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Abstract—Performance and timing prediction of complex par-
allel data flow applications on multi-core systems is still a very
difficult discipline. The reason for it comes from the complexity
of the hardware platforms with difficult or hard to predict
timing properties and the rising complexity of the software
itself. In this work, we are proposing the combination of timing
measurement and statistical simulation models for probabilistic
timing and performance prediction of Synchronous Data Flow
(SDF) applications on tile-based MPSoCs. We compare our
work against mathematical and traditional simulation based
performance prediction models.

We have shown that the accuracy and execution time of our
simulation can be suitable for design space exploration.

Index Terms—Probabilistic SystemC Model, Multi Processor,
Real-Time Analysis

I. INTRODUCTION

Today’s and even more future life will be assisted by many
small computer systems for sensing and interaction with its
environment. The evolution towards the Internet-of-Things era
is nowadays challenged by providing high data and sensing
quality which will be assisted through machine learning and
other AI techniques. Connected with this change is the major
challenge of partitioning software between the node (edge,
fog) and the cloud. Because of the growing demand in
computational efficiency at the edge and fog level, more and
more embedded systems are designed on multi-core platforms.
In this context, our work addresses the challenge of perfor-
mance prediction and optimization of complex data processing
software running on multi-core edge and fog platforms. On
the one hand performance prediction with a high fidelity for
one specific data flow mapping and implementation is very
important for the validation of extra-functional requirements,
such as timing. On the other hand a complete analysis of
all possible mappings and implementations of a data flow
application have to be quantitatively assessed for choosing the
optimal mapping (w.r.t. timing constraints such as application
end-to-end latency). In this work we focus on the design space
exploration (DSE) aspect of performance analysis.

Performance and timing analysis of parallel software, run-
ning on complex multi-core platforms is hard. In the domain
of timing analysis of multi-core systems, existing simulation-
based approaches and formal mathematical methods are deal-
ing with either scalability problems for a large problem size or
provide too pessimistic and thus unusable analysis results. Our
work aims at improving scalability of analysis approaches by
adopting probabilistic models and simulation techniques. The

result is an experimental framework to validate and improve
statistical analysis techniques for data flow applications on tile-
base multi-core systems. A tile based MPSoC consists of mul-
tiple processors with private instruction and data memory. Inter
tile communication is realized via dedicated FIFO channels or
shared memory. In a previous publication [1] we have already
presented our measurement-based characterization approach
and a SystemC based statistical simulation for probabilistic
timing and performance analysis.

In this paper, we present the adoption of this approach to
different case-studies. We systematically evaluate the benefits
and limitations of our statistical simulation for timing analysis
of two different data flow applications on tile based multi-
core systems. For this reason, we have built an experimental
setup for the comparison of our probabilistic modeling and
analysis against measurements on a hardware prototype, a
state-of-the-art static analysis and a simulation based approach.
This setup is used for different case-studies and mapping
configurations. Configurations are representatives of multi-
core systems with dedicated FIFO channels, shared buses and
shared memories. The evaluation metrics are accuracy of the
estimations and analysis time. Moreover, scalability of the
analysis approaches is evaluated with respect to different use-
case, different platform configurations and different mappings.

The paper is organized as follows: In the next section we
are analyzing the state-of-the-art where we are positioning and
comparing our approach against other works in the area of
timing analysis for multi-core-systems. Sec III presents our
approach and provides more details about the creation and
structure of our proposed probabilistic simulation model. In
Sec IV we present our use-cases, the experimental setup, our
comparison results and finally a discussion of these results.
The paper closes with a summary and outlook on future work.

