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An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived.
Following Kolmogorov’s original ideas in hydrodynamical turbulence, but applied to the Föppl–von Kármán
equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4

5 -
Kolmogorov’s law is derived. A third-order structure function involving increments of the amplitude, velocity,
and the Airy stress function of a plate, is proven to be equal to −ε �, where � is a length scale in the inertial
range at which the increments are evaluated and ε the energy dissipation rate. Numerical data confirm this law. In
addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat
in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong
wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop
further analogies with hydrodynamical turbulence.
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Hydrodynamic turbulence (HDT) is considered as a proto-
type of systems far from equilibrium. Over the last century,
the understanding of its statistical properties has challenged
physicists and mathematicians. Today, few exact results are
available. The main difficulty is the strong nonlinearity and the
lack of a small parameter. The phenomenological description
of turbulence is based on the idea proposed by Richardson,
in which energy is transferred along scales at a constant flux
[1]. This process is seen as a cascade of eddies that starts at
large scales, where energy is injected, and ends at small scales,
where it is dissipated. The seminal works of Kolmogorov are
the most general results we have nowadays. In particular, its
celebrated 4

5 law [2], which gives an explicit expression for
the third-order moment of the velocity increments, provides a
benchmark for any theoretical description of turbulence. This
exact result has been generalized to other transportlike systems
such as a passive scalar transported by an incompressible
turbulent flow [3], magnetohydrodynamic turbulence [4], and
rotating turbulence [5], among others. Exact results are rare in
turbulence, which makes Kolmogorov 4

5 -law one of the most
important predictions in HDT.

During the 1960s an important theoretical breakthrough
occurred with the development of the theory of (weak) wave
turbulence [6]. Due to nonlinear interactions, waves transfer
energy along scales like in a cascade process. In analogy with
HDT, this out-of-equilibrium phenomenon was named wave
turbulence (WT). In contrast with HDT, for weak WT there
exists a small parameter which allows for a natural perturbation
expansion [7–9]. The statistical properties of weakly nonlinear
wave systems have been thus proven to evolve through a
kinetic equation for the second-order moments of the wave
amplitudes [10]. Many different systems such as waves in
plasma [11–14], spin waves in solids [15,16], surface waves
in fluids [7,8,10,17,18], and nonlinear optics [19,20] among
others, have been shown to follow similar kinetic equations
in the weakly nonlinear regime. Moreover, Zakharov has

shown that stationary, out-of-equilibrium power-law solutions
naturally emerge from the kinetic equation [11]. Such solutions
are related to the flux of conserved quantities, similarly to
Kolmogorov prediction for the kinetic energy spectrum in
HDT. In the last decade the interest in WT has been boosted
by the development of new experimental settings [21–29] and
new numerical simulations [30–33] that have been able to test
WT predictions. Particularly fruitful has been the development
of WT for thin elastic plates [30]. From both sides, numerical
and experimental, thin elastic plates have shown to be one
of the ideal settings to address the fundamental issues of the
theory of WT and its breakdown [22–24,33–39] (for a review,
see [40,41]).

Until recently, HDT has been considered a rather differ-
ent problem to that of WT. However, in recent years the
observation of an intermittent behavior in WT experiments
on gravity-capillary waves [26] and in simulations of elastic
plates [42], has suggested that a closer connection with HDT
could exist when the nonlinearity of waves is strong enough
[43]. Unfortunately, results are very scarce in this regime
[44,45]. What are the concepts and theoretical tools that can
be borrowed from HDT to be applied in WT, or vice versa,
remains an open question.

In this Rapid Communication, we provide a bridge be-
tween strong and weak WT in elastic plates deriving an
exact result concerning the energy transfers. We derive the
corresponding Kármán-Howarth-Monin relation and an exact
result for a third-order structure function that is equivalent
to the 4

5 -Kolmogorov’s law for HDT. We call this result, as
it will be naturally motivated later, the 1-law of thin elastic
plates. Remarkably, unlike other systems where a Kármán-
Howarth-Monin relation has been derived, thin elastic plates
dynamics is not given by a transport equation. We then provide
numerical data corroborating the 1-law of thin elastic plates.
The results presented in this Rapid Communication are valid
independently of the strength of the nonlinear interaction of
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waves, and reduce one step further the gap between HDT and
elastic WT phenomena.

