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In this paper, we consider the problem of low dimensional signal subspace estimation in a Bayesian con- 

text. We focus on compound Gaussian signals embedded in white Gaussian noise, which is a realistic

modeling for various array processing applications. Following the Bayesian framework, we derive two

algorithms to compute the maximum a posteriori (MAP) estimator and the so-called minimum mean

square distance (MMSD) estimator, which minimizes the average natural distance between the true range

space of interest and its estimate. Such approaches have shown their interests for signal subspace esti- 

mation in the small sample support and/or low signal to noise ratio contexts. As a byproduct, we also

introduce a generalized version of the complex Bingham Langevin distribution in order to model the

prior on the subspace orthonormal basis. Finally, numerical simulations illustrate the performance of the

proposed algorithms.
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. Introduction

Subspace estimation is an ubiquitous problem in signal pro-

essing, as it is often required to infer the low-dimensional space

here information lies in. It is considered as the cornerstone

f a plethora of applications and algorithms such as PCA [1] ,

oA estimation [2] , interference cancellation [3,4] , reduced rank

daptive filtering [5] and signal detection [6] . Nevertheless, the

ubspace estimation problem becomes a challenging problem

n the presence of non-standard conditions such as low sample

upport, low signal to noise ratio (SNR), non-Gaussian observations

r presence of outliers in the training set. 

Most commonly, the signal subspace is estimated through the

trongest eigenvectors of the eigenvalue decomposition (EVD)

f the sample covariance matrix (SCM). This corresponds to the

aximum likelihood estimator (MLE) for the classical model with

dditive white Gaussian noise. This estimator provides an accurate

stimator for high SNR and/or for large number of samples. Never-

heless, it shows its limits outside these asymptotic regimes. This

stimator is also known to be sensitive to missmodeling, e.g., pres-

nce of outliers or non-Gaussian observations. A possible solution

o ensure better performance in these contexts is to incorporate

 prior knowledge into the estimation process. In a Bayesian

ontext, a prior distribution of the subspace orthonormal basis can
∗ Corresponding author.

E-mail address: 36010449@parisnanterre.fr (R.B. Abdallah).

fl  

s  

k  
e assumed in order to overcome the aforementioned drawbacks.

his approach yields estimators such as the maximum a posterior

MAP) [7] or the minimum mean square distance (MMSD), which

inimizes the expected distance between the true projection

atrix and its estimate [8,9] . This is an intuitively appealing

ethod, as it is based on a natural metric in the complex Grass-

ann manifold [10] , i.e., the set of P -dimensional subspaces in C 

N 

where P is the rank of subspace and N denotes the dimension of

he observation space). In the context of subspace estimation, the

MSD has been introduced in [8,9] . More specifically, [9] derives

 practical formulation of the MMSD estimators when the sub-

pace of interest is parameterized by its orthonormal basis. This

ormulation is then used in [9] to propose MMSD estimators for

wo data models (namely, linear and covariance models) involving

n uniform prior for the sources distribution. In [11] , these results

ave been extended to a subspace parameterized by its CS de-

omposition. In [12] and [13] , the authors have recently extended

hese concepts to Bayesian non-parametric framework in order to

daptively select the rank of the subspace to be estimated. 

In this paper, we focus on the context of sources following

 compound Gaussian (CG) distribution [14] embedded in white

aussian noise [15] . This choice is motivated by the fact that

he CG distribution has been considered in many modern robust

ignal processing applications, as it can account for local power

uctuations and presents good agreement to several real data

et [16,17] . Note that this family covers a large panel of well

nown distributions, notably heavy-tailed ones, such as Student

https://doi.org/10.1016/j.sigpro.2019.107310
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information and we do not address their estimation. 
t -, K -, and Weibull distributions (cf. [16] and references therein).

Hence, the considered model can accurately describe clutter (or

power-fluctuating sources) plus thermal noise observations, which

are common in plethora of signal processing application. As an

example, this model has been used for detection in heteroge-

neous environment [18,19] and for robust structured covariance

matrix estimation in [15,20] . Specifically, concerning the subspace

estimation problem [21,22] , proposed MLE algorithms for this

context, and estimation bounds were derived in [23] . However,

these studies were never brought to a Bayesian context, in the

sense that they did not assume a prior on the subspace of interest.

In this paper, we fill this gap by deriving new Bayesian es-

timators in the context of CG distributed sources embedded in

white Gaussian noise. First, our development requires to extend

the distributions used in [9] to the case of data with com-

plex entries. To this aim, we introduce a generalization of the real

Bingham–Langevin (also referred to as Bingham–von-Mises–Fisher)

distribution and we propose a practical sampling method adapted

to the proposed distribution. Second, we develop an algorithm to

compute the MAP estimator for the proposed model based on the

Majorization–Minimization (MM) algorithm [22] . Third, we derive

a Gibbs-sampler based algorithm to compute the MMSD estimator,

which follows the framework of [9] (that considered a uniform

prior on the sources). 

Finally, numerical simulations show that the inclusion of a

Bayesian prior on the subspace orthonormal basis can significantly

improve the performance of the estimation process. The design of

this prior depends, of course, on the considered application and

comes from appropriate physical considerations/models, which is

out of the scope of this paper. 

The paper is organized as follows: Section 2 gives an overview

on the background theory. Section 3 presents the data model

and problem statement. Then, Section 4 deals with the pro-

posed Bayesian estimators. In Section 4.1.1 , numerical simulations

are shown in order to assess the performance of our proposed

estimators. 

The following notations are adopted along this paper: italic

indicates a scalar quantity, lower case boldface indicates a vector

quantity and upper case boldface a matrix. { w n } N n =1 
denotes the

set of elements w n , with n ∈ [[1, N ]], this writing will be contracted

in { w n } if there is no ambiguity. Re{.} stands for the real part of a

complex number. The superscripts H and 

T denote, respectively, the

transpose-conjugate and the transpose operators. Tr{.} and etr{.}

stand, respectively, for the trace and the exponential of the trace of

a given matrix. det(.) is the determinant operator. diag(.) denotes a

diagonal matrix built from a set of elements (or a vector). ∝ stands

for “proportional to” and 

d = stands for “has the same distribution

as”. 
EVD = allows to define the EVD of a given matrix, and a similar

notation is adopted for the SVD and TSVD (thin-SVD). CN ( μ, �) is

the complex normal distribution of mean μ and covariance matrix

�. unif(0, 1) denotes the continuous uniform distribution at the

two boundaries 0 and 1. H 

++ 
N 

( H 

+ 
N 

) is the set of N × N positive

(semi-)definite Hermitian matrices. U N P = 

{
U ∈ C 

N×P | U 

H U = I P
}

is

the set of N × P semi-unitary matrices, i.e., tall matrices whose

columns form an orthonormal basis. 

2. Compound Gaussian and complex generalized Bingham

Langevin distributions 

This section presents the main background theory on which our

derivations are based. 

