 1.3 under the
smallness assumption on |[f||ze» (observing that the bounds proved do not depend on J and
taking J — oc). We complete the proof of Theorem 1.3 via the homogeneity of the norms.

Remarks. (1) Following the same lines, it is also possible (and easier) to prove a version of
Theorem 1.3 for the Besov spaces introduced in Subsection 2.3:

Theorem 4.9 Consider the parameters 1 < p < oo, 1 < ¢ < 00, a = Q/p and let k be the
largest positive integer with k < min(p,dy). Then, for every 6 > 0 there exists a constant Cs > 0
only depending on d, such that for every function f € Bg’p(G) there exists F' € L>®(G) N Bg"p(G)
satisfying the following estimates:

k
DX = Plgeine < S1flsr)
=1

1F | ooy + 1F Nl goriey < Cslifllgore

(2) To mention one application of Theorem 1.3, we state the following generalisation of Theo-
rem 1.8 in [13] concerning the Hodge systems on the (2n + 1)-dimensional Heisenberg group H".
Note that in this case d =2n + 1, d; = 2n and @) = 2n + 2.

Theorem 4.10 Consider 1 < p,q < oo, a := (2n+ 2) /p and let r be an integer with 1 < r <
min(p,n). For any (0, r)-form ¢ in qu“p (H"), there exists a (0,r)-form Y in L (H")ﬂFq“’p (H")
such that

9,Y =By

and

I ey + ¥ ey S 25 v

(See [13] for notation.)
This is proved by using Theorem 1.3 to approximate in an efficient way the coefficients of the
form ¢ and then to conclude by using an iteration argument. Since the proof is very similar to

the one given in [13] and its Euclidean analogue in [6] (Theorem 1.2), we omit it. Theorem 1.4
can be proved following the same lines.
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5 Appendix

We collect here some facts related to the Calderén-Zygmund theory on stratified homogeneous
groups for vector-valued functions. These results (Lemma A1l and Theorem Al) are well-known.
However, since it is hard to find the exact statements in the literature (see for example [2] for
a Euclidean version, or [7] for similar considerations on spaces of homogeneous type) hence, we
have chosen to present them here.

Consider a Banach space A. In what follows we deal with functions from the space L) :=
LP(G, A) where 1 < p < oo.

A first result is a Calderén-Zygmund decomposition of fuctions on G (see also Théoreme 2.2
in [7], Chapitre 3), obtained via the weak (1, 1) estimate for the maximal operator:

Lemma A1l. Consider a function f € LY and a number X > 0. Then there exist a countable
family of measurable sets (Qn)n21 which are pairwise disjoint and a decomposition f = g+ b =
g+ >, b, where g,b,b, € LY for all n > 1, and such that:

@) gl < A

(ii) supp b, C Q,, [by(x)dx =0 and 1ballry S A2l for all n;

(i) 320 |l S 5 1M,

Proof. We adapt the standard proof in the Euclidean case. Consider the open set ) :=
{x € G| M| f|l4(x) > A}. For each x € Q we consider a ball B, centered in x and such that
B, € Q, but 2- B, ¢ Q (here if ¢ > 0 and B is a ball in G centered in 5 of radius R, then ¢- B
is the ball in G of center x5 and of radius cRg). Notice that, by Proposition 2.1,

~ 1
1Bl < |0 < Sy

and hence, the balls B, have uniformly bounded radii. Using the Vitali covering lemma (which has
the same proof in G as in the Euclidean case), we can find a countable subfamilly of balls (By),,

of the familly (B,), g, which are pairwise disjoint and such that Q= Use Be € U1 C - B,
where C' > 2 is an absolute constant only depending on G.