II. RELATED WORK

Analysis approaches are commonly classified as simulation-
based approaches, which partially test system properties based
on a limited set of stimuli, formal approaches, which statically
check system properties in an exhaustive way, and hybrid
approaches, which combine simulation-based and formal ap-
proaches. Simulation-based approaches require extensive ar-
chitecture analysis under various possible working scenarios
but the created architecture models can hardly be exhaus-
tively simulated. Due to insufficient corner case coverage,
simulation-based approaches are thus limited to determine



guaranteed limits about system properties. Different formal
approaches have been proposed to analyze multi-core systems
and provide hard real-time and performance bounds. These
formal approaches are commonly classified as state-based ap-
proaches and analytical approaches. Despite their advantages
of being scalable, analytical methods abstract from state-based
modus operandi of the system under analysis which leads to
pessimistic over-approximated results compared to state-based
methods [2]. State-based methods are based on the fact of
representing the system under analysis as a transition system
and since they reflect the real operation states of the actual
system behavior, tighter results can be obtained compared to
analytical methods. Many recent approaches for the software
timing analysis on many- and multi-core architectures are
built on state-based analysis techniques [3]–[5]. However,
state-based approaches allow exhaustive analysis of system
properties at the expense of time-consuming modeling and
analysis effort. The existing state-based approaches are thus
dealing with scalability problems and multi-core architectures
with complex levels of hierarchy in shared resources can
hardly be addressed [5].

Statistical Model Checking (SMC) has been proposed as
an alternative to formal approaches to avoid an exhaustive
exploration of the state-space model [6]. As classical model
checking approach, SMC is based on a formal semantic
of systems that allows to reason on behavioral properties.
SMC is used to answer qualitative questions1 and quantitative
questions2. It simply requires an executable model of the
system that can be simulated and checked against state-
based properties expressed in temporal logics. The observed
executions are processed to decide with some confidence
whether the system satisfies a given property. This allows
systems that can not be assessed with an exhaustive approach
to be approximated. Finally, as a simulation-based approach,
it is less memory and time intensive than exhaustive state-
based approaches. Various probabilistic model-checkers sup-
port statistical model-checking, as for example UPPAAL-SMC
[7], Prism [8], and Plasma-Lab [9]. SMC was adopted in
[10] to evaluate a many-core architecture based on a 64-core
homogeneous platform. The statistical model checking tool
called BIP SMC [11] was used to evaluate the probability
that timing aspects such as execution time and variability of
processing time were bounded. The usage of UPPAAL-SMC
to optimize task allocation and scheduling on multi-processor
platform has been presented in [12]. Application tasks and
processing elements were captured in a Network of Price
Timed Automata (NPTA). It was considered that each task
execution time follows a Gaussian distribution. In the scope
of our work, we especially focus on the preparation process
of probabilistic models of execution time. A comparison of
formal model checking with SMC has been presented in [13].
A multi-processor system was modeled using timed automata
and probabilistic timed automata in UPPAAL-SMC. While
formal methods use only best and worst case execution times
the SMC method allows to model the distribution of execution

1Is the probability for a model to satisfy a given property greater or equal
to a certain threshold?

2What is the probability for a model to satisfy a given property?
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Fig. 1. Overview of our workflow. Hardware and Software gets designed
following specific models. Then one instance of the system on an FPGA
gets characterized. The resulting model can then be analyzed for real time
properties (green). For evaluation we also create a static mathematical model
shown with dashed red lines. And in dashed orange lines, only observed
WCET gets considered.

times between those limits. The possibilities of modeling such
a distribution is limited due to UPPAALs modeling language.
In contrast to that work, our new SystemC approach allows
to not only use a rough model of the distribution but the
actual measured execution times. However, SMC methods
have rarely been considered to analyze timing properties of
applications mapped on multi-processor systems with complex
hierarchy of shared resources, especially because the creation
of trustful probabilistic SystemC models remains a challeng-
ing task. Based on the established framework we attempt
to systematically evaluate the benefits of using probabilistic
SystemC models to analyze the timing properties of SDF
based applications on multi-processor systems, targeting more
tightness of estimated bounds and faster analysis times.

