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Abstract

In Prediction Error identification, to obtain a consistent estimate of the true system, it is crucial that the input excitation yields
informative data with respect to the chosen model structure. We consider in this paper the data informativity property for the
identification of a Multiple-Input Multiple-Output system in open loop and we derive conditions to check whether a given input
vector will yield informative data with respect to the chosen model structure. We do that for the classical model structures used in
prediction-error identification and for the classical types of input vectors, i.e., input vectors whose elements are either multisines
or filtered white noises.
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1 Introduction

When designing the input excitation for an identifi-
cation experiment, it is crucial that this input excitation
yields informative data. Indeed, data informativity en-
sures the consistency of the prediction error estimate (if
the considered model structure is identifiable at the true
parameter vector) [12,14]. In this paper, we consider this
important problem for the open-loop identification of
Multi-Input Multi-Output (MIMO) systems.

Data informativity is guaranteed when the input exci-
tation is sufficiently rich to guarantee that the prediction
error is different for different models in the considered
model structure. Data informativity has been studied ex-
tensively in the Single-Input Single-Output (SISO) case.
In this particular case, the data are informative if the in-
put signal is sufficiently rich of an order that depends
on the type and the complexity of the considered model
structure. That an input signal u is sufficiently rich of a
certain order η is equivalent to the fact that its power
spectrum Φu(ω) is nonzero in at least η frequencies in the
interval ]−π, π] (see e.g. [12]). In the recent years, due to
the renewed interest in optimal experiment design (see
e.g. [10,4]) where the covariance matrix of the identified
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model plays an important role, there has been a number
of efforts to relate the positive definiteness property of the
covariance matrix and the data informativity [9,2]. In [9]
and also in [8], necessary and sufficient conditions on the
signal richness of the excitation are also derived for the
data informativity in both the open-loop and the closed-
loop case. In particular, these papers derive the minimal
order of signal richness that the excitation signal must
have to ensure data informativity and this is done for all
classical model structures (BJ, ARX, ...). In the closed-loop
case, this minimal order is related to the complexity of
the controller present in the loop during the identifica-
tion. It is also shown in these papers (see also [14]) that,
if the controller is sufficiently complex, data informativity
can also be obtained by just using the noise excitation.

While the analysis of data informativity in the SISO
case seems a mature research area, this cannot be said for
the MIMO case. While there has been attention towards
determining the order of the MIMO controller to ensure
that an identification in closed loop without external ex-
citation will be informative [3,13], there is to this date al-
most no results that allow one to verify whether a given
input vector will yield informative data in the open-loop
case or in the closed-loop case (when the controller is
not sufficiently complex). Up to our knowledge, the only
available condition for data informativity is to check that
the power spectrum of the input vector is strictly positive
definite at (almost) all frequencies (see [3] or [7, Propo-
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sition 3]). However, as we will see in this paper, this suf-
ficient condition is too restrictive (e.g. a multisine input
vector will never respect this condition). Due to this ob-
servation, we derive in this paper a less conservative con-
dition that allows one to check whether a given input vec-
tor will yield informative data to identify a model in open
loop in a given model structure. We will do that for the
classical model structures used in prediction-error identi-
fication (ARX, FIR, BJ, OE model structures) and for both
multisine input vector and for an input vector generated
as u(t ) = N (z)v(t ) with v a vector of independent white
noises of arbitrary dimension and N a matrix of transfer
functions. These conditions can, e.g., be of importance for
MIMO optimal experiment design (see, e.g., [1,11]) since
it will allow to choose the input vector parametrization
in such a way that data informativity is guaranteed.

To derive these conditions, we first show that the
MIMO case can be treated by analyzing the data informa-
tivity channel by channel. An analysis of the data infor-
mativity channel by channel boils down to the analysis
of data informativity for Multiple-Input Single-Output
(MISO) systems. We will show that the data informa-
tivity with respect to a MISO model structure can be
guaranteed by the linear independence of the elements
of a vector of signals that we will call regressor vector.
This regressor vector φu(t ) contains delayed versions of
the elements of the input vector. There is of course an
analogy here with the SISO case since a scalar input sig-
nal is sufficiently rich of a given order η if the elements
of such a regressor vector of dimension η are linearly
independent [8].

We then show that, in the MISO case, the linear inde-
pendence of the elements of φu(t ) is equivalent to the
fact that a given matrix is full row rank. This matrix will
be a function of the input parametrization, i.e., the am-
plitudes, phase shifts and frequencies of the different si-
nusoids in the multisine case and the coefficients in the
matrix N (z) in the filtered white noise case. We then an-
alyze which conditions are necessary to make this ma-
trix full rank. We therefore derive, for the multisine case,
conditions on the number of sinusoids that are present
in the multisine input vector and, for the filtered white
noise case, conditions on the complexity of the matrix N
and on the number of white noises in v .

This paper builds upon our previous contributions [6,5]
where we restricted attention to the MISO case and to
FIR model structures.

2 Notations

For a complex-valued matrix A, AT denotes its trans-
pose and A∗ its conjugate transpose. A positive semi-
definite (resp. definite) matrix A is denoted A º 0 (resp.
A Â 0). We will denote Ai k the (i ,k)-entry of the matrix
A, Ai : the i -th row of A and A:k the k-th column of A.
The identity matrix of size n×n is denoted In and 0n×p is

the n×p matrix full of zeros. The rank of a matrix A will
be denoted rank(A). For a vector x ∈Rn , the notation ||x||
refers to the Euclidean norm, i.e., ||x|| =

√
x2

1 +·· ·+x2
n .

For a discrete-time transfer function G(z), z represents
the forward-shift operator and its frequency response is
given by G(z = e jω) where ω is the normalized frequency
in [0 π]. For a polynomial P (X ), the coefficient linked
to X k is denoted p(k). Thus, P (X ) = p(0) + p(1)X + ·· · +
p(k)X k + ·· · + p(n)X n . The degree n of this polynomial
P (X ) is denoted deg(P (X )). When X = z−1, we say that ρ
is the delay of P (z−1) when the first non-zero coefficient
is linked to z−ρ , i.e., P (z−1) = p(ρ)z−ρ+p(ρ+1)z−(ρ+1)+·· ·+
p(n)X n with p(ρ) 6= 0.

Finally, for quasi-stationary signals x(t ), the operator
Ē [x(t )] is defined as Ē [x(t )] = limN→∞ 1

N

∑N
t=1 E [x(t )] (E

being the expectation operator) [12].

3 Prediction Error Framework

Consider a MIMO system S in open-loop with an in-
put vector u ∈Rnu and an output vector y ∈Rny , described
by

S : y(t ) =G0(z)u(t )+H0(z)e(t ) (1)

where G0(z) is a stable matrix of (rational) transfer func-
tions of dimension ny×nu , H0(z) a stable, inversely-stable
and monic matrix 1 of (rational) transfer functions of di-
mension ny ×ny and e is a vector made up of ny white
noise signals such that Ē

[
e(t )eT (t )

] = Σ0 Â 0. Since the
system S is operated in open-loop, the excitation signal
that will be used for identification purpose will be the
input vector u(t ) which is assumed to be independent
of e(t ). Moreover, we will assume two different types of
quasi-stationary excitation u.

In the first type, each entry uk of u (k = 1, · · · ,nu) is a
multisine made up of sinusoids at p different frequencies
ωl (l = 1, · · · , p), i.e.,

uk (t ) =
p∑

l=1
Λkl cos(ωl t +Ψkl ) k = 1, · · · ,nu (2)

where Λkl and Ψkl , are respectively the amplitude and
phase shift of the sinusoid at the frequency ωl . Note that
Λkl can be zero for some value(s) of k (k = 1, · · · ,nu), but,
for each l = 1, · · · , p, there exists (at least) a value of k
for which Λkl 6= 0. For further reference, we will denote
by pk (k = 1, · · · ,nu) the number of sinusoids for which
the amplitude Λkl in the expression (2) for uk is nonzero
(pk ≤ p ∀k).

In the second type of input u, u is generated
as u(t ) = N (z)v(t ) via a stable transfer function
matrix N (z) = (Nkq (z))(k,q)∈J1,nuK×J1,rK and a vector

1 i.e. H0 and H−1
0 are stable and H0(z =∞) = Iny
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v = (v1, · · · , vr )T containing r independent white noises
signals vq (q = 1, · · · ,r ). In other words, each entry uk of
u is given by:

uk (t ) =
r∑

q=1
Nkq (z)vq (t ) k = 1, · · · ,nu . (3)

Note that r is not necessarily equal to nu and that
Nkq (z) can be identically zero for some value(s) of k
(k = 1, · · · ,nu), but, for each q = 1, · · · ,r , there exists (at
least) a value of k for which Nkq (z) 6= 0.

To identify S , we consider a full-order model struc-
ture M = {(G(z,θ), H(z,θ)) | θ ∈ Dθ} where θ ∈ Dθ ⊂ Rn

is a parameter vector. This model structure is full-
order if ∃θ0 ∈ Dθ ⊂ Rn , called the true parameter vec-
tor, such that (G(z,θ0), H(z,θ0)) = (G0(z), H0(z)). We
will further suppose that this model structure is glob-
ally identifiable at the true parameter vector θ0, i.e.,
(G(z,θ), H(z,θ)) = (G(z,θ0), H(z,θ0)) =⇒ θ = θ0. The set
Dθ restricts the parameter vector θ to those values for
which G(z,θ) is stable and H(z,θ) is stable and inversely
stable.