2.1. Compound Gaussian distribution 

The CG distribution is a useful and well established tool in the

robust signal processing literature [14] . This model is a versatile
ne, as it encloses usual distributions such as Gaussian, Student

 -, K-, and Weibull distributions. A N -dimensional CG observation

s represented as a product of two statistically independent com-

onents. Specifically, if s ∈ C 

N follows a centered CG distribution,

enoted s ∼ CG (0 , �, f τ ) , it has the following stochastic represen-

ation 

 

d = 

√ 

τd , (1)

here 

i ) τ is a positive random scalar, called texture, of probability den-

sity function (p.d.f.) f τ . This parameter is statistically indepen-

dent of d . Depending on f τ , we can obtain various standard

multivariate distribution for s [14] . In order to design algorithm

that are robust to these distributions, we consider here this pa-

rameter as unknown deterministic for each realization. This dis-

tribution will be thus denoted by s k ∼ CG (0 , �, τk ) for each ob-

servation k ∈ [[1, K ]]. We also denote τ the vector that aggre-

gates the parameters { τ k } for a given set of observations { s k }. 

ii ) d follows a zero-mean multivariate complex Gaussian distribu-

tion of covariance matrix �, denoted, d ∼ CN (0 , �) . The pa-

rameter � ∈ H 

+ 
N 

is referred to as the scatter matrix. Notice that

if E { τ } < ∞ , the covariance matrix of s exists and is propor-

tional to the scatter matrix, i.e., E { ss H } = E { τ } �. 

For a set of K independent and identically distributed (i.i.d.)

ero-mean observations following a CG distribution, we have

he representation S 
d = DT , where, the k -th column of D ∈ C 

N×K 

ollows d k ∼ CN (0 , �) and T = diag ({ √ 

τk } ) .

.2. Complex generalized Bingham Langevin distribution (CGBL) 

In order to model priors for subspaces, we focus in the follow-

ng on the distribution w.r.t. the set U N 
P 

. Among the most widely

sed distributions on U N P are the Bingham and the Langevin

istributions [24–26] . We present the CGBL distribution as a

eneralization of the aformentioned usual directional statistics

o the case of matrix variables with complex entries. The CGBL

s a probability distribution on the set of semi-unitary matrices

hich combines linear and quadratic terms that is parametrized

y a set of matrices { A p } ⊂ H 

+
N 

and the matrix C . We denote

 ∼ CGBL (C , { A p } ) ∈ C 

N×P when the p.d.f. of U on U N 
P

reads 

p CGBL (U ) ∝ exp 

{
P ∑ 

p=1

Re { c H p u p } + u 

H 
p A p u p 

}
, (2)

here c p and u p stand for the p th column vector of, respectively,

 and U . 

emark 1. From (2) , p CGBL promotes the concentration of each

ector u p around c p and each range space u p u 

H 
p around the

ubspace associated to the strongest eigenvalues of the Hermitian

atrix A p . Typically, if A p = A and c p = 0 , ∀ p ∈ [[1, P ]], the range

pace UU 

H tends to be close to the dominant space of A . 

Moreover, an efficient way to sample from this distribution is

escribed in Appendix A . Finally, Table 1 lists special cases of the

GBL that correspond to standard distributions extended to the

omplex case. 

emark 2. The estimation of the Bingham and Langevin dis-

ributions parameters from a set of observations { U k } is well

nvestigated theoretically in [27] and references therein for the

eal case. In our context we rather aim at recovering the signal

ubspace basis U from a matrix of noisy observations Y . The

arameters of the CGBL distribution thus gather the available prior



Table 1

Special cases of the CGBL distribution.

Complex distribution Parameters Probability density function

Bingham–Langevin CBL( C, �, A ) � = diag ({ φp } ) , A ∈ H 

+ 
N 
, p CBL ∝ exp 

{∑ P 
p=1 Re { c H p u p } + u H p A p u p

}
A p = φp A , C ∈ C N×P 

Bingham CB( �, A ) � = diag ({ φp } ) , A ∈ H 

+ 
N

p CB ∝ exp 
{∑ P 

p=1 u 
H 
p A p u p

}
c p = 0 , A p = φp A 

Invariant Bingham CIB( κ , A ) κ ∈ R + , A ∈ H 

+ 
N 

p CIB ∝ etr{ κU 

H AU } 

A p = κA 

Langevin CL( C ) C ∈ C M×R , A p = 0 p CL ∝ etr{Re{ C H U }} 
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. Data model

Along this paper, N denotes the size of the data, K represents

he number of samples, and P is the rank of the signal subspace

 P < N ). We denote by Y ∈ C 

N×K the data matrix, U ∈ U N 
P 

an

nknown orthonormal basis of the signal subspace, S ∈ C 

P×K 

he matrix containing the signal of interest and N ∈ C 

N×K the

dditive noise. The conditional probability of Y given U is denoted

y p ( Y | U ) and E U , Y { . } denotes the expectation operator applied on

oth U and Y . 

The data is modeled as a sum of low-rank CG sources embed-

ed in white Gaussian noise. This formulations is useful to model

lutter (or power-fluctuating sources) plus thermal noise in several

rray processing applications, such as RADAR [18,19,21–23] . For

his model, the samples { y k } K k =1 
(the columns of Y ) are drawn as:

 k = s k + n k (3)

here 

• s k ∼ CG (0 , �, τk ) are the low rank CG distributed sources.

The rank P is assumed pre-established 

1 . Moreover, the source

scatter matrix is parameterized by its low-rank EVD as

�
EVD = U�U 

H (4) 

In addition, 

i ) { τ k } are the CG textures assumed to be positive unknown

deterministic. 

ii ) � = diag ({ λp } ) ∈ R 

P×P is the diagonal matrix containing

the scatter matrix eigenvalues, which are assumed to be

positive unknown deterministic. 

iii ) U ∈ U N P are the eigenvectors of the scatter matrix, whose

columns spans the signal subspace basis. This basis follows

the distribution U ∼ CGBL( C , { A p }). 
• n k ∼ CN (0 , σ 2 I N ) is an additive white Gaussian noise of known

or pre-estimated variance σ 2 .

The data matrix can be therefore written as

Y = U ̃

 S T + N (5)

with the columns of ˜ S ∈ C 

P×K distributed as ˜ s ∼ CN (0 , �) and

T = diag ({ √ 

τk } ) ∈ R 

P×P is the diagonal matrix. The latter reads

as a modified linear model, with unknown power fluctuations

for each sample gathered in the matrix T . 

emark 3. In this paper, we consider the hybrid Bayesian model

ecause our main interest is incorporating a prior knowledge on

he signal subspace in the estimation process. Conversely, we

hoose not to specify the p.d.f. of the texture parameters { τ k } (and

he eigenvalues { λp }) which are assumed unknown and determin-

stic. By doing so, we ensure more robustness to any prior mis-
1 Indeed, the proposed results can still be applied using plug-in rank estimates or

y integrating physical prior knowledge on this parameter [28] . About rank estima- 

ion, the reader is referred to the overview [29] and recent methods using shrinkage

30] or random matrix theory [31] .

M

w

atch w.r.t. these parameters. Moreover, this assumption also al-

ows for computational tractability since including a prior distri-

ution on { τ k } in the considered model leads to integral func-

ions that are complex to handle [32] . In the following, for sake of

onciseness and with an abuse of language, the ML-MMSD hybrid

ayesian estimator (respectively ML-MAP) will be simply referred

o as MMSD (respectively MAP). 