The novelty of our presented approach lies in the definition
of a measurement-based modeling workflow for the creation of
probabilistic SystemC models. SystemC models are calibrated
with stochastic execution times that are inferred from mea-
surement done on real prototypes with multi-processor archi-
tectures. The efficiency of this workflow to architectures with
different levels of complexity is evaluated through different
case-studies.

III. APPROACH

Our established workflow is illustrated in Fig. 1. We show
our input models for our approach in magenta. The computa-
tion model is explained in detail in Sec III-B. The architecture
model is explained in Sec III-A These models were used to
design our hardware and software system. For later references,
we highlighted assumptions with an A.

The system that gets build under the constraints of those
models can then be analyzed regarding its timing behavior.
Therefore we use a measurement infrastructure described in
detail in [14]. This measurement method guarantees that there
will be no interfering with the main system buses or non-
predictable influence to the code execution on the processor.

The mapped and scheduled software gets executed on the
designed hardware that gets instantiated on an FPGA. This
real system is used to characterize the timing behavior of
the hardware components as well as the actors of the SDF
based application (shown in Fig. 1 in purple). Details about
the measurement and characterization is presented in Sec III-C.

The communication and computation time model get in-
tegrated into a probabilistic SystemC model as shown in
Fig. 1(green). The SystemC model is used for execution time
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Fig. 2. Example of our MoC and MoA, showing a 3 Actor (Magenta)
application mapped and scheduled on a 2 tile architecture (Purple). Additional
the measurement infrastructure is shown (Teal).

analysis focusing on the distribution of the execution times.
We also run a simulation only considering the WCET as
comparison (Fig. 1 orange). Furthermore we apply a static
mathematical model (Sec III-D), that considers the WCET of
the actors and for communication (Fig. 1 red).

A. Model of Architecture
Our hardware platform follows the definition from [13] and

[1]. A simple example of such a platform is shown in Fig. 2
(purple). In contrast to the referenced work, we scaled up the
system to 7 heterogeneous tiles instead of only 2 tiles.

One processing element with a separate connected private
memory is called tile. A1: Executing instructions from this
private memory also causes no interference with other tiles.
This allows us to design a composable multi processor system.
In our system, some tiles are equipped with a floating point
unit (FPU) or a hardware multiplier (MUL).

For data exchange between different tiles a shared memory
is used, connected via a shared interconnect to the processors
and A2: the arbiter uses Round-Robin strategy.

A3: For all memories we use static RAM an do not use any
caches. The hardware gets instantiated on an FPGA. A4: All
tiles and memories are connected to the same clock.

For comparison we also one experiment on a 4 tile system
with peer-to-peer connections. The tiles are connected via
exclusive hardware FIFO buffers. This hardware architecture is
optimized for the communication structure of the application,
so that communication can take part without any interference.

B. Model of Computation (SDF)
We use Synchronous Data Flow (SDF) [15] as computation

model (MoC). A simple example of an SDF graph is shown
in Fig. 2 (magenta).

This model is used to describe the data flow between actors
via communication channels . SDF offers a strict separation
of computation (compute) and communication phases (read,
write) of actors. During the compute phase, no interference
with any other actor can occur. For MPSoCs this separation
only works when the instructions are placed on separated
memories (Assumption A1), connected with separate inter-
connects to the processors as presented in Sec III-A. For
communication, data get separated into tokens. It is assumed
that A5: one token is exact one data word on the interconnect.

Channels are FIFO buffers that can be mapped to any
memory that is accessible by the producer (an actor that writes

on that channel) and the consumer (an actor that reads from
that channel). During the read phase of an actor, tokens get
read from the channels buffer. During the write phase, tokens
get written into the channel. The amount of tokens a producer
writes, or a consumer reads is called token rate. A6: The FIFO
access is blocking. An actor can only switch to its compute
phase after it read all tokens from all incoming channels. After
the compute phase, the actor switches into write phase to write
all tokens to the outgoing channels.