To model the vibration of an elastic plate, we use the
dynamical version of the Föppl–von Kármán (FvK) equations
for the vertical amplitude of the deformation ζ (x,y,t) and the
Airy stress function χ (x,y,t):

ρ
∂2ζ

∂t2
= − l2E

4
�2ζ + {ζ,χ} + F − ν(−�)α/2 ∂ζ

∂t
, (1)

�2χ = −E

2
{ζ,ζ }, (2)

where ł = h√
3(1−σ 2)

, with h the thickness of the elastic sheet

and σ the Poisson ratio. The material has a mass density ρ,
a Young modulus E, and a damping coefficient ν. � is the
usual Laplacian and the bracket {·,·} is defined by {f,h} ≡
fxxhyy + fyyhxx − 2fxyhxy . A fundamental property to derive
the 1-law, as we will see below, is that the bracket can be written
as a total divergence

{f,h} = −∇ · J [f,h] = −∇ · J [h,f ], (3)

where

J [f (x,y),h(x,y)] =
(

fyhyx − fxhyy

fxhxy − fyhxx

)
. (4)

The last two terms in (1) are the external forcing F and the
small-scale (α > 0) dissipation, respectively.

Equation (2) for the Airy stress function χ (x,y,t) may be
seen as the compatibility equation for the in-plane stress tensor
which follows the dynamics. When F and ν vanish, the FvK
equations are conservative and derive from the Hamiltonian

H = h

∫
ρ

2
ζ̇ 2 + l2E

8
(�ζ )2 − 1

2E
(�χ )2 − 1

2
χ{ζ,ζ }d r.

(5)

Integrating by parts the last term in (5) and using (2), the
Hamiltonian can be rewritten as H = h

∫
H(r)d r where the

energy density H(r) is defined as

H(r) = ρ

2
ζ̇ 2 + l2E

8
(�ζ )2 + 1

2E
(�χ )2. (6)

The first term in (6) corresponds to the kinetic energy, whereas
the other two have a purely geometric origin. The middle term
is the bending energy which is related to mean curvature and the
last one is the nonlinear stretching coming from the Gaussian
curvature.

We consider in the following an elastic plate in a turbulent
state driven by the external forcing at large scales and energy
dissipated at small scales by some damping mechanisms [36].

We turn now to the derivation of the Kármán-Howarth-
Monin relation for statistically homogeneous elastic plates. As
usual [1], we shall introduce the correlation functions

Ekin(�) = ρ

2
〈ζ̇ (r)ζ̇ (r ′)〉, (7)

Eben(�) = l2E

8
〈�rζ (r)�r ′ζ (r ′)〉, (8)

Estret(�) = 1

2E
〈�rχ (r)�r ′χ (r ′)〉, (9)

where �r represent the Laplacian with respect to r and � =
r ′ − r . The brackets 〈·〉 stand for ensemble average. Statistical
homogeneity guarantees that two-point correlation functions
depend only on the distance �. Notice that taking the limit
� → 0 the correlation functions (7), (8), and (9) correspond to
the mean kinetic, bending, and stretching energy, respectively,
defined in (6).

To establish a relation between the energy flux and the
statistical properties of the plate we need to take the time
derivatives of (7), (8), and (9). The simplest term is obtained
from (8) after a direct calculation:

Ėben(�) = l2E

8

d

dt

(
�2

� 〈ζ ζ ′〉), (10)

where ζ ′ = ζ (r ′) and ζ = ζ (r). To derive (10) we have used
the property that for statistically homogeneous systems, an
arbitrary function g(r,r ′) satisfies the following relation:

〈∇r ′g(r,r ′)〉 = −〈∇rg(r,r ′)〉 = ∇�〈g(r,r ′)〉. (11)