We set
J#1

and inductively we define

O = ((QﬂO-Bk>\ U Qi>\<U3j>

1<i<k—1 j£k

for all k£ > 2. We see immediately that for all £ > 1 we have B, C Q, C C'- B, and :chis also give
us that [Q| ~ |By| ~ [C'- By|. By definition the sets (2}, are pairwise disjoint and Q = (J;>, -
We can define the functions:

f(z), if x ¢ Q
R
Q. I x e Qk
and by, := (f — fa,) 1o, for all £ > 1. Here, fq, = |Qk]71 ka fdx.

To prove (i), we see that if x € ), we have

lg@@)ll.a = lIfaulls < IFWllady S IfWlady < M|fll4 (z0) < A,

m Qk |C - Bi| Jo.g,
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where z( is a point in C - Bk\fl (Such a point exists since 2 - By, & Q and 2- B, Cc C-By.) If
x ¢ Q, by the Lebesgue differentiation theorem, which is a consequence of the weak estimate for
the operator M, we can write ||g(z)|| 4 < M || f]|4 (z) < A

To prove (ii) and (iii), observe that by the above inequality we have

1
el alle < 1) (W [ sl + ||fgk||A) — 200 ol < [, for all k,
k

and, using the weak estimate for M,

o o 5 1
DU S 1Bl = U B <19 S 3 Ml

k k=1 k=1

We can also see from these inequalities that
S bell, S A1 S 16 (5.1)

k k

This proves in particular that the series defining b is absolutely convergent in LY and b, g € LY
with [lglls + 18l < 11 0

Theorem Al. Suppose A; and Ay are two Banach spaces and K € Li, . (G\ {0} — £(A;, As))
has the following properties:

(i) there exists a constant ¢ > 0 such that fl\wllc>0|ly|\c |K(z) — K(y™'-z)||dx < 1 for all
y € Gy -

(i) the operator T'f = f* K is well-defined and bounded from LY to LY  for some q € (1,00).

Then, T : Lih — Li{;’o is well-defined and bounded. By real interpolation and duality we get
that T : LY — LY, is well-defined and bounded for any p € (1,00).

(Here £(A;, Ay) stands for the space of the bounded linear operators from A; to A,.)

Proof. We adapt again the proof in the Euclidean case. Using Lemma Al we can write, for
a given f € L'(A;) and A > 0, the decomposition at level \: f = g+ b. We next note that
[{INT fIla, > 27} < [{ITglla, > A+ [{IITB]l4, > A}|. The size of the set {[|Tg[|,, > A} can be
bounded using (ii) above and the Markov inequality:

{ITglla, > A < ATl |70 S A Mgl 7 = A7 gl ||

<
< X0l = A gl A1l -

To estimate the size of the set {||Tb||,, > A} we proceed as follows. Consider the sets € from
the proof of Lemma Al; for each such €2, we denote by yp, the center of the ball B, C €2 and
we set Qf := (C1 4+ C) - By D ) where C; > 0 is a large constant only depending on G and c.
We write now

IA

+

U {a: cea\Jail 178, > )\H
k k

S AWMy, +A [T, (@),

ka:

and it remains to estimate the last term. For this purpose, we note that if x € G\Q} and y €
O, then p(z,ys,) = |jys - 2|l > (C1+C) Ry, = C7H(C1+C) ply,ys,) = C7'C1 ||yz! vl
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(Rp, is the radius of Bj) and thanks to the quasinorm property of ||-||,, we find a constant
C > 0 depending on G only, such that ||y z|ls = ||y ys, -ygi : x”G > Oy Hygi ZBHG -

ly=™" - ys.llg > (C'C1Cy — 1) Hygkl -yHG, where we used the equality a™' = —a on G. If C

As a

is sufficiently large, we deduce ||y ™' x|, > clly™ - yp o = ¢ ‘(yil -x) (yg, - :17)71
consequence, “

ITb],, (x)dz < /
/G\umz : Zn: A\ Uy 9
> /

dx
Az

Ky z)ba(y)dy
Q"l

dx
Az

) (K(y™ - 2) — K(yg' - 2)) baly)dy

< K(y K(yg, - )|, dz | [16a(y)]4, dy
Z/ﬂ (/G\ng* || By’ Hop ) ’ |A1
< [ I, v S 6l
where we have used the condition (i) above and (5.1). O