Consider a set of data Z N = {s(t ) = (uT (t ), yT (t ))T | t =
1, · · · , N } collected on the true system S . We can define,
based on the model structure M , the one-step ahead
predictor ŷ(t ,θ) for the output y(t ) at time t :

ŷ(t ,θ) =Wu (z,θ)u(t )+Wy (z,θ)y(t ) =W (z,θ)s(t ) (4)

where

Wu (z,θ) = H−1(z,θ)G(z,θ) (5)

Wy (z,θ) = Iny −H−1(z,θ) (6)

W (z,θ) = (Wu (z,θ),Wy (z,θ)). (7)

As we will see in the sequel, it is important that the data
s(t ) = (uT (t ), yT (t ))T collected on the true system S be
informative with respect to M .

Definition 1 (Data Informativity [3]) Consider the
framework defined above with data s(t ) = (uT (t ), yT (t ))T

collected by applying a quasi-stationary input vec-
tor u to the true system S . Consider a model struc-
ture M yielding the predictor ŷ(t ,θ) = W (z,θ)s(t ).
Let us also define the set ∆W = {∆W (z) | ∆W (z) =
W (z,θ′)−W (z,θ′′) with θ′ and θ′′ in Dθ}. The data s(t ) is
said to be informative w.r.t. the model structure M when,
for all ∆W (z) ∈∆W, we have

Ē
[
||∆W (z)s(t )||2

]
= 0 =⇒∆W (z) ≡ 0 (8)

where ∆W (z) ≡ 0 means that ∆W (e jω) = 0 for almost all
ω. �

Data informativity is an important property since it
implies that the prediction error criterion [12,14] defined
below yields a consistent estimate θ̂N for θ0:

θ̂N = arg min
θ∈Dθ

VN (θ) (9)

VN (θ) = 1

N

N∑
t=1

εT (t ,θ)Σ−1
0 ε(t ,θ) (10)

where ε(t ,θ) = y(t ) − ŷ(t ,θ) and where Σ0 is supposed
known for simplicity (it can however be estimated to-
gether with θ̂N (see, e.g., [12, Chapter 15]). The esti-
mate θ̂N is consistent if it converges to θ0 with prob-
ability 1 when N → +∞ or, equivalently, if and only if
θ0 is the unique minimum of the asymptotic criterion
Ē

[
εT (t ,θ)Σ−1

0 ε(t ,θ)
]
.

In the sequel, we will therefore derive conditions to
ensure the data informativity for input vectors u of the
types (2)-(3). It is important to note that the parametriza-
tions (2)-(3) for the input vector u cover many cases where
det(Φu(ω)) = 0 ∀ω (e.g., when r < nu in (3) or, always, for
the multisine case). Consequently, many of these input
vectors u do not satisfy the sufficient condition for infor-
mativity discussed in the introduction (see, e.g., [3] or [7,
Proposition 3]).

We will derive conditions for data informativity for the
following classical model structures M : FIR, ARX, OE and
BJ model structures. Note that we will not consider the
ARMAX model structure to simplify the presentation and
since an ARMAX system can always be represented within
a BJ model structure. The parametrization used in these
classical model structures are reminded in the sequel. For
this purpose, let us decompose θ as θ = (θ̃T , ηT )T where
θ̃ contains the parameters that we only find in G(z,θ) and
η contains the rest of the parameters (i.e. the parameters
in H(z,θ) and the parameters that are common to G(z,θ)
and H(z,θ)). Based on this decomposition, the ARX model
structure can be defined as follows

 G(z,θ) = A
(
z,η

)−1 B(z, θ̃)

H(z,θ) = A
(
z,η

)−1 (11)

where A(z,η) and B(z, θ̃) are respectively ny × ny and
ny×nu polynomial matrices and where A(z,η) is restricted
to be monic. The parameters in the vector θ are here
given by the coefficients of the polynomials in these ma-
trices and we will suppose that all the polynomials in
these matrices are independently parametrized (i.e. do
not share any common parameters). The FIR model struc-
ture is a special case of the ARX model structure where
A(z,η) = Iny .

In the BJ model structure, there are no common pa-
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rameters in G(z,θ) and H(z,θ): G(z,θ) = G(z, θ̃)

H(z,θ) = H(z,η)
(12)

The parameter vector θ̃ contains the parameters of the
numerators and (monic) denominators of each trans-
fer function in the matrix of transfer functions G(z, θ̃).
The same holds for η and H(z,η), but in this case, the
parametrization must also be such that H(z =∞,η) = Iny .
We here also suppose that the individual entries in these
matrices do not share any common parameters. The OE
model structures is a special case of the BJ model struc-
ture where H

(
z,η

)= Iny .

When the true system is ARX/FIR, a full-order ARX/FIR
model structure will always be globally identifiable at θ0.
In the BJ/OE case, the model structure will be globally
identifiable at θ0 if θ0 does not lead to any pole-zero
cancellation in the entries of G(z,θ) and H(z,θ).

4 Data informativity for MIMO systems

As mentioned above, our objective in this paper is to
derive conditions to ensure the data informativity for in-
put signals u of the types (2)-(3) and for the classical types
of model structures M . For this purpose, in the follow-
ing two theorems, we will first see that the analysis of the
data informativity in the MIMO case can be simplified.
In particular, we will see that, by virtue of the particu-
lar parametrization of the classical model structures, the
condition (8) in the definition of data informativity can
be simplified (see Theorem 2) and, subsequently, that the
verification of this simplified condition can be performed
channel by channel (see Theorem 3).

Theorem 2 Consider Definition 1 and the model struc-
tures M defined at the end of Section 3. Let us
also define the set ∆X = {∆X (z) | ∆X (z) = X (z,θ′) −
X (z,θ′′) with θ′ and θ′′ in Dθ} where X (z,θ) = B(z, θ̃) for
ARX/FIR model structures and where X (z,θ) = G(z, θ̃)
for BJ/OE model structures. Then, the data s(t ) =
(uT (t ), yT (t ))T are informative w.r.t. the model structure
M if and only if, for all ∆X (z) ∈∆X, we have:

Ē
[
||∆X (z)u(t )||2

]
= 0 =⇒∆X (z) ≡ 0 (13)

�

PROOF. See Appendix A.

Since Ē
[||∆X (z)u(t )||2] is equal to the trace of

(1/2π)
∫ π
−π∆X (e jω)Φu(ω)∆X ∗(e jω) dω, independently of

the model structure M , (2) will hold for all ∆X ∈ ∆X
it is clear that (13) will hold for any model structure

if Φu(ω) Â 0 at almost all frequencies. This sufficient
condition is the one discussed in the introduction.

Theorem 3 Consider Definition 1 and Theorem 2 and let
us define based on∆X the sets∆X,i = {∆Xi :(z) |∆Xi :(z) is the
i th row of ∆X (z) ∈∆X} (i = 1, · · · ,ny ). Then, the data s(t )
are informative w.r.t. the model structure M if and only
if, for all i = 1, · · · ,ny , the following property holds for all
∆Xi : ∈∆X,i:

Ē
[
||∆Xi :(z)u(t )||2

]
= 0 =⇒∆Xi :(z) ≡ 0 (14)

PROOF. See Appendix B.

Theorems 2 and 3 are important since they imply that,
to check the informativity of the data s(t ) = (uT (t ), yT (t ))T

with respect to a MIMO model structure M , we can equiv-
alently check, for all i = 1, · · · ,ny , the informativity of
the data si (t ) = (uT (t ), yi (t ))T (Theorem 3) and this ver-
ification for si only involves the i th row Bi :(z, θ̃) of the
parametrization B(z, θ̃) (for ARX/FIR model structures) or
the i th row Gi :(z, θ̃) of the parametrization G(z, θ̃) (for
BJ/OE structures). It is also clear that the data si (t ) =
(uT (t ), yi (t ))T correspond to the data of a MISO system
with nu inputs. Consequently, we can, from now on, re-
strict attention to MISO systems and MISO model struc-
tures.

5 Data informativity for MISO systems

5.1 Notations for a MISO model structure

Let us introduce some further notations for the MISO
model structures and let us restrict attention to those
parts that are relevant for data informativity (see Theo-
rem 2). In a MISO ARX/FIR model structure, B(z, θ̃) is a
vector made up of nu independently parametrized poly-
nomials Bk (z, θ̃k ) (k = 1, · · · ,nu). In the BJ/OE case, G(z, θ̃)
is a vector made up of nu independently parametrized
transfer functions Gk (z, θ̃k ). In both cases, the parameter
vector θ̃ ∈ Rñ is the concatenation of θ̃k (k = 1, · · · ,nu),
i.e., θ̃ = (θ̃T

1 , θ̃T
2 , · · · , θ̃T

nu
)T and where ñ is the dimension

of θ̃. Let us also introduce the following notation for each
entry of these vectors:

Bk (z, θ̃k ) = z−ρk B̊k (z, θ̃k ) (15)

Gk (z, θ̃k ) = z−ρk
B̊k (z, θ̃k )

F̊k (z, θ̃k )
(16)

where the delays ρk can be different for each k and where
both B̊k and F̊k are polynomials (F̊k is moreover a monic
polynomial, i.e., F̊k (z = ∞) = 1). In the sequel, we will
denote the degree of these polynomials by deg(B̊k ) and
deg(F̊k ), respectively (see Section 2). The coefficients of

4



the polynomials B̊k and F̊k are the parameters in θ̃k . Con-
sequently, we have that:

B̊k (z, θ̃k ) = θ̃k,1 +
deg(B̊k )∑

m=1
θ̃k,(m+1)z−m (17)

F̊k (z, θ̃k ) = 1+
deg(F̊k )∑

m=1
θ̃k,(m+deg(B̊k )+1)z−m (18)

where θ̃k,m denotes the mth entry of θ̃k . The number
of parameters to identify in B̊k and F̊k is thus equal to
deg(B̊k )+1 and deg(F̊k ), respectively.