By denoting 

k = τk U �U 

H + σ 2 I N ∀ k ∈ [[1 , K]] (6)

e have for each sample the conditional representation

(y k | U , �, τk ) ∼ CN (0 , �k ) , leading to the conditional p.d.f. of

he sample set Y as 

p(Y | U , { λp } , { τk } ) =∏ K
k =1 p(y k | U , { λp } , τk ) ∝

∏ K
k =1

exp { −y H 
k 
�−1 

k 
y k } 

det (�k )

(7) 

hanks to the Sherman Morrison Woodbury lemma, the expression

f �−1 
k 

is simplified as �−1 
k 

= σ−2 I − U �k U 

H , where �k = σ−2 I P −
(τk � + σ 2 I P ) 

−1 is a diagonal matrix of entries

 

�k ] p,p = γk,p = 

τk λp 

σ 2 (τk λp + σ 2 ) 
(8) 

rom (2) and (7) , some manipulations allow to the posterior prob-

bility of U to be rewritten as 

p(U | Y , { τk } , { λp } ) (9) 

∝ p(Y | U , { τk } , { λp } ) p CGBL (U ) ∝
K ∏ 

k =1

exp 

{
−y H 

k ( �k ) 
−1 

y k
}

det (�k ) 
p CGBL (U ) 

∝ 

K ∏ 

k =1 

( 

P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
−y H k (−U �k U 

H + σ−2 I N ) y k
}

p CGBL (U ) 

∝ 

K ∏ 

k =1

(
P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
K ∑ 

k =1

y H k U �k U 

H y k 

}
p CGBL (U ) 

∝ 

(
K ∏ 

k =1

P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
P ∑ 

p=1

u 

H 
p M p u p 

}
p CGBL (U ) 

∝ 

(
K ∏ 

k =1

P ∏ 

p=1 

1 

τk λp + σ 2 

)
exp 

{
P ∑ 

p=1

Re { c H p u p } + u 

H 
p [ A p + M p ] u p

}
(9) 

ith 

 p = 

K ∑ 

k =1

γk,p y k y 
H 
k (10) 

here γ k,p is given in (8) . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: MAP for the general model (3) U MAP . 

input : Y , C , { A p } , σ 2 , P , K, N

output : MAP estimators of U , { τk } , { λp }
initialize : ̂ U 

0 , { τ 0 
k
} and { λ0 

p }
1 for t = 0 . . . T − 1 do 

22 Update ̂ U 

t+1 = P Proc (H 

t ) , with H 

t in (15)

33 Update τ t+1 
k 

∀ k with (18) 

44 Update λt+1 
p ∀ p with (20) 

5 end 
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4. Bayesian subspace estimators

In this section, we aim to develop Bayesian estimators of the

subspace orthonormal basis U according to the data model (5) . The

first proposal is a MM algorithm to compute the MAP estimator.

The second is an algorithm to evaluate the MMSD through MM

iterations and a Gibbs sampling scheme. Additionally, we present a

special case, referred to as “simplified model”, for which the MAP

and the MMSD estimators coincide, and can be obtained through

closed form updates. Considering these approaches, the properties

of each method are listed below: 

• Theoretically, the MMSD approach offers best performance in

terms of expected distance between the estimated and true sig-

nal subspace projection matrices. Nevertheless, the computa-

tion of the MMSD estimator usually requires a Gibbs sampler

scheme which can be computationally expensive.
• The MAP is theoretically sub-optimal (compared to the MMSD),

but can generally reach good performance in practice. More-

over, the proposed algorithm to compute this estimator only

involves closed form updates, which significantly reduces the

computational time.
• The MMSD for the simplified is interesting because it does not

require a Gibbs sampling scheme to be computed. The assumed

simplification is not necessarily realistic and introduces a mis-

match w.r.t. the true model, however, numerical simulations

will illustrate the interest of the approach.

4.1. The subspace MAP estimator 

In this section, we derive a subspace MAP estimator based on

the data model (3) that maximizes the posterior probability. It

reads as the solution of 

maximize ̂ U , { τk } , { λp } 
p( ̂  U | Y , { τk } , { λp } )

subject to τk ≥ 0 ∀ k, λp ≥ 0 ∀ p̂ U 

H ̂ U = I P

(11)

From (9) and (11) , this problem can be recasted as 

maximize 
{ ̂  u p } , { τk } , { λp } 

P ∑ 

p=1 

Re { c H p ̂u p } + ̂u 

H 
p [ A p + M p ] ̂  u p

−∑ K
k =1 ln (τk λp + σ 2 ) 

subject to τk ≥ 0 ∀ k, λp ≥ 0 ∀ p̂ U 

H ̂ U = I P with 

̂ U = [ ̂  u 1 | . . . | ̂  u P ]

M p = 

K ∑ 

k =1

τk λp

σ 2 (τk λp + σ 2 ) 
y k y 

H 
k 

(12)

To solve this problem, we derive an iterative based MM algorithm

that sequentially updates the variables ̂  U 

t , { τ t 
k 
} , { λt 

p } at the t th iter-

ation. The MM algorithm performs, at each iteration, an update of

the variables by minimizing a surrogate function of the objective.

This process decreases the value of the objective function at each

step. We adapt here the surrogates function of [22] to our con-

text, which leads to closed form updates of the parameters. The

resulting algorithm is summed up in the box Algorithm 1 . A brief

explanation of the derivations is given below. 

4.1.1. Algorithm derivation 

First, the variables ̂ U , { λp }, and { τ k } are initialized. This initial-

ization can, for example, be taken from the P strongest eigenvec-

tors and eigenvalues of the SCM for ̂ U and { λp }.
• Update of the basis ̂ U :

By fixing { λt 
p } , { τ t 

k 
} , the update of the basis of interest ̂ U 

t+1 is

obtained by solving 

maximize 
{ ̂  u p } 

P ∑ 

p=1

Re { c H p ̂
 u p } + ̂u 

H
p

[
A p + M 

t 
p 

]̂ u p 

subject to 

̂ U 

H ̂ U = I P with 

̂ U = [ ̂  u 1 | . . . | ̂  u P ]

(13)
ith M 

t 
p = 

K ∑ 

k =1

γ t 
k,p 

y k y 
H 
k 

and γ t 
k,p

= 

τ t 
k 
λt 

p 

σ 2 (τ t 
k 
λt 

p + σ 2 ) 
. This problem has

ot a trivial solution due to the semi-unitary constraint. Therefore,

e apply the MM procedure in order to obtain closed form up-

ates that improve the value of the objective at each iteration. An

pdate of the orthonormal basis can be obtained thanks to Propo-

ition 1 in Appendix B . This update reads as 

 

 

t+1 = P Proc (H 

t ) (14)

here 

 

t = S t + 1 / 2 C and S t = [ (A 1 + M 

t 
1 ) u 

t 
1 | . . . | (A P + M 

t 
P ) u 

t 
P ]

(15)

ith u 

t 
p is the p th column of the matrix U 

t and the operator P Proc 

s the projection onto the Stiefel manifold [33] , defined as 

P Proc : C 

N×P −→ U 

N 
P

Y 

TSVD = UDV 

H � −→ P Proc { Y } = UV 

H
(16)

• Update of { τ k }:

The optimization problem in (12) w.r.t. { τ k } for other fixed vari-

bles can be expressed as separable sub-problems in τ k as 

minimize 
τk

P ∑ 

p=1

ln 

(
τk λ

t 
p + σ 2 

)
− τk λ

t 
p 

τk λ
t 
p + σ 2 z 

t+1 
k,p 

subject to τk ≥ 0 

(17)

ith z t+1 
k,p

= || y H 
k

u 

t+1 
p || 2 . This problem has no direct solution but a

losed-form update can be obtained thanks to (66) from Proposi-

ion 2 in Appendix B for which we identify τk = a, λt 
p = b i , P = I,

 i = zt+1
k,p

and αt 
k,p 

= θ t 
i 
. Consequently, the update reads

t+1 
k 

= 

1

P 

(∑ P
p=1 z 

t+1 
k,p 

τ t 
k 
λt 

p 

τ t 
k 
λt 

p + σ 2 

)(∑ P
p=1 σ

2 αt 
k,p 

τ t 
k 
λt 

p + σ 2 

)
∑ P

p=1 

αt 
k,p 

λt 
p 

τ t 
k 
λt 

p + σ 2 

(18)

• Update of { λp }:

By fixing the remaining variables, the optimization problem

12) w.r.t. { λp } is equivalent to the optimization of the following

ub-problems 

minimize 
λp

K ∑ 

k =1

ln 

(
τ t+1 

k 
λp + σ 2 

)
− τ t+1 

k 
λp

τ t+1 
k 

λp + σ 2 
z t+1 

k,p 

subject to λp ≥ 0 

(19)

imilarly to the update of texture and by using (66) , we can ap-

ly Proposition 2 in Appendix B with λp = a, τ t+1 
k 

= b i , K = I and
t 
k,p 

= θi , z
t+1 
k,p 

= s i . The updates of λp are then given by 

t+1 
p = 

1

K 

(∑ K
k =1 z 

t+1 
k,p 

τ t+1 
k 

λt 
p 

τ t+1 
k 

λt 
p + σ 2 

)(∑ K
k =1 σ

2 βt 
k,p 

τ t+1 
k 

λt 
p + σ 2 

)
∑ K βt 

k,p 
τ t+1 

k 

. (20)
k 
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.2. The subspace MMSD estimator 

.2.1. Definition 

The MMSD estimator minimizes the average Euclidean dis-

ance between the true range space R (U ) = UU 

H and its estimate

 ( ̂  U ) = ̂

 U ̂

 U 

H . It corresponds to a natural metric between the

ubspace spanned by U and 

̂ U in the complex Grassmann space.

traightforwardly extending the formulation of [9] to the complex

ase, the MMSD estimator is expressed as 

 

 MMSD = arg min ̂ U 
E U , Y 

{‖ ̂

 U ̂

 U 

H − UU 

H ‖ 

2
F

}
= arg max ̂ U 

E U , Y { Tr { ̂  U 

H UU 

H ̂ U }}

= arg max ̂ U 

∫ [ ∫
Tr { ̂  U 

H UU 

H ̂ U } p(U | Y ) dU 

]
p(Y ) dY (21) 

his integral can be maximized by directly maximizing the inner

racket w.r.t. ̂ U for all possible Y , thus

 

 MMSD = arg max̂ U 

∫ 
Tr { ̂  U 

H UU 

H ̂ U } p(U | Y ) dU

= arg max ̂ U 
Tr 

{ ̂ U 

H 
[ ∫

UU 

H p(U | Y ) dU 

] ̂ U 

}
(22) 

hich can be obtained as [9] 

 

 MMSD = P P

{ ∫
UU 

H p(U | Y ) dU

}
= P P { M (p(U | Y )) } (23) 

n which 

 (p(U | Y )) =
∫ 

UU 

H p(U | Y ) dU (24)

here the operator P P { . } , that extracts the first P eigenvectors

rom a given matrix in H 

+ 
N 
, is defined by 

P P : H 

+
N

−→ U 

N 
P

M 

EVD = [ U P | U 

⊥ 
P ] D [ U P | U 

⊥ 
P ] H � −→ P P { M } = U P .

(25) 

The expression of the MMSD depends on p ( U | Y ), which is

pecified based on both the data model and the prior distribution

ssigned to the parameters. Usually, there is no closed-form solu-

ions to compute M ( p ( U | Y )). However, (23) can still be evaluated

sing the so-called induced arithmetic mean (IAM) [9] of the

emi-unitary matrix, as 

 

 ≈ P P

{
1 

N r 

N bi + N r ∑ 

n = N bi +1 

U (n ) U (n ) 
H 

}
(26) 

here U ( n ) are sampled from p ( U | Y ) (e.g. using the proposed

ethod in Appendix A ), N bi stands for the burn-in samples (num-

er of thrown samples from the Markov chain), and N r is the

umber of samples used to evaluate the integral. 

.2.2. The subspace MMSD estimator for CG distributed sources 

We recall that according to the data model described in

ection 3 , U ∼ CGBL( C , { A p }) and y k ∼ CN (0 , τk U �U 

H + σ 2 I N ) .

ased on (22) and (6) , the MMSD estimator of U is expressed as

he solution of the following optimization problem 

minimize ̂ U , { τk } , { λp } 
E U , Y 

{‖ ̂

 U ̂

 U 

H − UU 

H ‖ 

2
F

}
subject to τk ≥ 0 ∀ k, λp ≥ 0 ∀ p̂ U 

H ̂ U = I P

(27) 

n order to solve this optimization problem, we derive in the fol-

owing Section an iterative algorithm that sequentially updates the

ariables ̂ U , { τ k } and { λp }. The update of ̂ U requires a Gibbs sam-

ling scheme, while for updating both the texture { τ k } and the

igenvalues { λp }, we use the MM procedure from Section 4.1 . The

verall algorithm is summed up in the box Algorithm 1 . 
.2.3. Algorithm derivation 

The initialization of the variables ̂ U 

0 , { λ0 
p } and { τ 0 

k 
} is done as

or the MAP estimator. The updates of the blocks ̂ U , { λp } and { τ k }

re detailed below 

• Update of the basis ̂ U :

For fixed blocks { τ t 
k 
} and { λt 

p } , the update ̂ U 

t+1 is obtained by

olving the following problem 

minimize ̂ U 
E U , Y 

{‖ ̂

 U ̂

 U 

H − UU 

H ‖ 

2 
F 

}
subject to 

̂ U 

H ̂ U = I P
(28) 

hanks to the expression given in Section 4.2.1 , the update is ob-

ained by 

 

 

t+1 = P P 

{
M (p(U | Y , { τ t 

k } , { λt 
p } )) 
}

(29)

ith 

 (p(U | Y , { τ t 
k } , { λt 

p } )) =
∫ 

UU 

H p(U | Y , { τ t 
k } , { λt 

p } ) dU (30)

he posterior probability in (9) is recognized as (U | Y , { τ t 
k 
} , { λt 

p } ) ∼
GBL (C , { G 

t 
p } ) with G 

t 
p = A p + M 

t 
p , ∀ p ∈ [[1, P ]]. With this general

istribution, there is no closed form for computing the integral

n (30) . Nevertheless, the update can be evaluated by the IAM as

iven in (26) where U 

t 
(n ) 

are sampled as U 

t 
(n ) 

∼ CGBL (C , { G 

t 
p } ) . In

rder to do so, an efficient Gibbs sampling procedure to draw the

GBL distribution is given in Algorithm 6 of Appendix A . Special

Algorithm 2: MMSD for the general model (3) U MMSD . 

input : Y , C , { A p } , σ 2 , P , K, N, N bi , N r

output : ̂ U MMSD , { τk } , { λp }
initialize : ̂ U 

0 , { τ 0 
k 
} and { λ0 

p }
1 for t = 0 . . . T − 1 do 

2 for n= 1 . . . N bi + N r do 

33 Sample U (n ) = CGBL (C , { G p } ) ccf Appendix A

4 end 

55 Update ̂ U 

t+1 ≈ P P

{ 
1

N r

∑ N bi + N r
n = N bi +1 

U (n ) U (n ) 
H 
} 

66 Update τ t+1 
k 

∀ k with (18) 

77 Update λt+1 
p ∀ p with (20) 

8 end 

ases for the sampling scheme required on this update are given

n Table 2 . 
• Update of the eigenvalues { λp } and the textures { τ k }:

For fixed 

̂ U 

t+1 , the update of the eigenvalues and the texture is

quivalent to solve respectively the ML problem (19) and (17) since

hese parameters are unknown deterministic (cf. remark 2). Conse-

uently, the updates of { τ t+1 
k 

} and { λt+1 
p } are obtained respectively

rom (18) and (20) . 