To calculate the time derivative of (7) we make use of the
equations of motions (1). A straightforward calculation using
the definition (3) leads to

Ėkin(�) = 1
2∇� · (〈J [χ,ζ ]ζ̇

′〉 − 〈J [χ ′,ζ ′]ζ̇ 〉) − Ėben(�)

+ 1
2 〈ζ̇F ′ + ζ̇ ′F〉 − ν(−��)α/2〈ζ̇ ζ̇ ′〉. (12)

The flux of stretching energy (9) requires some algebra. Using
Eq. (2) and the identity 〈{f,g}h〉 = 〈{h,f }g〉 it gives

Ėstret(�) = 1

2E

(〈
χ

d

dt
�2χ ′

〉
+

〈
χ ′ d

dt
�2χ

〉)

= −1

2
(〈χ{ζ ′,ζ̇ ′}〉 + 〈χ ′{ζ,ζ̇ }〉)

= 1

2
∇� · (〈J [χ ′,ζ ]ζ̇ 〉 − 〈J [χ,ζ ′].ζ̇

′〉). (13)

The next step to obtain a Kármán-Howarth-Monin relation, is
to introduce the increment of a field. For an arbitrary function
g(r) its increment is defined as δg = g(r ′) − g(r). We shall
notice the following identity:

〈J [δχ,δζ ]δζ̇ 〉 = 〈J [χ,ζ ]ζ̇
′〉 − 〈J [χ ′,ζ ′]ζ̇ 〉 + 〈J [χ ′,ζ ]ζ̇ 〉

− 〈J [χ,ζ ′]ζ̇
′〉 + 〈J [χ,ζ ′]ζ̇ 〉 − 〈J [χ ′,ζ ]ζ̇

′〉. (14)

One can easily show that the divergence of the last two
terms in the latter expression vanish identically. Therefore,
collecting the expression obtained in (10), (12), (13) and using
(14), we finally find the Kármán-Howarth-Monin relation for
statistically homogenous WT in thin elastic plates

1
2∇� · 〈J [δχ,δζ ]δζ̇ 〉
= Ė(�) − 1

2 〈ζ̇F ′ + ζ̇ ′F〉 + γ (−��)α/2〈ζ̇ ζ̇ ′〉, (15)

where Ė(�) = Ėkin(�) + Ėben(�) + Ėstret(�). In a statistically sta-
tionary turbulent state, if the injection and dissipation scales
are well separated, an inertial range exists. Inside this inertial
range, the right-hand side of Eq. (15) becomes minus the energy
flux ε, which is assumed to be finite and constant as in HDT [1].
Therefore the Kármán-Howarth-Monin relation (15) reduces
to

1
2∇� · 〈J [δχ,δζ ]δζ̇ 〉 = −ε. (16)
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Finally for an isotropic system, the following 1-law for the
third-order structure function can be shown:

S(�) ≡ 〈J [δχ,δζ ]δζ̇ 〉 · �̂ = −ε �, (17)

where �̂ is the unitary vector along �. Notice that S(�) does not
depend on any physical parameter other than the energy flux ε.
Note that, although S(�) depends explicitly only on three fields
(χ , ζ , and ζ̇ ), the Airy function χ is geometrically related to the
deformation ζ by Eq. (2) (and adequate boundary conditions).
Hence, S(�) is thus related to a fourth-order moment of the
dynamical variables.

The implications of (16) and (17) and the hypothesis
leading to them, are important for WT and closely related to
fundamental issues of HDT. We will come back to this point
after validating the 1-law numerically.