In Section 3, we have restricted the value of θ ∈ Rn

to the ones in Dθ . Since only θ̃ ∈ Rñ is relevant
for data informativity, we introduce the set Dθ̃ as
Dθ̃ = {θ̃ | B(z, θ̃) is stable} (ARX/FIR model structures)
and as Dθ̃ = {θ̃ | G(z, θ̃) is stable} (BJ/OE model struc-
tures). Note that Dθ̃ covers the whole parameter space
Rñ in the ARX/FIR case since B(z, θ̃) is always stable.

5.2 Persistency of a vector of signals

In the sequel, we will show that the data informativity
can be linked to the persistency of a vector of signals.
The persistency of a (complex- or real-valued) vector of
signals is defined as follows:

Definition 4 (Persistency) A quasi-stationary real or
complex-valued vector of signals φ is persistently exciting
(PE) if and only if Ē [φ(t )φ∗(t )] Â 0. �

We have also the following useful result regarding real-
valued vector of signals.

Lemma 5 Consider a vector φ containing p real-valued
quasi-stationary signals φi . Then, the three following
propositions are equivalent:

• (a) φ is PE.
• (b) Ē [φ(t )φT (t )] Â 0.
• (c) ∀α ∈Rp , Ē [αTφ(t )]2 = 0 if and only if α= 0p×1. �

PROOF. (a) ⇔ (b): this follows from a straightforward ap-
plication of Definition 4 for a real-valued vector of signals.

(b) ⇔ (c): Ē [φ(t )φT (t )] Â 0 is equivalent to the fact that,
for any α ∈ Rp , αT Ē [φ(t )φT (t )]α= 0 ⇔α= 0p×1 which is
in turn equivalent to condition (c). �

Remark 6 The condition (c) of Lemma 5 means that the
elements φi of φ are linearly independent signals. �

5.3 Input regressor persistency

Using the notion of persistency defined in the previous
subsection, we show in the next theorem that the data
informativity in the MISO case can be guaranteed by the

persistency of a particular vector of signals depending on
the input u(t ). This vector will be denoted φu(t ) and will
be called regressor.

Theorem 7 (MISO informativity) Consider the data
s(t ) = (uT (t ), y(t ))T obtained by applying an input vector
u on a MISO system. Consider a full-order model structure
M for this MISO system and the notations introduced
in Section 5.1. Then, the data s(t ) are informative with
respect to M if the regressor φu(t ) defined below is PE:

φu (t ) =


φu1 (t )

...

φunu
(t )

 with φuk (t ) =


uk (t −ρk )

...

uk (t −ρk −ηk )

 (19)

The dimension µ of the regressor φu in (19) is given by
µ= nu +∑

ηk (the dimension of φuk being equal to ηk +1
(k = 1, · · · ,nu)) and the scalars 2 ηk (k = 1, · · · ,nu) in (19)
are respectively given by:

• ηk = deg(B̊k ) for ARX and FIR model structures.
• ηk = deg(B̊k )+deg(F̊k )+2

∑nu
m=1,m 6=k deg(F̊m ) for BJ and OE

model structures.

For ARX and FIR model structures, the persistency of φu is
not only a sufficient condition for data informativity but
also a necessary condition. �

PROOF. See Appendix C �

If we apply this theorem to the SISO case (nu = 1), we
observe that the condition for data informativity is that
the regressor φu =φu1 of dimension η1+1 is PE. This con-
dition is equivalent to the fact that the scalar signal u = u1
is sufficiently rich of order η1 + 1 (see [8,9]) or, equiva-
lently, that the power spectrum Φu(ω) of u = u1 is non-
zero in at least η1 +1 frequencies in ]−π,π]. By comput-
ing η1 when nu = 1, we then retrieve the classical results
for data informativity with respect to the ARX/FIR/BJ/OE
models structures in the SISO case (see, e.g., [8]).

While, in the SISO case, the persistency of φu1 is a nec-
essary and sufficient condition for data informativity for
all model structures, the persistency of the regressor φu
defined in (19) is only a necessary and sufficient condi-
tion for data informativity for the ARX/FIR model struc-
tures while it is just a sufficient condition in the BJ/OE
case. In Section 9, we will show that this sufficient con-
dition is nevertheless not overly conservative.

In the next sections, we will derive a necessary and suf-
ficient condition on the input vector u to guarantee that

2 The notations ηk are not related to the vector η introduced
at the end of Section 3.
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φu is PE. In the ARX/FIR case, this condition will then be
a necessary and sufficient condition for data informativ-
ity while it will be only sufficient one in the BJ/OE case.
Before deriving this necessary and sufficient condition for
φu to be PE, let us formulate the following lemma that
will give us a first idea on how u has to be chosen for this
purpose.

Lemma 8 Consider a quasi-stationary input vector u of
dimension nu and the corresponding regressor φu defined
in (19). If φu is PE, then we have necessarily the following
two properties:

• (i ) each φuk (k = 1, · · · ,nu) is PE
• (i i ) for any m ∈ N, the vector φUm made up of the el-

ements of the set Um = {uk (t ) | uk (t −m) is present in
φu(t )} is PE. In other words, the inputs uk that appear
with the same delay in φu must be linearly independent.

Moreover, for any k = 1, · · · ,nu , the vector φuk of dimension
ηk +1 is PE if and only if the power spectrum Φuk (ω) of
uk (k = 1, · · · ,nu) is nonzero in at least ηk +1 frequencies
in ]−π,π]. �

PROOF. The first point directly follows from condition
(c) of Lemma 5 and the expression (19) for φu . Indeed,
condition (c) can only hold for φu if it also holds for
each φuk (k = 1, · · · ,nu). The second point follows from a
similar reasoning and from the fact that a quasi-stationary
vector φ(t ) is PE if and only if φ(t −m) is PE ∀m ∈N.

Finally, due to Definition 4, the persistency of φuk is
equivalent to the fact that uk is sufficiently rich of order
ηk +1 (see also [8,9]) and this property of uk is equivalent
to the property on its spectrum given in the statement of
the lemma [12]. �

Let us first discuss the necessary condition (i ). This
condition will be always respected in the filtered white
noise case since Φuk (ω) will be non-zero at (almost) all
frequencies ω (uk is indeed generated by at least one
filtered white noise). In the multisine case, the condition
(i ) entails that, for each k = 1, · · · ,nu , the number pk of
sinusoids that are effectively present in uk (i.e. for which
Λkl 6= 0) satisfies the following constraint:

pk ≥ ηk +1

2
(20)

Note that this condition is independent of the choice of
the amplitudes and phase shifts in (2).

Let us now consider the property (i i ). In the majority
of the model structures, there will be a value of the delay
m for which Um will contain all entries of u (e.g. this
happens when the delays ρk are the same for all k). When
this is the case, property (i i ) requires that the signals
uk (k = 1, · · · ,nu) are linearly independent (the vector of

signals u is PE). In the multisine case, we will see in the
sequel that u is PE if and only if a certain matrix made
up of the amplitude Λkl and the phase shifts Ψkl is full
(row) rank. In the filtered white noise case, this entails that
the rows of N (z) are linearly independent. Even though
choosing an input vector that is PE is a good practice,
this property is only strictly necessary for φu to be PE for
the model structures having the property described in the
beginning of this paragraph, as shown in the following
example that also illustrates the construction of φu .

Example 9 Consider a MISO OE model structure with
nu = 3 and for which the predictor ŷ(t ,θ) =G(z,θ)u(t ) is
given by:

ŷ(t ,θ) = θ1

1+θ2z−1 u1(t )+θ3z−9u2(t )+ θ4z−4

1+θ5z−1 u3(t )

with θT = θ̃T =
(
θ1 θ2 θ3 θ4 θ5

)
. We observe that, in

this model structure, the delays are given by (ρ1,ρ2,ρ3) =
(0,9,4) and that the transfer functions Gk (k = 1,2,3) in G
have the form (16) with

B̊1 = θ1 B̊2 = θ3 B̊3 = θ4

F̊1 = 1+θ2z−1 F̊2 = 1 F̊3 = 1+θ5z−1

Let us deduce the regression order ηk defined in Theorem 7:

• η1 = deg(B̊1)+deg(F̊1)+2deg(F̊2)+2deg(F̊3) = 3
• η2 = deg(B̊2)+deg(F̊2)+2deg(F̊1)+2deg(F̊3) = 4
• η3 = deg(B̊3)+deg(F̊3)+2deg(F̊1)+2deg(F̊2) = 3

and let us form the input regressor φu defined in (19), i.e.,
φu(t ) = (φu1 (t )T ,φu2 (t )T ,φu3 (t )T )T with

φT
u1

(t ) =
(
u1(t ) u1(t −1) u1(t −2) u1(t −3)

)
φT

u2
(t ) =

(
u2(t −9) u2(t −10) u2(t −11) u2(t −12) u2(t −13)

)
φT

u3
(t ) =

(
u3(t −4) u3(t −5) u3(t −6) u3(t −7)

)

We can see that each set Um contains at most one signal.
This means that the condition (i i ) of Lemma 8 simply says
that the inputs uk (t ) must not be identically equal to 0. It
is therefore possible to get the persistency of φu even if there
is a linear dependence between u1(t ), u2(t ) and u3(t ). In
particular, we can choose u1 = u2 = u3 = v where v is a
white noise signal. In this case, φu is indeed PE since it is
made up of different elements of a white noise sequence.
This choice of u thus guarantees data informativity (The-
orem 7). �

It is important to stress that Lemma 8 only gives nec-
essary conditions for φu to be PE. In the next section, we
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will therefore continue our analysis by deriving a neces-
sary and sufficient condition for the input regressor to be
PE. This result will entail (among other aspects) that, to
guarantee this property which implies the data informa-
tivity, we also require an additional condition on the total
number p of sinusoids in the multisine case and on the
complexity of the filter matrix N (z) in the filtered white
noise case.