A7: The SDF application is self scheduled. After one actor
finished writing onto all its outgoing channels, the next actor
on the tile starts with its read phase. In case any depending
actor (that gets executed on a different tile) did not write its
token on the incoming channel of the scheduled actor, it polls
on the buffers channel until the data is available.

C. Measurement

For our timing models we need to characterize the compute
phase of actor as well as the communication between actors.

For the compute phase we measure the amount of clock
cycles a phase needs to be executed. This is done for different
input data (input tokens). Since the code of an actor changes
on different processors (e.g. with and without FPU), for each
processor flavor this characterization needs to be done.

For the communication phases, we use a more sophisticated
model that requires some static code analysis as described
in [1]. Therefore the execution of instructions used to access
a channel buffer gets considered as well. This allows us to
simulate the communication in detail to know when and for
how long communication takes place.

For measuring execution times we use a measurement
infrastructure based on [14]. The infrastructure is split into
three components. Two of them are shown in Fig. 2 (green).

The Time Measurement Unit (TMU) is basically a counter
with the same cycle rate the processors have. The counter
can be started and stopped from any tile individually without
interference. When the counter got stopped, it sends its counter
value via UART to a host computer. For this method, it is
important that all components are clocked with the same fre-
quency (Assumption A4). The management of the individual
start/stop signals from the tiles are managed by the Timing
Measurement Controller (TMC).

To connect each tile with the TMC a Timing Measurement
infrastructure Bridge (TMB) is used to translate a data package
from a peripheral bus into the individual control signals
(start/stop). A8: We assume that each tile has independent
communication features that do not interfere with the system
bus (For example General Purpose Input/Output (GPIO) pins
or a dedicated peripheral bus). This guarantees that starting
or stopping a measurement does not cause any interference
on the other bus systems. For our MicroBlaze based system,
the AXI Stream Interfaces get used. Since the TMB is only
a simple transcoder (if not directly GPIO pins are used), it is
not explicitly shown between the tiles and the TMC in Fig. 2.

From the measurements we not only get the BCET and
WCET of specific parts of the software like the computation
phase of an actor or the access of shared memory. We also get
the distribution of execution times for the measured elements



which will be used in our probabilistic model. The BCET,
WCET and average case execution time gets derived from the
measured time values. In the context of our work, Worst- and
Best-Case only describes the observed execution times.

D. Static Analytical Model
This subsection presents the static analytical model we use

to compare our simulation based approach with (See Fig. 1).
For the static approach we need to make further assumptions
that only relate to the static analytical model. We mark those
assumptions with AS. The model is based on [16] and [17].

As mentioned in Sec III-B, the execution of an actor is
split into three phases: read, compute, write. Those phases are
also represented in the equation 1 for calculating the execution
time of an actor. For the compute phase tcompute, the measured
computation time of an actor gets used. The delay of reading
tread(r) (Equ. 2) and writing twrite (Equ. 3) is a function of
the token rate R(c) of a channel c. All incoming channels Cin

and outgoing channels Cout need to be considered.

texec =
∑

c∈Cin

tread(r(c))+tcompute+
∑

c∈Cout

twrite(r(c)) (1)

The equations for reading (Equ. 2) and writing (Equ. 3)
need to consider the bus access time for reading (tr) and
writing (tw) data onto the bus. For our system, one token is
one word on the bus (Assumption A5). Some computational
overhead needs to be considered via tcr for the reading
procedure and tcw for the writing procedure. Bus arbitration
time ta is determined by Equ. 4. Those three delay parts
(tr/w, ta, tc) occur for each token r including further data
rmeta for managing the FIFO buffer of a channel.

tread(r) = (rmeta + r) · (ta + tr + tcr ) (2)

twrite(r) = (rmeta + r) · (ta + tw + tcw) (3)

The arbitration delay ta (Equ. 4) is calculated under the
assumption of having a Round-Robin bus arbiter (Assumption
A2). Furthermore we assume for our static model that AS9:
each other tile of all tiles (ntiles) of the system gets bus access
before and that AS10: each of those tiles holds the bus access
for the longest possible amount of time. For a single beat bus
protocol this is ether reading or writing a word onto the bus.

ta = (ntiles − 1) ·max (tr, tw) (4)

The data for the computation time of an actor (tcompute)
comes from our measurement infrastructure (Sec III-C). The
delay for tr/w as well. The computational overhead tcr/w is
based on static code analysis as presented in [1].