We now present numerical simulations of Eqs. (1) and (2),
that in their dimensionless form read

∂2ζ

∂t2
= − 1

4�2ζ + {ζ,χ} + F0 − ν0(−�)α/2ζ̇ , (18)

�2χ = − 1
2 {ζ,ζ }, (19)

where ν0 and F0 are the rescaled damping coefficient and
rescaled external forcing, respectively. We supply the system
with periodic boundary conditions in a square domain of size
2π . The dissipative term ν0(−�)α/2ζ̇ and the large-scale force
F0 are defined in Fourier space. The forcing is white noise
in time of variance f 2

0 and its Fourier modes are nonzero
only for wave vectors |k| � kf . Numerical simulations are
performed using a standard pseudospectral code. Dealiasing
is made by using the standard 2

3 rule [46], which is applied
after computing each quadratic term. The largest wave number
is kmax = N/3, where N is the resolution. In numerics we set
α = 6, kf = 4 and use different resolutions. All the runs of this
Rapid Communication are in a statistically stationary state. The
list of runs is presented in Table I. The table also displays the
ratio of stretching and bending energies in the inertial range,
as a measure of the strength of the nonlinear terms.

To verify the 1-law we first need to determine precisely the
energy flux. In WT, due to the fact that energy is not quadratic,
the fluxes cannot be easily computed in Fourier space and they
are typically estimated based on the injected and dissipated
power [36,47,48]. Such methods are only approximated and
useless for transient states. An exception is the determination
of the energy budget scale by scale calculated in [49] where
the energy flux was shown to be constant along the inertial
range. This technique was also used in [50] to study in detail
the transfers between different modes and energy components.

TABLE I. List of runs and parameters. E
(INE)
X is computed sum-

ming up the respective spectra within a range in the inertial zone
k ∈ (8,30).

Run 1 2 3 4

Resolution 5122 5122 5122 10242

f0 14 100 316 100
ν0 × 1013 2.44 2.44 2.44 0.04
E

(INE)
stret /E

(INE)
ben 0.08 0.25 0.41 0.3

In this work, we only need the value of the energy flux. We
introduce now an equivalent and simpler method to determine
the flux that only uses the cross-correlation spectra of the fields
that can be straightforwardly implemented numerically. For a
thin elastic plate, as each term in the energy is positive [see
Eqs. (5) and (6)], the energy fluxes can be straightforwardly
defined in Fourier space. Such formulas are quite analogous
to those used in HDT [1]. We show now how the different
fluxes can be computed in the case of the FvK equations. The
generalization to other wave systems is straightforward.

The cross spectrum Ef g(k) of two fields f and g is
defined in terms of their Fourier transforms f̂ and ĝ as
Ef,g(k) = ∑

|p|=k f̂pĝ−p. Note that by Parseval theorem we
have

∫
f (x)g(x)dx = (2π )2 ∑

k Efg(k). Using this definition,
the amplitude spectrum is Eζ,ζ (k). It relates with the standard
definition of WT as Eζ,ζ (k) = 2πk〈|ζ̂k|2〉. The kinetic, bend-
ing, and stretching energy spectra are defined as Ekin(k) =
1
2Eζ̇,ζ̇ (k), Eben(k) = 1

8E�ζ,�ζ (k), and Estret(k) = 1
2E�χ,�χ (k),

respectively.
Once the different energy spectra are defined, the fluxes

can be determined by simple variation of the fields (see, for
instance, [1]). By making a standard scale-by-scale energy
budget, the energy fluxes are expressed as

εX(k) = −
k∑

p=0

∂EX(p)

∂t

∣∣∣∣
H

, (20)

where the label X stands for kin, ben, and stret and H for the
time variation of the fields coming only from the Hamiltonian
terms (excluding forcing and dissipation). The latter is not a
total time derivative when forcing or dissipation are present,
therefore they do not necessarily vanish in a steady state. The
energy fluxes are obtained by direct calculation and they read

ε(k) = εkin(k) + εben(k) + εstret(k),

εkin(k) = −
k∑

p=0

Eζ̇,{ζ,χ}(p) + 1

4

k∑
p=0

E�ζ,�ζ̇ (p),

εben(k) = −1

4

k∑
p=0

E�ζ,�ζ̇ (p),

εstret(k) =
k∑

p=0

Eχ,{ζ,ζ̇ }(p).