6 Necessary and sufficient condition for the input re-
gressor persistency

6.1 General idea

The necessary and sufficient condition will be derived
by rewriting φu(t ) (see (19)) into the form φu(t ) =N ϕ(t )
where N is a (possibly complex) matrix whose entries are
functions of the input parametrization andϕ(t ) is a vector
of (possibly complex-valued) quasi-stationary signal that
is always PE (see Definition 4). This decomposition is
important since we have then the following result:

Lemma 10 Consider a vector of quasi-stationary signals
φ(t ) given by φ(t ) =N ϕ(t ) where N is a complex matrix
and ϕ(t ) is a vector of complex-valued quasi-stationary
signals that has the property of being PE. Then, φ(t ) is PE
if and only if N is full row rank. �

PROOF. Due to Definition 1, the lemma will be proven if
we show that Ē [φ(t )φ∗(t )] =N Ē [ϕ(t )ϕ∗(t )]N ∗ Â 0. Since
ϕ(t ) is PE, we have Ē [ϕ(t )ϕ∗(t )] Â 0. Consequently, a full
row rank N is indeed a necessary and sufficient condition
for Ē [φ(t )φ∗(t )] Â 0. �

In the next two sections, we will show that we can
rewrite φu in this way for multisine and filtered white
noise excitation.

6.2 Input regressor for multisine excitation

In this section, we consider that the input u(t ) is a
multisine such that each uk (t ) is given by (2). By using
Euler’s formula, we have that

uk (t −mk ) = 1

2

p∑
l=1

(
Λkl e− j mkωl e jωl t +Λ∗

kl e j mkωl e−ωl t
)

where Λkl =Λkl e jΨkl is a phasor and mk ∈ Jρk ,ρk +ηkK.
Consequently,

φuk (t ) =Qkφsi n(t ) (21)

where Qk and φsi n(t ) are successively defined by

QT
k =



Λk1e− jρkω1 · · · Λk1e− j (ρk+ηk )ω1

Λ
∗
k1e jρkω1 · · · Λk1e j (ρk+ηk )ω1

... · · · ...

Λkp e− jρkωp · · · Λkp e− j (ρk+ηk )ωp

Λ
∗
kp e jρkωp · · · Λ∗

kp e j (ρk+ηk )ωp


(22)

φsi n(t ) = 1

2



e jω1t

e− jω1t

...

e jωp t

e− jωp t


(23)

Therefore,

φu(t ) =Qφsi n(t ) (24)

where Q =
(
QT

1 · · · QT
nu

)T
is a matrix of dimension µ×

2p with µ the dimension of φu and p the number of
frequencies in the multisine (each Qk being of dimension
(ηk +1)×2p).

An example of construction of the matrix Q will be
given later in the text (see Example 18).

Remark 11 For the sequel, it is important to note that the
matrix Q will have the property that none of its column
is identically zero since, in Section 3, the set of frequencies
(ω1, · · · ,ωp ) is defined in such a way that, for each fre-
quency ωl (l = 1, · · · , p), there will always be at least one
uk for which Λkl 6= 0.

6.3 Input regressor for filtered white noise

In this section, we consider input vectors u generated
as u(t ) = N (z)v(t ) with a stable matrix N (z) of transfer
functions and with a vector v made up of r independent
white noises, i.e., each uk (t ) is given by (3). We will rewrite
N (z) as N (z) = L(z)/w(z) where L(z) is a nu × r matrix
of polynomials and w(z) the least common multiple of
the denominators of N (z). The entry Lkq (z) of L(z) (k =
1, · · · ,nu , q = 1, · · · ,r ) will always be of the form

Lkq (z) =
nkq∑

h=dkq

l (h)
kq z−h (25)

with nkq = deg(Lkq (z)), dkq the delay of Lkq (z) and

with l (h)
kq the coefficients of the polynomials. For all
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mk ∈ Jρk ,ρk +ηkK, we can thus express w(z)uk (t −mk ) as

w(z)uk (t −mk )

=
r∑

q=1
Lkq (z)vq (t −mk )

=
nk1∑

h=dk1

l (h)
k1 v1(t −h −mk )+·· ·+

nkr∑
h=dkr

l (h)
kr vr (t −h −mk )

Let us consider the above expansions for all entries
in φu and let us define a vector φ f wn containing all el-
ements vq (t −h −mk ) of the white noise sequences vq
(q = 1, · · · ,r ) that are present in these expansions. For a
given q , φ f wn will thus contain all elements of vq (t ) from
vq (t −Γq ) till vq (t −Υq ) with Γq = min

k∈J1,nuK
dkq +ρk and

Υq = max
k∈J1,nuK

nkq +ηk +ρk . The vector φ f wn of dimension

ξ= r +∑r
q=1

(
Υq −Γq

)
is thus given by:

φ f wn(t ) =


v1(t )

...

vr (t )

 with vq (t ) =


vq (t −Γq )

vq (t −Γq −1)
...

vq (t −Υq )

 (26)

Using φ f wn and the expression for w(z)uk (t −mk ), we
have that:

w(z)φuk (t ) =
(
Lk1 · · · Lkr

)
︸ ︷︷ ︸

Lk

φ f wn(t )

where Lkq (q = 1, ..,r ) is a matrix of dimension (ηk +1)×
(Υq −Γq +1) defined as:

Lkq =
(
0(ηk+1)×(dkq+ρk−Γq ) L̃kq 0(ηk+1)×(Υq−nkq−ηk−ρk )

)

L̃kq =


l

(dkq )

kq · · · · · · · · · l
(nkq )

kq 0

. . . · · · · · · · · · . . .

0 l
(dkq )

kq · · · · · · · · · l
(nkq )

kq


We can therefore also write that:

w(z)φu(t ) =Lφ f wn(t ) (27)

where L =
(
L T

1 · · · L T
nu

)T
is a matrix of dimension µ×

ξ. To illustrate the construction of this matrix L , let us
consider the following example.

Example 12 Consider for the input regressor nu = 3,
(ρ1,ρ2,ρ3) = (1,1,3), (η1,η2,η3) = (0,2,1), r = 2, w(z) = 1

and

N (z) = L(z) =


0.2− z−2 z−1 −0.8z−2 +3z−3

0.5z−2 −z−1 +2z−2

0 0.4z−1 +5z−2



The input regressor φu is thus made up of u1(t − 1),
u2(t −1), u2(t −2), u2(t −3), u3(t −3) and u3(t −4) (i.e. µ=
6). To determine φ f wn(t ), we observe that Γ1 = 1, Γ2 = 2,

Υ1 = 5 andΥ2 = 6. Consequently, φ f wn(t ) =
v1(t )

v2(t )

, where

v1(t ) =



v1(t −1)

v1(t −2)

v1(t −3)

v1(t −4)

v1(t −5)


and v2(t ) =



v2(t −2)

v2(t −3)

v2(t −4)

v2(t −5)

v2(t −6)



We can now construct successively the matrices L̃kq
(k = 1, · · · ,nu , q = 1, · · · ,r ) with nu = 3 and r = 2 and the
matrix L :

L̃11 =
(
0.2 0 −1

)
L̃12 =

(
1 −0.8 3

)

L̃21 =


0.5 0 0

0 0.5 0

0 0 0.5

 L̃22 =


−1 2 0 0

0 −1 2 0

0 0 −1 2


L̃31 =

0 0

0 0

 L̃32 =
0.4 5 0

0 0.4 5



L =


L11 L12

L21 L22

L31 L32

=


01×0 L̃11 01×2 01×0 L̃12 01×2

03×2 L̃21 03×0 01×0 L̃22 03×1

02×2 L̃31 02×1 01×2 L̃32 02×0



=



0.2 0 −1 0 0 1 −0.8 3 0 0

0 0 0.5 0 0 −1 2 0 0 0

0 0 0 0.5 0 0 −1 2 0 0

0 0 0 0 0.5 0 0 −1 2 0

0 0 0 0 0 0 0 0.4 5 0

0 0 0 0 0 0 0 0 0.4 5


where the underlined zeros correspond to the zeros of the
0(ηk+1)×(Υq−nkq−ηk−ρk ) and 0(ηk+1)×(dkq+ρk−Γq ) for all Lkq .
�
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Remark 13 If all the coefficients l (h)
kq are nonzero in the

expression (25) for the filters Lkq (z) (k = 1, · · · ,nu and q =
1, · · · ,r ), all the columns in L will be nonzero (as it was
the case for Q, see Remark 11). However, if some of these
coefficients appear to be zero, this can no longer be the case.
As an example, the second column of L in Example 12
is identically zero. This happens because L11(z) misses the
term in z−1 and, consequently, the white noise element
v1(t − 2) will never appear in the expansions describing
w(z)uk (t −mk ) given below (25). �

6.4 Necessary and sufficient condition for φu to be PE

We can now combine Lemma 10 with the matrices Q
and L introduced in the previous subsections to deduce
our main theorem giving a necessary and sufficient con-
dition for φu to be PE:

Theorem 14 Consider the regressor φu of dimension µ (see
Theorem 7) and the expressions (24) and (27) for this re-
gressor corresponding, respectively, to the multisine case
(see (2)) and the filtered white noise case (see (3)). Then,
φu(t ) is PE if and only if

• Q is full row rank (i.e. rank(Q) = µ) in the multisine
case

• L is full row rank (i.e. rank(L ) =µ) in the filtered white
noise case. �

PROOF. Let us first consider the multisine case.
We first observe that φsi n(t ) is (always) PE since
Ē [φsi n(t )φ∗

si n(t )] = 1
4 I2p Â 0. Consequently, the result

follows from a direct application of Lemma 10. Let us
now consider the filtered white noise case. We observe
that φ f wn(t ) is (always) PE since it contains elements of
independent white noise sequences. Consequently, an
application of Lemma 10 yields the equivalence between
a full row rank matrix L and the fact that w(z)φu(t ) is
PE. By noticing that w(z) is a stable and inversely stable
filter, this completes the proof. Indeed, for such w(z), it is
straightforward to show using condition (c) of Lemma 5
that φu(t ) is PE if and only if w(z)φu(t ) is PE. �

Given the expressions (2) and (3) for u, it is easy to con-
struct, respectively, Q and L and check whether the cor-
responding input signal will yield a persistently exciting
φu and thus informative data for the considered model
structure M . Indeed, these matrices are a function of the
model structures parameters ρk and ηk and of the input
vector parametrization. This input vector parametrization
is characterized by the amplitudes Λkl the phase shifts
Ψkl and the frequencies ωl (for the multisine case) and
by the matrix N (filtered white noise case).