.3. Simplified model: white CG model with CIB prior 

In this Section, we focus on a special case that we refer to

s simplified model, where � = λUU 

H . This relaxation of the true

odel, e.g. used in [32] , allows for interesting simplifications that

ignificantly reduce the computational time of the estimation pro-

edure. Note that any scaling on the scatter can be absorbed in

he textures parameters as ˜ τ = λτ, so we can assume � = UU 

H .

or this model, y k | U , τk ∼ CN (0 , �k ) , thus, the covariance reads

k = τk UU 

H + σ 2 I N (31) 

sing the Sherman Morrison Woodbury lemma, �−1 
k 

reads as 

−1 
k 

= (τk UU 

H + σ 2 I ) −1 = σ−2 I − τk 

σ 2 (τ + σ 2 ) 
UU 

H , ∀ k (32) 



Table 2

Posterior distributions for standard priors on U under simplified (SM) and general (GM) models.

The prior complex distribution of U Posterior distribution p ( U | Y ) for a given model (SM/GM) To be sampled for MMSD

Bingham CB( A, �) SM: p(U | Y ) SM ∝ exp 

{
P ∑

p=1

u H p (φ(p) A + W ) u p 

}
CB ({ φ(p) A + W } ) 

GM: p(U | Y ) GM ∝ exp 

{
P ∑

p=1

u H p (φ(p) A + G p ) u p 

}
CB ({ φ(p) A + G p } ) 

Langevin CL( C ) SM: p(U | Y ) SM ∝ etr 
{

Re { C H U } + U 

H WU 

}
CBL( C, I P , W )

GM: p(U | Y ) GM ∝ exp 

{
P ∑ 

p=1

Re { c H p u p } + u H p G p u p

}
CGBL( C , { G p })

Invariant Bingham CIB( κ , A ) SM: p(U | Y ) SM ∝ etr 
{

U 

H (κA + W ) U 

}
Closed form P P { κA + W } 

GM: p(U | Y ) GM ∝ exp 

{
P ∑

p=1

u H p (κA + G p ) u p 

}
CB ({ κA + G p } ) 
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Then, the p.d.f. p ( Y | U , { τ k }) reduces to 

p(Y | U , { τk } ) ∝
K ∏ 

k =1

p(y k | U , τk ) ∝
K ∏ 

k =1 

exp 

{
−y H 

k 
�−1 

k 
y k 
}

det (�k ) 

∝ exp 

{
K ∑ 

k =1

τk 

σ 2 (τk + σ 2 ) 
U 

H y k y k U 

} (
K ∏ 

k =1

(τk + σ 2 ) −P

)
(33)

∝ etr 
{

U 

H WU 

}( K ∏ 

k =1

(τk + σ 2 ) −P

)
(34)

where W = YBY 

H and B = diag 

({ 
τ1

σ 2 (τ1 + σ 2 ) 
. . . 

τK

σ 2 (τK + σ 2 ) 

} )
. In or-

der to obtain closed form expression, we assign to U a CIB distri-

bution, i.e., U ∼ CIB( κ , A ), thus its p.d.f. reads as 

p CIB (U ) ∝ etr { κU 

H AU } (35)

4.3.1. The MMSD estimator for the simplified model 

In this case, the MMSD estimator of the basis ̂ U is defined as

the minimizer of the following problem 

minimize ̂ U , { τk } 
E U , Y 

{‖ ̂

 U ̂

 U 

H − UU 

H ‖ 

2
F

}
subject to τk ≥ 0 , ∀ k̂ U 

H ̂ U = I P

(36)

Following the previous lines, we develop an iterative estima-

tion method by solving (36) w.r.t. ̂ U and { τ k } sequentially. The box

Algorithm 3 sums-up the main steps of the estimation process

Algorithm 3: MMSD estimation of subspace for the simplified 

model ̂ U sMMSD .

input : Y , A , σ 2 , P , K, N, κ
output : ̂ U sMMSD , { τk }
initialize : ̂ U 

0 , { τ 0 
k 
}

1 while stop criterion unreached do

22 Update ̂ U 

t = P P

{
κA + W 

t 
}

33 Update τ t 
k 

= max

(
y H 

k ̂
 U t ̂ U t 

H 
y k 

P − σ 2 , 0 

)
4 end 

which are detailed in the following. 
• Update of the basis ̂ U :

Now, we assume that the block { τ t 
k 
} is fixed, consequently, the

updated 

̂ U 

t+1 is the solution of the following problem

minimize ̂ U 
E U , Y 

{‖ ̂

 U ̂

 U 

H − UU 

H ‖ 

2
F

}
subject to 

̂ U 

H ̂ U = I P
(37)
n this case, the updated basis ̂ U 

t+1 is derived as the MMSD esti-

ator in (23) leading to 

 

 

t+1 = P P

{
M (p(U | Y , { τ t 

k } ))
}

(38)

here 

 (p(U | Y , { τ t 
k } )) =

∫ 
UU 

H p(U | Y , { τ t 
k } ) dU (39)

rom (35) and (33) , the posterior probability p(U | Y , { τ t 
k 
} ) reads

as 

p(U | Y , { τ t 
k } ) ∝ p(Y | U , { τ t 

k } ) p CIB (U ) ∝ etr 
{
κU 

H AU 

}
etr 
{

U 

H W 

t U 

}
∝ etr 

{
U 

H (κA + W 

t ) U 

}
(40)

ith W 

t = YB 

t Y 

H and B 

t = diag 

({ 
τ t 

1 

σ 2 (τ t 
1 
+ σ 2 ) 

. . . 
τ t 

K 

σ 2 (τ t 
K 
+ σ 2 ) 

} )
. Using

roposition 1 from [9] , we notice that the updated basis admits

he following closed form expression 

 

 

t+1 = P P

{ ∫
UU 

H etr 
{

U 

H (κA + W 

t ) U 

}
dU 

}
= P P 

{
κA + W 

t 
}

(41)

his specific model provides a closed-form solution with an inter-

sting interpretations. Indeed, this MMSD appears naturally as the

rincipal subspace of the sum of the SCM using scaled samples and

caled prior subspace projector. 
• Update of the texture parameter { τ k }

For fixed 

̂ U 

t+1 , the update of { τ k } is obtained by maximizing

he p.d.f. p(Y | ̂  U 

t+1 , { τk } ) as

maximize 
{ τk } 

p(Y | ̂  U 

t+1 , { τk } )
subject to τk ≥ 0 , ∀ k

(42)

ith �k = τk ̂
 U 

t+1 ̂ U 

t+1 H + σ 2 I N , ∀ k . Minimizing the negative log-

ikelihood is equivalent to solve 

minimize 
{ τk } 

K ∑ 

k =1 

ln 

(
det (�t+1 

k 
) 
)