Remark. We see from the proof that if ||THL?4 7 <1 then we have ||T||L;;‘ N < 1. Hence if
1 2 1 2
the quantity in (i) is bounded by a number 5 > 0 (instead of 1) and also ||T||LZ‘ ~1e_ <3, then
1 2
we have | T|;» ;» S0
A, ha,

Lemma A2. Suppose ¢ € Ll(G) and:
(i) fIIyH >R|g0 |dy<R for any R > 1;
(ii) Jqlo(a W)l dy S |zllg for all z € G with ||z < 1.

If for v € G we define kj(x) := p;(x-277r), where p;(x) = 29p(27x) for all j € Z, then, for
a constant ¢ > 0 only depending on G, we have

4 Sk - y) — k()] dy < (@ + ).

vlo>elella ez

Proof. We follow the proof in [6]. We decompose the sum under the integral as follows:

Skt oy k)= Y. o+ > Y L=THIT+II1

JEZ Vel o<t 1< ||z g <247l 2zl g=2+|rll

We now estimate each term. Using (ii), we can estimate the first term as follows

/|||>|| H h= / > Pp((227h) - (27y) 1) — e((2'y) )| dy

2J||xHG<1
s/ S el@a ) ) —ew|dy S S P allp $1
2J||xHG<1 2j||a:\|G§1

For the second term we have:
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IN

> /Ik )| dy

1< |zl g <2+I7ll

—2 Y [l snes .

1<27 o]l g<2+Irll ¢

/ 17
lylle=ellzla

To estimate the third term we use (i), which yelds

o< o / k(o) dy
/Hylc;>cx||c; j Z lyllgzerlizllq ’

2zl gz2+rll

DY / oy 1)l dy

>27
2zl 22+rl * 1Wle= el

AN

3 < 1<
HxHG 2+ Il

2|zl g=2+rll ¢

where the constant ¢; > 0 in the first line is obtained by using the quasinorm property of ||-||.
Summing up these estimates we get the claim. U

In what follows we will need to apply the above lemma to the function ¢ = S. It is easy to
verify that the function S(z) = min(1, ||a:||aQ_1) satisfies the conditions (i) and (ii) required by
Lemma A2. Indeed, by a change of variables, we can write for all R > 1,

/ S(y)| dy = R~ / Il dy ~ B,
lvllg=R lyllg>1

which proves that (i) is satisfied. To verify (ii), we recall that |||b-all; — ||la|ls] < C|b]|, for
all a,b € G (see Proposition 3.1) and note that if ||yl < 1 — C'z]|; < 1, then |z7" - y[|, <
lyllg + Cllzllg < 1. Also, if [[yllg > 1+ C'llz[|g, then [[#7" -yl > lylle — Cllzll; > 1. Hence,
if ||z]|, < 1, we can write

[Is6 o —selay = [ [SG" )~ 5] dy
G 1=Cllzlg=<|lyll<1+Clzll o

+ [ Stat+y) = S| dy
lyllg=1+Cllzll ¢

1 1
~ ||x||G+/ 1 1
Ile=14Clale | 2yl [lylEt

Q+1 1
o =yl

27" -y
~ Jalo+ | Wl
Ilez1+Clale | o=t - ylle™ ylle”

1

< allg + Nzl / L
lolo=1+Clalle YIS

dy

Proposition Al. Suppose p,q € (1,00). Then, for every sequence (fj)jez in LP(G,19(Z)) and
for every r € G we have

1385 @),

o o2 el 155l [,
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Proof. As we already saw, the function S satisfies the requirements of Lemma A2. Let k; as in
Lemma A2 with ¢ = 5. We see directly that, for any Schwartz function f, we have

- /Gf ()S;(y™" - x- (279r))dy = S, f (- (2777)).