We can, e.g., apply the above theorem on the situation
described in Example 12. In this example, the matrix L
is full row rank, i.e., rank(L ) = µ = 6. Consequently, the
input vector u of dimension 3 generated via N (z) with

the white noises v1 and v2 will therefore yield informa-
tive data for any model structure corresponding to the
regressor φu used in Example 12. It is interesting to note
that this is the case even though det(Φu(ω)) = 0 at all ω.

Theorem 14 gives us thus a tool to verify whether a
given input vector will yield informative data for a given
model structure. However, it does not give much hints on
how to determine the input vector to yield full row rank
matrices Q and L . Such hints will be given in the next
sections. We will first start by analyzing the multisine case
and then the filtered white noise case.

Remark 15 If the system is MIMO, the matrix Q or L
must be constructed for each channel and it should be
verified that these ny matrices are full row rank.

Remark 16 In Section 5.2, it was discussed that choosing
an input vector u with linearly independent elements (u
is PE) is a good practice and is furthermore a necessary
condition to yield a persistently exciting φu for the ma-
jority of model structures. We have given in that section
a necessary and sufficient condition for u to be PE in the
filtered white noise case. We can now do the same for the
multisine case. If u is described as (2), u is PE if and only
if the following phasor matrix A is full row rank:

A =


Λ11 Λ

∗
11 · · · Λ1p Λ

∗
1p

...
... · · ·

...
...

Λnu 1 Λ
∗
nu 1 · · · Λnu p Λ

∗
nu p

 (28)

Let us indeed observe that u(t ) = Aφsi n(t ) with φsi n(t )
as defined in (23). Consequently, the above result directly
follows from Lemma 10 and the fact that φsi n(t ) is PE (see
the proof of Theorem 14).

7 Multisines yielding data informativity

To help us constructing a multisine input vector yield-
ing a persistently exciting φu (and thus data informativ-
ity), we have already discussed a number of aspects in
Section 5.2. In particular, we cannot have a persistently
exciting φu if the number pk of non-zero sinusoids in
each uk does not respect (20). This condition can also
be explained by the fact that the matrix Q introduced in
section 6.2 can only be full row rank if all matrices Qk
are full row rank. Since Qk has ηk +1 rows and contains
2pk non-zero columns, it is necessary that (20) holds for
Qk to be full row rank. Using a similar reasoning on the
full matrix Q, we can now derive the following additional
condition on the total number p of sinusoids in the input
vector u.

Lemma 17 Consider a regression vector φu(t ) of dimen-
sion µ (see Theorem 7). Suppose that the corresponding
input signal u of dimension nu is a multisine containing
p different frequencies (see (2)). Then, for φu to be PE, it
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is necessary to have that

p ≥ µ

2
(29)

PROOF. The number of columns in Q is 2p and they are
all nonzero (see Remark 11) while its number of rows is
given by µ. Consequently, it is clear that (29) is a necessary
condition for Q to be full row rank. �

Recall that µ = ∑nu
k=1(ηk +1) is larger than ηk +1 and

that p ≥ pk ∀k. It is therefore clear that this additional
condition is in no way implied by (20). Actually, when
p = pk for each k, it is (29) that implies (20).

In the SISO case, for multisine excitation, a neces-
sary and sufficient condition for data informativity is that
the scalar multisine input contains a number of frequen-
cies/sinusoids that is larger than the half of the dimen-
sion of the input regressor corresponding to the consid-
ered model structure. We have an interesting analogy in
the MISO case. For φu to be PE, the number p of frequen-
cies in the multisine input vector must be larger than
the half of the dimension of the input regressor φu and
the number pk of frequencies in each scalar input uk
of this input vector must also be larger than the half of
the dimension of the corresponding part φuk of φu . The
main difference is however that the combination of these
conditions are not sufficient for data informativity in the
MISO case (even if we add condition (ii) of Lemma 8).
Indeed, some phasor and frequency choices can yield a
rank deficient matrix Q or, equivalently, a regressor φu
that is not PE. An example is a phasor choice that would
yield u1(t ) =−2 u2(t −2) while u1(t ) and u2(t −2) both lie
in φu(t ) (see the next example).

However, the above phenomenon can generally be
avoided if we choose the phasor value in some ran-
dom manner. We can thus propose the following pro-
cedure. Determine the regressor φu corresponding to
the considered model structure and choose a value of
p satisfying (29), choose a set of p different frequencies
and choose values of pk (k = 1, · · · ,nu) satisfying pk ≤ p
and (20). This defines a class of multisine input vector for
which a number of phasors have to be determined. Let us
determine these phasors in a random and independent
manner 3 and let us check whether the corresponding
Q is indeed full row rank. If it is not the case, a new
realization is performed, etc.

Example 18 Consider an input regressor φu(t ) with
nu = 2 and with (ρ1,ρ2) = (0,0) and (η1,η2) = (0,2).
Therefore, the regression vector is given by φu(t ) =(
u1(t ) u2(t ) u2(t −1) u2(t −2)

)T
which has dimension

3 Another option would be to use optimal experiment design to
determine the phasors yielding the smallest covariance matrix
for a given input power.

µ= 4. Consider that we generate the input with p = 2 fre-
quencies ω1 = 0.1 and ω2 = 0.3 and that p1 = p2 = p = 2.
This defines the following class of input vectors:

u1(t ) =Λ11 cos(0.1t +Ψ11)+Λ12 cos(0.3t +Ψ12)
u2(t ) =Λ21 cos(0.1t +Ψ21)+Λ22 cos(0.3t +Ψ22)

This input vector class respects both (29) and (20).

Consider first the following choice for the four phasors
Λ̄kl = Λkl e jΨkl (k = 1,2, l = 1,2): Λ̄11 = e j 0.3, Λ̄12 = −1,
Λ̄21 = −0.5 e j 0.5 and Λ̄22 = 0.5 e j 0.6. This phasor choice
respects condition (ii) of Lemma 8 since u1(t ) and u2(t ) are
linearly independent. Using Remark 16, we indeed observe
that the phasor matrix A in (28):

A =
 e j 0.3 e− j 0.3 −1 −1

−0.5e j 0.5 −0.5e− j 0.5 0.5e j 0.6 0.5e− j 0.6


is full row rank.

Even though all three necessary conditions are respected,
the input regressorφu(t ) is nevertheless not PE since we can
observe that u1(t ) =−2u2(t−2) ∀t and that both u1(t ) and
u2(t−2) lies in φu . This can be also verified by constructing
the corresponding matrix Q:

Q =


e j 0.3 e− j 0.3 −1 −1

−0.5e j 0.5 −0.5e− j 0.5 0.5e j 0.6 0.5e− j 0.6

−0.5e j 0.4 −0.5e− j 0.4 0.5e j 0.3 0.5e− j 0.3

−0.5e j 0.3 −0.5e− j 0.3 0.5 0.5


We observe that the fourth row is obtained by multiplying
the first one by −0.5, i.e., r ank(Q) < µ= 4. Consequently,
φu is not PE with this phasor choice. However, let us just
modify the phasor Λ̄11 to Λ̄11 = e j 0.2 and the matrix Q
then becomes full row rank. We can also test the random
input vector construction introduced above: we have gener-
ated 1000 realizations for the four amplitudes Λkl and the
four phase shifts Ψkl (k = 1,2, l = 1,2) using independent
continuous uniform distributions, the amplitudes varying
between 0 and 5 and the phase shifts between 0 and 2π.
For these 1000 realizations, the rank of the corresponding
matrix Q was indeed equal to µ = 4. Consequently, the
1000 realizations of the input vector u would yield infor-
mative data for any model structure corresponding to the
regressor φu used in this example. As an example, in the
first realization, the four phasors were Λ̄11 = 4.14 e j 6.21,
Λ̄12 = 3.15 e j 2.16, Λ̄21 = 1.49 e j 1.51 and Λ̄22 = 3.09 e j 2.50.�

For certain classes of multisine input vector u, the ver-
ification that Q is full row rank is however not necessary:
the data informativity can indeed be guaranteed for all
phasor choices. An example of such a class is the one

10



where the scalar inputs uk do not share any common fre-
quencies.