+ y H 
k 

(
�t+1 

k 

)−1
y k 

subject to τk ≥ 0 , ∀ k

(43)

hich leads to 

t+1 
k 

= max 

(
y H 

k ̂
 U 

t+1 ̂ U 

t+1 H y k 

P 
− σ 2 , 0 

)
, ∀ k (44)

.3.2. Link with the MAP estimator for the simplified model 

From (40) , the update of the basis of interest is the solution of

he following problem: 

maximize ̂ U 

̂ U 

H (κA + W 

t ) ̂U

subject to 

̂ U 

H ̂ U = I P
(45)

iven that κA + W 

t ∈ H 

+ 
N 
, the updated basis for the MAP estimator

s 

 

 

t+1 = P P { κA + W 

t } (46)



Fig. 1. AFE w.r.t. SNR for P = 5, N = 20 , U ∼ CL (κ, ̄U ̄U 

H ) , κ = 80 , ν = 0 . 5 , from top to bottom: K = 3 P, K = 4 P and K = 6 P. 
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hich corresponds to (41) . Furthermore, we can notice that the

AP update of { τ t+1 
k 

} is identical to (44) . Therefore, in this case,

he MAP estimator coincides with the MMSD estimator. 

.4. Notes on complexity and convergence analysis 

.4.1. Computational complexities 

In this subsection, we detail the complexity of the proposed al-

orithms. Notice that we focus on the cost of each variable up-
ates. The total complexity of the algorithms is to be scaled by the

umber of iterations. For both the MAP and the MMSD, the update

f the textures { τ k } and the eigenvalues { λp } are obtained in closed

orm that only involve scalar multiplications/additions ( O(NKP ) ).

he bottleneck of each algorithm lies in the update of the eigen-

ectors U : 

• MAP: The derivation of U MAP requires the computation of H 

t in

(15) ( O(NKP ) ) and its TSVD of H 

t in (14) ( O(N 

2 P + P 2 N) ).



Fig. 2. AFE w.r.t. SNR for P = 5, N = 20 , ν = 0 . 5 , U ∼ CB (κ0 �, ̄U ̄U 

H ) , κ0 = 300 from top to bottom: K = 3 P, K = 4 P and K = 6 P. 
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• MMSD: The update of U MMSD requires the evaluation of the ma-

trix M in (30) with a gibbs sampler (which cost cannot be eval-

uated analytically) and the computation of its P strongest eigen-

vectors ( O(N 

2 P ) ). Nevertheless, (30) can be obtained in closed-

form for the simplified model ( O(N 

2 P ) ).

4.4.2. Convergence analysis 

The MM algorithm ensures a monotonic decrement of the

objective function at each iteration [34] . A convergence anal-
sis for the MAP algorithm can be directly conducted as in

22,35] . However, this analysis cannot be applied directly to the

MSD since this estimator requires to approximate the exact

pdate by the Gibbs sampler in (26) . Therefore, the conver-

ence of Algorithm 2 remains an opened question. Nevertheless,

ection 4.1.1 shows that the numerical performance obtained with

lgorithm 2 is satisfactory. 



Fig. 3. AFE w.r.t. SNR for P = 5, N = 20 , ν = 0 . 5 , U ∼ CIB (κ, ̄U ̄U 

H ) , κ = 50 , from top to bottom: K = 3 P, K = 4 P and K = 6 P. 
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. Numerical simulations

.1. Setup 

To illustrate the performance of the proposed estimators, we

valuate their average fraction of energy (AFE) through Monte

arlo simulations. The AFE is considered as an adequate criteria of

erformance for subspace estimation, since it evaluates the close-

ess of the true range space UU 

H towards its estimate ̂ U ̂

 U 

H . The
FE of a given estimator ̂ U is expressed as:

FE ( ̂  U ) = E { Tr { U 

H ̂ U ̂

 U 

H U }} /P (47)

he samples are generated from the model in Section 3 , i.e.

 k ∼ CN (0 , τk U �U 

H + σ 2 I ) . The texture parameters { τ k } follow

 Gamma distribution parameterized by its shape ν which re-

ects the heterogeneity of the sources, i.e., τk ∼ �(ν, 1 
ν ) , ∀ k (thus

 { τ } = 1 ). We set [ �] p,p = (P + 1 − p) / ( 
∑ P 

i =1 i ) and σ 2 to fix the



Fig. 4. AFE w.r.t. SNR for P = 5, N = 20 , κ = 50 , ν = 0 . 5 , from top to bottom: K = 2 P, K = 3 P and K = 4 P. 



Fig. 5. AFE of the MMSD w.r.t. assumed κ for various SNR, P = 5, N = 20, ν = 1 , K = 30 , U ∼ CIB (κ0 , ̄U ̄U 

H ) , with true parameter κ0 = 60 . 
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ignal to noise ratio as SNR = Tr { �} /σ 2 . We consider different sce-

arios for the distribution of U : 

• S1: U follows the complex Langevin distribution U ∼ CL ( ¯κU ) ,
• S2: U follows the complex Bingham distribution U ∼

CB (κ�, Ū ̄U 

H ) where [ �] p,p = (P + 1 − p) / ( 
∑ P 

i =1 i ) , 
• S3: U follows the complex invariant Bingham distribution U ∼

CIB (κ, Ū ̄U 

H ) , 

here Ū ∈ U N 
P 

are the first vectors of the canonical basis and the

oncentration parameters ( κ and �) are set so that AFE ( ̄U ) has

he same value for all the scenarios. We compare the following

stimators: i ) ̂ U SCM 

= P P { YY 

H } , the estimator built from the EVD

f the SCM; ii ) ̂ U MLE is the subspace MLE computed with EBMM

lgorithm from [22] ; iii ) ̂ U MAP is the proposed MAP estimator,

omputed with Algorithm 1 ; iv ) ̂ U MMSD is the proposed MMSD

stimator computed with Algorithm 2 ; v ) ̂ U sMMSD the simplified

MSD estimator, that assumes � = I and U ∼ CIB (κ, Ū ̄U 

H ) , com-

uted with Algorithm 3 . This estimator is evaluated for S2 and S3

ut the relaxation is not suited for S1 (where the true prior is a

omplex Langevin); vi ) Ū is the center of the prior distribution on

 . 

.2. Results 

Fig. 1 displays the AFE in function of SNR for various sample

ize K in scenario S1. In this case, the SCM exhibits good per-

ormance in the standard regimes (high SNR and/or large K ). The

extures parameter is ν = 0 . 5 so the sources are mildly impulsive.

herefore the MLE exhibits performances close to the SCM as it can

e expected (differences will be observed in the following). How-

ver, both show their limits at low SNR. In this challenging con-

ext, Bayesian estimators can leverage the prior information and

xhibit better performance in terms of AFE. Interestingly, for the

omplex Langevin prior, the MMSD outperforms the MAP, which

eaches performance close to SCM/MLE as the SNR increases. 