For instance, we have that εstret(k) = ∑k
p=0 Eχ,{ζ,ζ̇ }(p), and as

E�χ,�χ̇ (p) = Eχ,�2χ̇ (p) = −Eχ,{ζ,ζ̇ }(p), the above formula
follows. Note that because of the energy conservation by the
Hamiltonian dynamics we have limk→∞ ε(k) = 0. In numer-
ics, if (and only if) the code is correctly dealiased, we have
ε(kmax) = 0.

We now present our numerical results. Figure 1(a) displays
the amplitude spectra Eζ,ζ (k) compensated by k3 for different
runs. The dashed line indicates the scaling k3Eζ,ζ (k) ∼ k0

predicted by the weak WT theory [30,40]. Theoretical pre-
diction agrees well for run 1 that corresponds to the one in
the weaker nonlinear regime, whereas the other runs display
a steeper spectra, indicating the possibility of strong wave
turbulence as in [42]. In order to verify if the scaling observed in
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FIG. 1. (a) Different amplitude spectrum. The dashed line dis-
played the weak WT theoretical prediction. Runs 1 and 4 present
a good agreement with theoretical predictions (data not shown for
the sake of clarity in the figure). (b) Different fluxes for all runs.
The spectra and the fluxes have been time averaged in the statistical
stationary state.

Fig. 1(a) corresponds to a cascade process with a constant flux
in the inertial range, the (time-averaged) fluxes are presented
in Fig. 1(b) for all runs. They are all flat in the inertial range.

We proceed now to verify the main result of this Rapid
Communication, namely, the 1-law in Eq. (17). For each run
we measure the value ε̄ directly averaging the energy flux in
the inertial range. The structure functions S(�) normalized by
ε̄� are displayed in Fig. 2. The theoretical prediction (17) is
displayed in excellent agreement by the black dashed line.

Besides the standard assumptions of homogeneity and
isotropy, the derivation of the Kármán-Howarth-Monin re-
lation (16)–(17) assumed that the rate of energy dissipation
remains finite when the scale separation between injection
and dissipation of energy tends to infinity [for instance,
making ν0 → 0 in (18)]. In the context of three-dimensional
incompressible HDT driven by the Navier-Stokes equations,
this fundamental property is known as the dissipative anomaly
[1]. It is related to the Onsager’s conjecture that the remanent
dissipation in the limit of infinite Reynolds number can be
associated with singular (weak) solutions of the Euler equation

FIG. 2. Normalized structure function S(�) defined in Eq. (14) as
a function of the scale �. ε̄ is measured for each run measuring the
flux in the inertial range. L is the size of the domain. The theoretical
prediction (17) is represented by the horizontal dashed line.

that do not conserve energy [51]. To our knowledge, such
fundamental questions have not yet been addressed in the
context of the Föppl–von Kármán equations. It would be of
great interest to investigate (theoretically, numerically, and
experimentally) if such anomaly exists in WT of thin elastic
plates and other related systems.

We would like to emphasize that the 1-law in Eq. (17)
is valid for both weakly and strongly interacting waves. It
is interesting to notice that a naive scaling argument would
suggest a contradiction with weak WT theory. From weak
WT theory the amplitudes ζ are expected to scale with the
energy flux as ε1/6, which would lead to a structure function
in (17) scaling as ε2/3, in contradiction with the 1-law. A way
to conciliate this contradiction is that an exact cancellation
at the leading order take place, and high-order terms of the
weak WT theory are needed to be taken into account. Such
calculations have not yet been performed and is out of the
scope of this Rapid Communication. Finally, in the limit of
ł → 0, where the weak WT theory breaks down, waves are
absent and there is no small parameter. We believe that the
analogy between HDT and strong thin plate WT is worth being
developed further. In this limit it is expected that d cones and
ridges appear [37]. Their effects on the energy transfers and
the 1-law are unclear. In this spirit, whether the limits of time
going to infinity, and dissipation and thickness of the plate
going to zero commute or not, it remains a fundamental and
open question. The Kármán-Howarth-Monin relation (15) and
the 1-law (17) derived in this Rapid Communication should
represent a theoretical benchmark for future studies on elastic
turbulence and intermittency.
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