Lemma 19 Consider the data s(t ) = (uT (t ), yT (t ))T ob-
tained by applying a multisine input vector u (see (2)) on a
MISO system with nu inputs. Consider a full-order model
structure M for this MISO system and the notations intro-
duced in Section 5.1. Then, the data s(t ) are informative
with respect to M if, for each k = 1, · · · ,nu ,

(i ) the scalars input uk contains a number pk of non-
zero sinusoids that satisfies:

• pk ≥ deg(B̊k )+1
2 when M is ARX or FIR.

• pk ≥ deg(B̊k )+deg(F̊k )+1
2 when M is BJ or OE.

(i i ) the pk frequencies of the sinusoids in uk are different
from the pm frequencies of the sinusoids in all um (m 6= k).

Note that, if (i ) and (i i ) are respected, s(t ) are infor-
mative whatever the values of the pk frequencies, the pk
amplitudes (non-zero) and the pk phase-shifts defining uk
(k = 1, · · · ,nu). �

PROOF. See Appendix D

It is to be noted that, in the BJ/OE case, the regressor
φu (see (19)) corresponding to the multisine input vectors
defined in Lemma 19 will not be necessarily PE since the
necessary conditions for this property (i.e. (19) and (29))
will not be always fulfilled. This is however not a contra-
diction since a persistently exciting φu is only a sufficient
condition for data informativity in the MISO BJ/OE case.

Remark 20 The approaches presented in this section can
be also applied in the MIMO case by noticing that (29)
is then replaced by p ≥ µmax /2 where µmax is the largest
value of µ for the regressors φu corresponding to each
channel and that (20) is replaced by pk ≥ (ηk,max +1)/2
where ηk,max is the largest value of ηk for the regressors
φuk corresponding to each channel. For Lemma 19, the
condition (i ) must be respected for each channel of the
considered MIMO system. �

8 Filtered white noise excitation yielding informative
data

As opposed to the multisine case, condition (i ) of
Lemma 8 is always respected in the filtered white noise
case. However, the condition on the relation between
the number of rows and of non-zero columns in a full
row rank matrix will, like in the multisine case, lead to
a necessary condition for φu to be PE. This condition
will impose a constraint on the complexity of N (z). Let
us recall that, for the filtered white noise case, there can
be some zero-columns among the ξ columns of L (see
Remark 13).

Lemma 21 Consider a regression vector φu(t ) of dimen-
sion µ (see Theorem 7) and that corresponds to an input
vector generated as in (3). Suppose that the matrix L of
dimension µ×ξ corresponding to this input vector (see Sec-
tion 6.3) has χ non-zero columns (χ≤ ξ). Then, for φu to
be PE, it is necessary that χ≥µ.

PROOF. The number of non-zero columns in L is χwhile
its number of rows is given by µ. Consequently, it is nec-
essary that χ≥µ for L to be full-row rank. �

As shown in Section 6.3, the number χ of non-zero
columns in L (which is, in the vast majority of the cases,
equal to ξ, i.e., the dimension of φ f wn(t )) can be in-
creased by increasing the complexity of the filters in N (z)
or by increasing the dimension r of the vector v(t ). Con-
sequently, the above lemma gives ingredients on how to
generate the input vector u in the filtered white noise
case. In, e.g., Example 12, this necessary condition is in-
deed respected (χ = 9 > µ = 6) which is logical since we
already observed that L is full column rank. It is how-
ever important to stress that χ ≥ µ is only a necessary
condition for φu to be PE (even if we add condition (i i )
of Lemma 8). In other words, even though the complexity
of N (z) coupled with the dimension of v is sufficient to
ensure χ≥µ, there are particular values of the filter ma-
trix N (z) that yield a rank deficient L . To avoid such a
phenomenon, similarly as in the multisine case, we can
choose a filter structure that satisfies the condition in
Lemma 21, generate the corresponding filter coefficients
in a random manner (and check subsequently whether
the corresponding L is full-row rank).

Example 22 Consider an input regressorφu(t ) with nu = 2
and with (ρ1,ρ2) = (0,0) and (η1,η2) = (2,2). The input re-
gressor φu(t ) is thus given by φu(t ) = (u1(t ),u1(t−1),u1(t−
2),u2(t ),u2(t − 1),u2(t − 2))T and is of dimension µ = 6.
Consider that we wish to generate the input vector u using:

u(t ) =
 l11 + l12 z−1

l21 z−2 + l22 z−3

v1(t )

with l11 = 1, l12 =−0.5, l21 =−2 and l22 = 1. If we follow the
procedure of Section 6.3, the vector φ f wn(t ) corresponding
to this matrix N (z) = L(z) is a vector of dimension ξ = 6
containing v1(t ), v1(t −1), v1(t −2), v1(t −3), v1(t −4) and
v1(t −5). Since the expansion (25) of the two polynomial
filters in N (z) do not miss any coefficients, we will have
χ = ξ = 6 and, consequently, the necessary condition of
Lemma 21 is respected. We also observe that condition
(i i ) of Lemma 8 is respected since u1 and u2 are linearly
independent (the rows of N (z) being linearly independent).
However, we also observe that u2(t ) =−2u1(t −2) ∀t and
that both u2(t ) and u1(t −2) lie in φu . Consequently, the
input regressorφu is not PE and the corresponding L is not
full row rank. However, if we just modify l11 to l11 = 2, the
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corresponding matrix L becomes full row rank. We also
apply the random input vector construction by generating
1000 realizations for the four coefficients lkq (k = 1,2, q =
1,2) using independent zero-mean uniform distributions
where each lkq can vary between −1 and 1. For these 1000
realizations, the rank of the corresponding matrix L was
indeed equal to µ= 6. Consequently, the 1000 realizations
of the input vector u would yield informative data for any
model structure corresponding to the regressor φu used in
this example. As an example, in the first realization, the
FIR filters were l11 =−0.398, l12 = 0.471, l21 =−0.320 and
l22 =−0.911. �

Like in the multisine case, in certain cases, the verifi-
cation that L is full row rank is however not necessary.
An example of such a class is the one where the num-
ber r of independent white noises generating u is larger
than or equal to the dimension of u, i.e., r ≥ nu . In this
case, the verification of the rank of the matrix L can be
replaced by the simpler verification of the rank of N (e jω).

Lemma 23 Consider the data s(t ) = (uT (t ), yT (t )) ob-
tained by applying an input vector u on a MISO system of
arbitrary order and consider a full-order model structure
M for this MISO system. Suppose that the input vector of
dimension nu is generated as a filtered white noise u = N v
with v a vector of r independent white noises with r ≥ nu .
Then, the data s(t ) are informative with respect to M if
rank(N (e jω)) = nu for almost all ω. �

PROOF. The power spectrum Φu(ω) of the input vec-
tor u is given by Φu(ω) = N (e jω)Σv N∗(e jω) where Σv =
Ev(t )vT (t ) is a positive definite diagonal matrix. Under
the condition on N (e jω) in the statement of the lemma,
we observe that Φu(ω) is thus positive definite at almost
all frequencies. As shown, e.g., below Theorem 2, an in-
put vector u having this property will yield informative
data for all model structures. This completes the proof. �

A special case of the above lemma is the case where r = nu
and where N (z) is a diagonal matrix of transfer functions
(i.e. Ni j (z) = 0 when i 6= j ). In this case, N (e jω) will always
be full rank. This is the relatively classical choice of an
input vector u where all scalar multisine inputs uk (k =
1 · · · ,nu) are mutually uncorrelated. Note that the scalar
inputs uk were also mutually uncorrelated in the case
treated in Lemma 19. Note also that, when r < nu , the
condition rank(N (e jω)) = nu can never be respected.

Remark 24 The approaches presented in this section can
be also applied in the MIMO case by noticing that the con-
dition in Lemma 21 can be replaced by χ ≥ µmax where
µmax is the largest value of µ for the regressors φu cor-
responding to each channel. The input vector choice dis-
cussed in Lemma 23 also yield informative data for arbi-
trary MIMO model structures.

9 Numerical example

9.1 True system to be identified

Consider the following MISO OE system S with ny = 1
and nu = 2 given by

y(t ) =
(

0.34
1−0.53z−1

z−1

1−0.8z−1+0.15z−2

)u1(t )

u2(t )

+e(t )

where the variance σ2
0 of e is here chosen equal to σ2

0 =
0.0001. We will identify S within a full-order model struc-
ture M , where all the transfers in G(z,θ) are indepen-
dently parametrized as in (16) with (ρ1,ρ2) = (0,1) and

B̊1 = θ1 B̊2 = θ3

F̊1 = 1+θ2z−1 F̊2 = 1+θ4z−1 +θ5z−2

Consequently, we have θT = θ̃T =
(
θ1 θ2 θ3 θ4 θ5

)
. Let

us now determine the regressor φu corresponding to this
model structure M . For this purpose, observe that:

• η1 = deg(B̊1)+deg(F̊1)+2deg(F̊2) = 5
• η2 = deg(B̊2)+deg(F̊2)+2deg(F̊1) = 4

Consequently, the regressor φu is given by φu =
(φT

u1
,φT

u2
)T with

φT
u1

(t ) =
(
u1(t ) u1(t −1) u1(t −2) u1(t −3) u1(t −4) u1(t −5)

)
φT

u2
(t ) =

(
u2(t −1) u2(t −2) u2(t −3) u2(t −4) u2(t −5)

)
The dimension µ of φu is here equal to µ= 11.

9.2 Identification with multisine

In this subsection, we consider that u(t ) is given by (2).