Fig. 2 displays the AFE in function of SNR for various sample

ize K in scenario S2. The same general observations as in the pre-

ious Figure can be drawn. For the complex Bingham prior case,

he MMSD still outperforms the MAP, but not as significantly as

n the scenario S1. We also observe that sMMSD, that assumes
quals eigenvalues and a mismatched (averaged) prior, offers an

nteresting performance versus computational time trade-off when

t comes to estimate only the signal subspace. By construction of

he true prior, the first column-vectors of U exhibits less variance

han the last ones. By uniformly averaging the prior for each vec-

ors, sMMSD introduces a bias towards the center of distribution,

hich explains its performance close to Ū at low SNR. 

Fig. 3 displays the AFE in function of SNR for various sample

ize K in scenario S3. Here, the sMMSD assumes the true prior

nd is only mismatched by assuming equals eigenvalues. In this

cenario the sMMSD exhibits performance almost identical to the

MSD, which suggest that it is acceptable to relax the eigenvalue

stimation when it comes to estimate only the signal subspace. 

Fig. 4 displays the AFE in function of SNR for various sam-

le size K in the actual simplified model, i.e., the scenario S3

here � = I . In this context, the MMSD and the MAP coincide

ith sMMSD and we still observe the interest of the Bayesian ap-

roach in challenging contexts (low SNR and/or K ). 

.3. Robusteness to the concentration parameter and the signal 

istribution 

First, we study the effect of a miss-selected concentration pa-

ameter κ on the AFE of the proposed Bayesian estimator. The

etup of Fig. 5 is the same as for Fig. 4 (simplified model where the

MSD and MAP coincide) and displays the AFE of the MMSD es-

imator w.r.t. the assumed κ , while the true concentration param-

ter κ0 is fixed. This figure illustrates that, for a reasonable range

f κ , the AFE of the MMSD estimator remains almost unchanged.

hus, the proposed method appears robust to a reasonable miss-

election of the concentration parameters of the assumed prior dis-

ribution. 

Second, we study the performance of the proposed method

.r.t. the signal distribution, parameterized by the shape ν . The

etup of Fig. 6 is the same as for Fig. 4 and displays the AFE of

he sMMSD estimator w.r.t ν for various SNRs. When ν → 1, the

ignal tends to be more impulsive (i.e., heavy tailed distributed). In

his context, we can notice a slight difference between the SCM

nd the MLE, which illustrates the interest of taking the non-

aussianity into account. Interestingly, the performance drop hap-



Fig. 6. AFE w.r.t. ν for P = 5, N = 20, K = 30 , U ∼ CIB (κ0 , ̄U ̄U 

H ) from top to bottom SNR = 0dB, SNR = 5dB and SNR = 10dB. 

 

 

 

 

 

 

f  
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s

D

pens at lower ν for the Bayesian estimator, which shows the inter-

est of exploiting both the non-Gaussian assumption and the prior

knowledge. 

6. Conclusion

In this paper, we considered a Bayesian approach for subspace

estimation. First, we introduced a generalized version of the com-

plex Bingham Langevin distribution (CBL) in order to model the

prior distribution of the subspace orthonormal basis. Second, we
ormulated the MAP and the MMSD estimators of the signal sub-

pace in the context of CG distributed sources and CGBL dis-

ributed subspace. Finally, simulations illustrated the interest of the

roposed approach in critical regimes (low SNR and/or low sample

ize). 
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Algorithm 4: Acceptance-rejection sampling scheme for the 

vBL distribution. 

input : A , c 

output : u 

1 1 Compute γ = max ( eig (A + 1 / 2 cc T )) 

2 2 Compute b ∗ satisfying (52) 

3 3 Compute 

M 

∗(b ∗) = exp { 1 / 2 + γ } exp {−(N − b ∗) / 2 } (N/b ∗) N/ 2 | �| −1 / 2 

4 4 Compute � = I + (2 /b ∗)(γ I − A − 1 / 2 cc T ) 

5 repeat 

6 Sample y ∼ N (0 , �−1 ) 

7 Compute u = y / || y || 
8 Compute f ∗

ACG 
(u ) = | �| 1 / 2 (u 

T �u ) −N/ 2 

9 Compute f ∗
vBL 

(u ) = exp { c T u + u 

T Au } 
10 Sample u ∼ Unif (0 , 1) 

11 until u < f ∗
vBL 

(u ) / (M 

∗(b ∗) f ∗
ACG 

(u )) ; 

12 12 Accept u 
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r  
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d
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m
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w

u

F
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ppendix A. Generation of the CGBL distribution 

In this appendix, we present the pocedure in order to sample

 semi-unitary random matrix U ∈ U N P from the complex general-

zed Bingham Langevin distribution (CGBL), i.e., U ∼ CGBL( C , { A p }),

here C ∈ C 

N 
P 

and { A p } ⊂ H 

+ 
N 

. The p.d.f. of U is given by 

p CGBL (U | C , { A p } ) =
P ∏ 

p=1

p CVGBL (u p | c p , A p )

∝ exp 

{
P ∑ 

p=1

Re { c H p u p } + u 

H 
p A p u p 

}

∝ 

P ∏ 

p=1

exp 

{
Re { c H p u p } + u 

H 
p A p u p 

}
(48) 

here u p and c p stand for the p th column of respectively U

nd C . Most of the upcoming results shown below are based on

he methodology of [25,26] . In the following, we first recall the

ampling procedure of a real vector Bingham Langevin (vBL) dis-

ributed vector. Then, we define and sample a complex vGBL dis-

ributed vector. Finally, we deduce the generation of complex a GBL

istributed matrix. 

1. Sampling a real Bingham Langevin distributed vector 

The vBL distribution [25] is a probability distribution on the set

f unitary real vectors which combines linear and quadratic terms

enoted as u ∼ vBL( c, A ) where the matrix A is a symmetric matrix

nd c is a real vector. The p.d.f. of u ∼ vBL( c, A ) is proportional to

f ∗vBL (u ) = exp { c T u + u 

T Au } (49)

n [26] , an acceptance-rejection scheme is proposed to sample the

BL distribution using an angular central Gaussian distribution de-

oted as ACG( �) with � is a symmetric positive definite matrix.

ts p.d.f. reads as 

f ∗ACG (u ) = | �| 1 / 2 (u 

T �u ) −N/ 2 (50)

ith 

= I + (2 /b)(γ I − A − 1 / 2 cc T ) (51)

here γ = max ( eig (A + 1 / 2 cc T )) and b satisfies the following

quality 

N 
 

i =1

1 

b + 2 βi 

= 1 (52) 

ith { β i } denotes the eigenvalues of the matrix γ I − A − 1 / 2 cc T .

his sampling technique is summed up in the box Algorithm 4 . 