To calculate the time a complete iteration of executing the
SDF application takes, the execution times texec for all actors
that get executed in serial needs to be summed up. For actors
that get executed in parallel, the longest execution time will
be considered. Furthermore it is assumed that AS11: an actor
gets only executed, when all its preceding depending actors
are completely executed, which may take longer than waiting
until all tokens on the channel are available.
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Fig. 3. Overview of our SystemC model with 3 tiles and how it is related
to the later implementation of the simulated system. Tile 0 is presented in
detail, with one actor (IDCTY) mapped on it.

For the peer-to-peer connected platform (Fig. 5, left) we can
simplify some equations. The meta-tokens in Equ. 3 and Equ.
2 for managing the FIFO buffer are not needed because the
FIFO behavior is implemented in hardware. Furthermore there
is no arbitration. This leads to the following simplification:
rmeta = 0, ta = 0. The value of tr/w as well tcr/w must be
adapted to the different implementation and bus interface.

E. SystemC Model

The SystemC model is a representation of the whole system.
It models the mapped and scheduled SDF application on a
specific hardware platform. Fig. 3 shows in the top half the
SystemC model for a 3 tile platform. In blue the parts of the
SystemC model are shown, in green everything related to the
measured timings (Sec III-C). The bottom half of the figure
shows, how the simulated system gets transformed into the
actual system. In purple hardware related parts are described,
in magenta all software related parts.

The SystemC model consists of three major parts: 1) the
Tile modules for simulating the actors’ execution on a tile, 2)
the Interconnect module that simulates the bus behavior and
3) the Shared memory module for the read and write access
to shared memory.

Tiles represent the actual tiles of the modeled platform
as well as the execution of the SDF actors mapped on this
tile. The timing behavior of the actors is simulated in an
SC THREAD of the tile module. The computation phase of an
actor is a wait statement using the actors’ computation time
tcompute ∈ ~Tactor. Furthermore the Tiles-Module provides a
model of the function used for communicating over channels.
The timing behavior was analyzed and modeled in detail via
static code analysis on instruction level we describe in [1].

The Interconnect module manages the structural integrity
by connecting all tiles to shared memories.

The Shared Memory module simply distinguishes read tr
and write access tw. Depending on the access type, it proceeds
the simulation time by the related time.

In our simulation we use two representations of computation
time. For WCET simulation the computation time of an actor
is represented by its observed worst case computation time.
For considering the distribution of execution times of an
actor, we use all observed execution times. In each simulated



iteration of the system, a new execution time of an actor gets
selected from a list of observed delays (see Fig. 3). This is
realized by reading a text file that provides the raw measured
computation time of this actor. We randomly select (using
std::random_shuffle) data from the list of delays, taking
care that no element of this list gets selected twice. We refer to
this random selection of recorded execution times as injected
data or injected distribution in the following experiments.
Depending on the experiments it is possible to switch between
Injected, Uniform or Gaussian distribution as well as only the
WCET. For Uniform and Gaussian distribution we use the
GNU Scientific Library (GSL) [18]. The parameters for these
distributions are derived from the measured delays.

The Tile, Interconnect and Shared Memory SystemC mod-
ules can be directly transferred to the real hardware. (Fig. 3)
The target platform can be designed on an FPGA if the
simulation not already represents existing hardware. The main
loop of the SystemC threads represent the main loops of the
firmware executed on the actual tiles. Instead of the wait-
statement, the actual function of the actor must be called.
Furthermore the ReadTokens and WriteTokens function
now expect an address of a local buffer for the actual token.