As shown in Theorem 7, the persistency of φu is only
a sufficient condition for data informativity. However, we
will show that this sufficient condition is not too restric-
tive. This will be done as follows. We will present an ex-
ample where φu is not PE and where the data are not in-
formative. Moreover, we will also show that if the dimen-
sion of φu is reduced by removing u2(t −5) in φT

u2
, this

reduced φu would be PE. In this example, the regressor
φu defined in Theorem 7 is the regressor that can only
detect the non informativity of these data.

Case 1: We choose u1(t ) as a multisine containing
p = p1 = 6 frequencies ω1 = 0.002π, ω2 = 0.02π, ω3 =
0.1π, ω4 = 0.2π, ω5 = 0.4π and ω6 = 0.8π and with pha-
sors Λ1l = 1 (l = 1, · · · ,6). The signal u2 is chosen in such
a way that

(G2(z,θ′)−G2(z,θ0))u2(t ) =−(G1(z,θ′)−G1(z,θ0))u1(t )
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for θ′ = (10,0.9,−3,−0.6,0.8)T different from θ0 =
(0.34,−0.53,1,−0.8,0.15)T .

This yields:

Λ11 Λ21

Λ12 Λ22

Λ13 Λ23

Λ14 Λ24

Λ15 Λ25

Λ16 Λ26


=



1 0.8475e j 0.0132

1 0.8526e j 0.1315

1 0.9633e j 0.5926

1 1.1325e j 0.9076

1 0.3875e j 2.4547

1 8.3699e− j 2.1509



This phasor and frequency choice respects both (20)
and (29). It is however clear that these data are not in-
formative (see Theorem 2) and this non-informativity
can be detected via Theorem 7. Indeed, the regressor
φu defined in Section 9.1 is not PE since the matrix Q
corresponding to this φu and the above phasor and fre-
quency choice has a rank equal to 10 while µ= 11. This
regressor is in fact the only one that can detect the non-
informativity. Indeed, if we would consider the regressor
φu of dimension 10 obtained by removing u2(t −5) from
φu , this regressor would be PE. Note that we can gener-
ate infinite number of pathological cases as the previous
one by considering all θ′ ∈Dθ .

Case 2: Consider now a multisine input vector u with the
same p = 6 frequencies as in Case 1, but with the following
choice of phasors:

Λ11 Λ21

Λ12 Λ22

Λ13 Λ23

Λ14 Λ24

Λ15 Λ25

Λ16 Λ26


=



2.54e j 0.32 3.67

−0.56 j 2.41 −2.25e− j 0.51

7.34 5.84

2.3 6.73e− j 1.7

−8e− j 1.45 9.78

−0.45e j 0.87 6.54e j 3.01


For this choice of phasors, the matrix Q in (24) has full
row rank, i.e., rank(Q) = 11. This multisine input vector
will thus yield informative data.

Case 3: Consider now a multisine input vector with p = 3
sinusoid frequencies ω1 = 0.002π, ω2 = 0.02π, ω3 = 0.1π
and with the following phasor choice:

Λ11 Λ21

Λ12 Λ22

Λ13 Λ23

=


2.54e j 0.32 0

0 −2.25e− j 0.51

0 5.84


The scalar inputs u1 and u2 do not share any common

frequencies and we have that p1 = 1 = deg(B̊1)+deg(F̊1)+1
2

and p2 = 2 ≥ deg(B̊2)+deg(F̊2)+1
2 . Consequently, we are in the

case of the class of multisine input vector proposed in
Lemma 19. This class yields informative data indepen-
dently of the choice of phasors and frequencies.

9.3 Identification with filtered white noise

In this subsection, we consider that u(t ) is given by (3).

Case 4: Consider an input vector generated with r = 1
independent white noise v1(t ), i.e.,

u(t ) =
u1(t )

u2(t )

=
N11(z)

N21(z)

v1(t )

where N21(z) = z−2 and N11(z) = ·· ·

−0.4z−1 +0.95z−2 −0.61z−3 +0.17z−4

1−1.1z−1 −0.22z−2 +0.41z−3 −0.008z−4 −0.034z−5

In this case, the condition of Lemma 21 is respected.
We therefore verify the rank of the corresponding matrix
L and we obtain rank(L ) = 11 = µ. Consequently, this
input vector will yield informative data.

Case 5: Let us now consider an input vector u with r =
nu = 2 and where N (z) = L(z)/w(z) is characterized by
w(z) = 1−0.5z−1 +0.6z−2 and

L(z) =
−z−1 +0.2z−2 −0.5+0.15z−1

2−0.4z−1 0.6z−2 +0.18z−3


We are here in the situation of Lemma 23 and we can
easily verify that the frequency response N (e jω) of N (z)
is full-row rank for all ω ∈]−π,π].

9.4 Monte-Carlo simulations

In order to confirm that the input choice in Cases
2, 3, 4 and 5 yield informative data, we have applied
each of these input vectors to the true system in 1000
identification experiments (with different realizations
of the white noise e) and we have identified the esti-
mate θ̂N (see (8)) for each experiment. For each input
vector, we have computed the mean of these 1000 es-
timates and we have in each case observed that this
mean is almost equal to the true parameter vector θ0.
For example, the observed mean obtained in Case 3 is
(0.3402,−0.5298,1.0000,−0.8000,0.15000)T that must be
compared to θ0 = (0.34,−0.53,1,−0.8,0.15)T . The discrep-
ancy between the observed mean and θ0 is in fact the
largest in Case 3 (this can be explained by the fact that
the three frequencies of the multisine are chosen in a
small interval of [0,π] inducing a larger variance for θ̂N ).
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10 Conclusion

In this paper, we have derived a condition that allows
one to check whether a given input vector will yield infor-
mative data to identify a model of a MIMO/MISO system
in open loop in a given model structure. We have done
that for the classical model structures used in prediction-
error identification and for both multisine and filtered
white noise input vectors. We have seen that this condi-
tion can be easily checked a-posteriori based on the in-
put vector parametrization. We have also given hints on
how to construct an input vector that will yield informa-
tive data. In the future, we wish to extend our results to
the closed-loop case.
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A Proof of Theorem 2

To prove Theorem 2, we will need the following lemma.

Lemma 25 Consider a quasi-stationary input vector u of
the type (2) or (3). Consider also a stable and inversely
stable matrix V (z) of transfer functions (V (z) 6= 0) and
another stable matrix W (z) of transfer functions such that
V (z)W (z) and V (z)W (z)u(t ) are valid operations yielding,
respectively, a matrix of transfer functions and a vector of
signals. Then, we have the following equivalences

Ē
[||V (z)W (z)u(t )||2]= 0 ⇐⇒ Ē

[||W (z)u(t )||2]= 0

V (z)W (z) ≡ 0 ⇐⇒W (z) ≡ 0

PROOF. Let us begin by the first equivalence. Since V (z)
is inversely stable, Ē

[||V (z)W (z)u(t )||2] = 0 implies that
Ē

[||V −1(z)V (z)W (z)u(t )||2] = Ē [||W (z)u(t )||]2 = 0. Now,
since V (z) is stable, E

[||W (z)u(t )||2] = 0 implies that
Ē

[||V (z)W (z)u(t )||2] = 0. This completes the proof of
the first equivalence. We can follow a similar reason-
ing for the second equivalence, i.e., V (z)W (z) ≡ 0 =⇒
V −1(z)V (z)W (z) =W (z) ≡ 0 =⇒V (z)W (z) ≡ 0. �

Let us now prove Theorem 2. By using (1) and (4),
∆W (z)s(t ) can be rewritten as

∆W (z)s(t )

= (
∆Wu(z)+∆Wy (z)G0(z)

)
u(t )+∆Wy (z)H0(z)e(t )

where∆Wu(z) and∆Wy (z) are defined similarly as∆W (z).

Since u(t ) and e(t ) are assumed independent,
Ē

[||∆W (z)s(t )||2]= 0 is equivalent to

Ē
[||(∆Wu(z)+∆Wy (z)G0(z))u(t )||2]= 0

Ē
[||∆Wy (z)H0(z)e(t )||2]= 0

Observe that, due to the whiteness of the vector
e and the invertibility of H0(z), the spectrum Φṽ (ω)
of ṽ(t ) = H0(z)e(t ) has the property that Φṽ (ω) Â 0 at
all frequencies ω. Consequently, we can also say that
Ē

[||∆W (z)s(t )||2]= 0 is equivalent to the combination of
the following two conditions:

Ē
[||∆Wu(z)u(t )||2]= 0 (A.1)

∆Wy ≡ 0 (A.2)
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Due to the expression of Wy (z) in (6), (A.2) yields
H(z,θ′) = H(z,θ′′). Consequently, ∆Wu(z) (see (5)) can

be rewritten as ∆Wu(z) = Y
(
z,η′

)−1
∆X (z) with ∆X as

defined in the statement of the theorem for the differ-
ent model structures and with Y

(
z,η′

)= Iny for ARX/FIR
model structures and Y

(
z,η′

)= H
(
z,η′

)
for BJ/OE model

structures.

Since we restrict attention to θ′ = (θ̃′T ,η′T )T ∈ Dθ,
Y

(
z,η′

)
is a (non-zero) stable and inversely-stable matrix

of transfer functions in both situations. Consequently,
by Lemma 25, Ē

[||∆Wu(z)u(t )||2] = 0 is equivalent to
Ē

[||∆X (z)u(t )||2]= 0.