2. Defintion and sampling of the complex vector generalized 

ingham Langevin distributed vector 

Let us start first with defining the relation between the CVGBL

istribution and the vBL distribution. Based on [26] , a given com-

lex unitary random vector u ∈ C 

N with u ∼ CVGBL( c, A ) has a.d.f.

f the form 

p CVGBL (u ) ∝ exp 

{
Re { c H u } + u 

H Au 

}
here A ∈ H 

+ 
N 

and c is a complex vector. Let us denote 

 = u 1 + i u 2 , A = A 1 + i A 2 and c = c 1 + i c 2 (53) 
here u 1 , c 1 are respectively the real parts of u, c and u 2 , c 2 are

espectively the imaginary parts of u, c . The matrix A 1 is symmet-

ic and A 2 is a skew-symmetric matrix. In the following, we aim to

ntroduce a relation between the vBL distribution and the CVGBL

istribution. 

p CVGBL (u ) ∝ exp 

{
Re { c H u } + u 

H Au 

}
= exp 

{
Re { (c 1 + i c 2 ) 

H (u 1 + i u 2 ) }
}

exp 

{
(u 1 + i u 2 ) 

H (A 1 + i A 2 )(u 1 + i u 2 ) 
}

∝ exp 

{
c T 1 u 1 + c T 2 u 2 + u 

T 
1 A 1 u 1 + i u 

T 
1 A 1 u 2 + i u 

T 
1 A 2 u 1 

−u 

T 
1 A 2 u 2 − i u 

T 
2 A 1 u 1 + u 

T 
2 A 1 u 2 + u 

T 
2 A 2 u 1 + i u 

T 
2 A 2 u 2 

}
∝ exp 

{
c T 1 u 1 + c T 2 u 2 + u 

T 
1 A 1 u 1 − u 

T 
1 A 2 u 2 + u 

T 
2 A 1 u 2 

+ u 

T 
2 A 2 u 1 

}
(54) 

iven that A 1 is a symmetric matrix and A 2 is a skew-symmetric

atrix, we have 

 

T 
2 A 2 u 2 = 0 , u 

T 
1 A 2 u 1 = 0 and u 

T 
1 A 1 u 2 = u 

T 
2 A 1 u 1 

hen, 

p CVGBL (u ) ∝ exp { ̃ c T ˜ u + 

˜ u 

T ˜ A ̃

 u } (55)

ith 

˜ 
 

T = [ u 

T 
1 , u 

T 
2 ] , ˜ c T = [ c T 1 , c 

T 
2 ] and 

˜ A = 

[
A 1 −A 2 

A 2 A 1 

]
inally, 

 ∼ CVGBL (c , A ) ⇔ 

˜ u ∼ vBL ( ̃ c , ̃  A ) (56)

ith 

˜ u ∈ R 

2 N , ˜ c ∈ R 

2 N and 

˜ A ∈ R 

2 N×2 N a symmetric matrix.

lgorithm 5 details the generation of the unit complex random

Algorithm 5: The generation of the unit complex random vec- 

tor u ∼ CVGBL( c, A ). 

input : c , A 

output : u 

1 1 Compute the 2 N real unit vector ˜ c from the vector c 

2 2 Compute the 2 N × 2 N real symmetric matrix ˜ A from the 

matrix A 

3 3 Sample the real unit random vector ˜ u = vBL ( ̃ c , ̃  A ) 

4 4 Sample the complex unit random vector u from 

˜ u 

ector u ∼ CVGBL( c, A ). 
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A3. Sampling a CGBL distributed matrix 

The random matrix CGBL is sampled from the markov chain

monte carlo method [25] . Hence, we generate samples U ∼ CGBL( C ,

{ A p }) which converge in distribution to p CGBL . The procedure is de-

tailed in Algorithm 6 and is similar to [25] . 

Algorithm 6: The generation of the semi-unitary matrix 

U ∼ CGBL( C , { A p }). 

input : C , { A p }
output : U 

initialize : U 

(0) ← U init (a semi-unitary matrix) 
1 while stop criterion unreached do 

2 for p ∈ { 1 , . . . , P } in random order do 

33 Compute the null space N of the matrix U [ , −p] 

44 Compute the unit vector u = N 

H U [ ,p] 

55 Compute c̄ = κN 

H c p and Ā = N 

H A p N 

66 Update the complex unit vector u ∼ CVGBL ( ̄c , ̄A ) 

77 Update u p = Nu 

8 end 

9 end 

Appendix B. Details on the derivation of the MM algorithm 

We derive two propositions needed for the proposed algorithms

design. These propositions are generic. The first proposition is used

for the update of the orthonormal basis. The second proposition is

useful to derive updates w.r.t. the texture parameter { τ k } and the

eigenvalues { λp }. 

Proposition 1. Let U = [ u 1 , . . . , u P ] ∈ U N 
P 

, Q = [ q 1 , . . . , q P ] ∈ C 

N×P 

and { Z p } ⊂ H 

+ 
N 

. The function 

f (U ) = 

P ∑ 

p=1

Re { q 

H 
p u p } + u 

H 
p [ Z p ] u p (57)

is lower bounded at U 

t as 

f (U ) ≥
P ∑ 

p=1

u 

H 
p (Z p u 

t 
p + 1 / 2 q p ) + (u 

t H 

p Z p + 1 / 2 q 

H 
p ) u p + const

= Tr { U 

H H 

t } + Tr { H 

t H U } + const = −|| U − H 

t || 2 F + const 

(58)

with equality when U = U 

t = [ u 

t 
1 
, . . . , u 

t 
P 
] and H 

t = 1 / 2 Q +
[ Z 1 u 

t 
1 
, . . . , Z P u 

t 
P 
] . The surrogate function reads as 

f (U | U 

t ) = −|| U − H 

t || 2F (59)

Maximizing the above function under unitary constraints is equivalent

to solve 

minimize ̂ U 
|| U − H 

t || 2 F 

subject to 

̂ U 

H ̂ U = I P
(60)

which is an orthogonal Procrustes problem [22] that has a unique so-

lution given as 

 U 

t+1 = P Proc (H 

t ) (61)

where the projection onto the set U N 
P 

is denoted by the operator 

P Proc : C 

N×P −→ U 

N 
P

Y 

TSVD = UDV 

H � −→ P Proc { Y } = UV 

H
(62)

with 
TSVD = defines the thin-singular value decomposition of a given

matrix. 
roposition 2. Let us consider a , { b i } and { s i } where a > 0, b i > 0 and

 i > 0, ∀ i ∈ [[1, I ]] . The objective function

(a ) = 

I ∑ 

i =1

(
ln (ab i + σ 2 ) − ab i s i 

ab i + σ 2 

)
(63)

s upper bounded by 

(a ) ≤ A ln (Ba + C) − D ln (a ) (64)

ith
 

 

 

 

 

 

 

 

 

θ t 
i = 1 + s i 

a t b i 
a t b i + σ 2 

A = 

∑ I
i =1 θ

t
i

B = 

∑ I
i =1 

θ t 
i 
b i

b i a t + σ 2 ∑ I
i =1 θ

t
i

C = σ 2 

∑ I 
i =1

θt 
i 

b i a 
t + σ2∑ I 

i =1 θ
t 
i 

D = 

I ∑ 

i =1

s i 
a t b i 

a t b i + σ 2 

hen, the surrogate function reduces to 

(a | a t ) = A ln (Ba + C) − D ln (a ) (65)

ith equality at a = a t . The minimizer of the above function under

ositivity constraint is given as 

 

t+1 = 

DC 

B (A − D ) 
= 

1

I 

(∑ I
i =1 s i 

a t bi

a t b i + σ 2 

)(∑ I
i =1 σ

2 θ t 
i 

a t b i + σ 2 

)
∑ I 

i =1 

θ t 
i 
b i 

a t b i + σ 2 

(66)

roof. The proof of Propositions 1 and 2 are similar to [22] . �
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