Hence T'(f;)jez(x) == (fj)jez * K(x) = (f; * kj)jez(x) = (S;f(x - (2771)))jez, the operator
T being initially defined for a sequence of Schwartz functions (f;);cz. Considering the Banach
spaces Ay = Ay = [9(Z) we can see that the statement of the Proposition Al is equivalent to the
fact that the operator T": L, — L% is continuous, with its norm bounded by In(2+[|r(|;). This
can be obtained as follows. Consider a sequence a in the unit sphere of [%(Z). We have that:

1/d'
(K@) = Ky a)a) = 3 (ko) = kyly ™ 2)) 0y < (Z!kj<x>—kj<y—l-x>|q’)
< Y[k~ ko)

for all z,y € G. Hence ||K(z) — K(y~" - 2)|| < 3 ;cqlkj(x) — kj(y~" - 2)| and thanks to Lemma
A2 we get (using the same notation):

4” el HK(x)_K(?Jl'J;)HdCUS/l Z‘k x) 1-az)|da:,§ln(2+\|r“(;).

lell>elvlle ez

Also we can easily see that 7' : LY — L% is bounded and of norm 1. These two last
observations together with Theorem Al and the Remark after, give us the claim. U

Remark. Proposition Al is reminiscent of an inequality due to Bourgain (see for example [11]).

Acknowledgements

The author thanks Petru Mironescu and Emmanuel Russ for useful discussions and suggestions.
He was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR).

Part of this work was completed while the author was visiting the Institute of Mathematics
of the Romanian Academy. He thanks the Institute for its hospitality.

References

[1] Bahouri, H., Gallagher, 1., Paraproduit sur le groupe de Heisenberg et applications. Rev. Mat.
IberoAmericana 17, 69-105, 2001.

[2] Benedek, A., Calderén, A. P., Panzone, R., Convolution operators on Banach space valued
functions. Proc. Nat. Acad. Sci., 48(3):356-365, 1962.

38



[10]

[11]

[12]

[13]

Bourgain, J., Brezis, H., On the equation div Y = f and application to control of phases. J.
Amer. Math. Soc., 16(2):393-426, 2003.

Bourgain, J., Brezis, H., New estimates for eliptic equations and Hodge type systems. J. Eur.
Math. Soc., 9, no. 2, 277-315, 2007.

Bousquet, P., Mironescu, P., Russ, E., A limiting case for the divergence equation. Math. Z.,
274(1-2):427-460, 2013.

Bousquet, P., Russ, E., Wang, Y., Yung, P-L. Approximation in fractional Sobolev spaces
and Hodge systems. J. Funct. Anal. 276, no. 5, 1430-1478, 2019.

Coifman, R., Weiss, G., Analyse harmonique non commutative sur certains espaces ho-
mogenes, Lecture notes, 242, Springer Verlag., 1971.

Folland, G. B., Stein, E. M., Hardy Spaces on Homogeneous Groups, vol. 28 of Mathematical
Notes, Princeton University Press, Princeton, NJ, USA, 1982.

Furioli, G., Melzi, C., Veneruso, A., Littlewood-Paley decompositions and Besov spaces on
Lie groups of polynomial growth. Math. Nachr., 279(9-10):1028-1040, 2006.

Hu, G. Homogeneous Triebel-Lizorkin Spaces on Stratified Lie Groups. Journal of Function
Spaces and Applications, ID 475103, 2013.

Hytonen, T. P., Foundations of vector-valued singular integrals revisited-with random dyadic
cubes. Bulletin of the Polish Academy of Sciences Mathematics 60(3), 2011.

Stein, E.M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals, 695 pp. Princeton Mathematical Series 43, Princeton University Press (1993).

Wang, Y., Yung, P.-L., A subelliptic Bourgain-Brezis inequality. J. Eur. Math. Soc. (JEMS),
16(4):649-693, 2014.

39