From the reasoning above, for all ∆W (z) ∈∆W, the left-
hand side of (8) is equivalent to Ē

[||∆X (z)u(t )||2] = 0.
From the reasoning above, we can also conclude that, for
all ∆W (z) ∈ ∆W, the left-hand side of (8) always implies
∆Wy (z) ≡ 0. Consequently, the right-hand side (8) can be
restricted to ∆Wu(z) ≡ 0 or, equivalently, via Lemma 25, to
∆X (z) ≡ 0. In other words, the condition (13) in Theorem 2
(for all ∆X (z) ∈∆X) is equivalent to the condition (8) (for
all ∆W (z) ∈∆W) in the definition of the data informativity.
This completes thus the proof. �

B Proof of Theorem 3

We will prove that the condition (13) for ∆X (z) ∈∆X is
equivalent to the fact that the condition (14) holds for all
∆Xi : ∈∆X,i and for all i = 1, · · · ,ny .

Let us first observe that ∆X (z) ≡ 0 is equivalent to
∆Xi :(z) ≡ 0 (i = 1, · · · ,ny ). Secondly, let us prove that
Ē

[||∆X (z)u(t )||2]= 0 is equivalent to Ē
[||∆Xi :(z)u(t )||2]=

0 (i = 1, · · · ,ny ). For this purpose, let us rewrite the term
Ē

[||∆X (z)u(t )||2] as follows:

Ē
[||∆X (z)u(t )||2]= ny∑

i=1
Ē

[||∆Xi :(z)u(t )||2]
with ∆Xi :(z) as defined in the theorem. Since the
term Ē

[||∆Xi :(z)u(t )||2] is positive (i = 1, · · · ,ny ), we
have indeed that Ē

[||∆X (z)u(t )||2] = 0 is equivalent to
Ē

[||∆Xi :(z)u(t )||2]= 0 (i = 1, · · · ,ny ).

We have thus proven that the condition (13) for∆X (z) ∈
∆X is equivalent to

Ē
[
||∆Xi :(z)u(t )||2

]
= 0 (i = 1, · · · ,ny ) =⇒∆Xi :(z) ≡ 0 (i = 1, · · · ,ny )

for ∆Xi : ∈ ∆X,i (i = 1, · · · ,ny ). Noting that there are no
common parameters in ∆Xi :(z) and ∆X j :(z) ( j 6= i ), the
latter is equivalent to the fact that the condition (14) holds
for all ∆Xi : ∈∆X,i and for all i = 1, · · · ,ny . This completes
thus the proof. �

C Proof of Theorem 7

First note that Theorem 2 also applies to the case ny = 1
and let us distinguish the ARX/FIR case and the BJ/OE
case in the sequel.

Let us first consider ARX/FIR model structures and
let us first observe that, using (17) and the fact that
θ̃ = (θ̃T

1 , θ̃T
2 , · · · , θ̃T

nu
)T , we have that Bk (z, θ̃k )uk (t ) =

φuk (t )T θ̃k and B(z, θ̃)u(t ) =φT
u (t )θ̃ with φuk (t ) and φu(t )

as defined in (19). Let us now rewrite the left-hand
side of condition (13), i.e., Ē

[||∆B(z)u(t )||2] = 0 where
∆B(z) is a row vector of transfer functions of dimen-
sion k whose entries ∆Bk (z) are polynomials defined as
∆Bk (z) = z−ρk

(
B̊k (z, θ̃′k )− B̊k (z, θ̃′′k )

)
. We have thus that

∆Bk (z)uk (t ) =φuk (t )T (θ̃′k − θ̃′′k )

∆B(z)u(t ) =φu(t )T (θ̃′− θ̃′′)
(C.1)

Consequently, Ē
[||∆B(z)u(t )||2]= 0 is equivalent to

(
θ̃′− θ̃′′)T

Ē
[
φu(t )φu(t )T ](

θ̃′− θ̃′′)= 0 (C.2)

Let us now observe that the right-hand side of (13) is
here equivalent to θ̃′ = θ̃′′ (see (17)). Recall also that Dθ̃ =
Rµ (see Section 5.1 and recall that, here, the dimension ñ
of θ̃ is equal to the dimension µ of φu). Using the above
reasoning and Theorem 2, we will thus have informativity
if and only if, for any θ̃′ and θ̃′′ in Rµ, (C.2) implies θ̃′ = θ̃′′.
This latter condition is equivalent to Ē

[
φu(t )φu(t )T

]Â 0
or that φu(t ) is PE (Lemma 5). This completes thus the
proof for the ARX/FIR model structures.

Let us now consider BJ/OE model structures and let us
here also rewrite the left-hand side of condition (13), i.e.,
Ē

[||∆G(z)u(t )||2]= 0. For this purpose, let us observe that
the transfer functions ∆Gk (z) in the row vector ∆G(z) =
(∆Gk (z))k∈J1,nuK are given by

∆Gk (z) = z−ρk

(
B̊k (z, θ̃′k )

F̊k (z, θ̃′k )
− B̊k (z, θ̃′′k )

F̊k (z, θ̃′′k )

)

Using obvious short-hand notations, the latter equation
is rewritten as:

∆Gk (z) = z−ρk

(
B̊ ′

k

F̊ ′
k

− B̊ ′′
k

F̊ ′′
k

)

Let us now put all entries of∆G(z) on the same denomina-
tor which will be denoted by N (z), i.e., N (z) =∏nu

k=1 F̊ ′
k F̊ ′′

k .

Consequently, we have that ∆G(z) = M(z)
N (z) where M(z) =

(Mk )k∈J1,nuK is a vector of polynomials Mk (z) having the

15



following expression:

Mk (z) = z−ρk (B̊ ′
k F̊ ′′

k − B̊ ′′
k F̊ ′

k )
nu∏

m=1,m 6=k
F̊ ′

m F̊ ′′
m (C.3)

Each Mk (z) is thus a polynomial of delay ρk and of de-
gree ρk +ηk (with ηk as defined in the statement of the
theorem) and can thus be rewritten as follows:

Mk (z) =
ηk+ρk∑
m=ρk

δ(m)
k z−m (C.4)

where the coefficients δ(m)
k are a known function of θ̃′ and

θ̃′′. Combining the above elements successively yields:

∆G(z)u(t ) = 1

N (z)

(
nu∑

k=1

ηk+ρk∑
m=ρk

δ(m)
k uk (t −m)

)

∆G(z)u(t ) = 1

N (z)

(
φu(t )Tδ

)︸ ︷︷ ︸
=x(t )

with δ the vector made up of the concatenation of all δ(m)
k

and φu as given in the statement of the theorem.

Since θ̃′ and θ̃′′ are in Dθ̃ = {θ̃ | G(z, θ̃) is stable}, N (z)
is a stable and inversely stable filter. Consequently, via
Lemma 25 in Appendix A, the left-hand side of (13) (i.e.
Ē

[||∆G(z)u(t )||2]= 0) is equivalent to

Ē
[
x2(t )

]= δT Ē
[
φu(t )φu(t )T ]

δ= 0 (C.5)

When φu is PE, i.e., when Ē [φu(t )φT
u (t )] Â 0 (Lemma 5),

we have that, for any δ generated as above with θ̃′ and
θ̃′′ ∈ Dθ̃, (C.5) implies δ = 0 which in turn implies that
M(z) ≡ 0 and thus that ∆G(z) ≡ 0 (i.e. the right-hand side
of (13)). The sufficient condition for the BJ/OE case in this
theorem is then a consequence of Theorem 2. Note that
this condition is not necessary in the BJ/OE case since the
vectors δ that are generated by all θ̃′ and θ̃′′ ∈Dθ̃ will not
cover the whole vectorial space Rµ. Observe indeed that
the dimension µ of δ is (much) larger than the dimension
of θ̃′ and θ̃′′.

D Proof of Lemma 19

Let us consider Theorem 2 for the MISO case (ny = 1)
and let us define, for each k = 1, · · · ,nu , the set

∆Xk =
{
∆Xk = Xk (z, θ̃′k )−Xk (z, θ̃′′k ) with θ̃′k and θ̃′′k ∈Dθ̃k

}
with Dθ̃k

= {
θ̃k | Xk (z, θ̃k ) is stable

}
and Xk (z, θ̃k ) =

Bk (z, θ̃k ) (ARX/FIR case) or Xk (z, θ̃k ) = Gk (z, θ̃k ) (BJ/OE
case).

Now, because of condition (i i ), let us observe that the
scalar inputs uk are all mutually uncorrelated. Conse-
quently, the condition (13) can be successively rewritten
as:

nu∑
k=1

Ē [∆Xk (z)uk (t )]2 = 0 =⇒∆Xk ≡ 0 ∀k ∈ J1,nuK

(D.1)

Ē [∆Xk (z)uk (t )]2 = 0 k ∈ J1,nuK=⇒∆Xk ≡ 0 ∀k ∈ J1,nuK
(D.2)

Since they are no common parameters in ∆Xk and
∆Xm (m 6= k), we have that (D.2) is also equivalent to
the fact that the following condition holds for each k =
1, · · · ,nu :

Ē [∆Xk (z)uk (t )]2 = 0 =⇒∆Xk ≡ 0 (D.3)

From the above reasoning and Theorem 2, u yields
informative data with respect to M if and only if, for each
k = 1, · · · ,nu , (D.3) holds for all ∆Xk ∈∆Xk.

By Theorem 2 applied to the SISO case (nu = 1,ny = 1)
for each individual k, that (D.3) holds for all ∆Xk ∈ ∆Xk
is equivalent to the fact that uk yields informative data
for a SISO model structure described 4 by Bk (z, θ̃k ) (in
the ARX/FIR case) and by Gk (z, θ̃k ) (in the BJ/OE case).
Lemma 19 then follows from the classical necessary and
sufficient conditions for data informativity in the SISO
case [8]. �

4 The matrices A and H do not play any role for data infor-
mativity (Theorem 2).
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