To analyze different type of tiles with different processing
elements, only the timing characteristics of the actors must be
updated by measuring their computation time distribution on
such a processing element. For different memories, the regard-
ing access times, or the memory model needs to be updated.
For different interconnects the ReadTokens and WriteTokens
model as well as the interconnect module needs to be updated.

IV. EXPERIMENTS

This section describes our experiments. We first characterize
all actors of our use-cases. Then we simulate different possible
mappings to get the worst case and average case execution
time, as well as a distribution of possible execution times
of an iteration of the executed software. We then execute
those experiments on the real platform and measure the actual
execution times of each iteration to compare the real system’s
behavior with our analysis.

We present our use-cases in Sec IV-A and our hardware
platform in Sec IV-B. In Sec IV-C we describe the mapping
of the use-cases on our platform. The characterization is shown
in Sec IV-D At the end of this section we present and discuss
the results of our experiments.

We provide git repositories3 for our use-cases, measurement
infrastructure and models.

A. Use cases

In our experiments we want to analyze the execution time of
an iteration of an SDF base application (Sec III-B). Therefore
we apply our models to 2 different software applications:

Sobel-Filter (Fig. 4 left). In this use-case, the communica-
tion part of the software takes most of the execution time. The
computation part should be highly predictable when executed
on tiles with an hardware multiplier, because there are only a
few possible execution paths except of GetPixel actor. The

3Repository: https://gitlab.uni-oldenburg.de/stemmer/erts20
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results of analyzing this application could benefit from a
detailed communication model as we use it in our simulation.

JPEG Decoder (Fig. 4 right). This use-case has a huge
computation part with an unmanageable amount of execution
paths for most of the actors. Except for the inverse quantization
(IQ-Actors) which is only a matrix multiplication and has only
one execution path when a hardware multiplier is available.
The results of analyzing this application would benefits from
considering the distribution of possible execution times instead
of just considering BCET and WCET.

B. Platform

For most of our experiments we use a heterogeneous mul-
tiprocessor system with 7 tiles (Fig. 5 right). The individual
tiles use a MicroBlaze soft core that is equipped with private
memory. The tiles T1, T2, T3 are extended by a hardware
multiplication unit (MUL). Tiles T4, T5, T6 are extended with
a floating point unit (FPU). Furthermore there exists a shared
memory that is used for communication between the tiles.

Since the Sobel-Filter use case has a high communication
part compared relative to its computation part, we also built
an experiment with a hardware platform that is ideal for this
application (Fig. 5 left). It comes with 4 tiles that have a
peer-to-peer connection to avoid any bus contention. These
connections are realized by hardware FIFO buffers so that also
the computational overhead for communication is reduced to
a minimum to make analysis as simple as possible.

C. Experiment setup

This subsection describes the experiments we did with our
use-cases. We label our experiments for later reference in the



results section. Furthermore we highlight and enumerate the
hypotheses we want to check with an H.

For the Sobel-Filter we run 3 experiments: Sobel1, So-
belP2P and Sobel4. For the JPEG decoder we also run 3
experiments: JPEG1, JPEG3 and JPEG7.

For all experiments the instructions and local data of an
actor is mapped on the private memory of a tile. The mapping
of the actors of our application for the individual experiments
is shown in Tab. I. With exception of the peer-to-peer ex-
periment, all communication channels of our application are
mapped on the shared memory of our platform (Fig. 5).

Sobel1 In our 1st experiment, we execute all actors of
the Sobel-Filter on a single tile that comes with a hardware
multiplication unit. H1: This should be the most easy setup
since the amount of possible execution paths are minimized
and there is no contention possible on the interconnect.

SobelP2P In the 2nd experiment we run the Sobel-Filter
on a 4 tile platform with peer-to-peer connection (Fig. 5 left).
The mapping corresponds to the 4 tile mapping in Tab. I.
H2: This setup shall avoid any bus contention, simplify the
communication model by using hardware FIFOs and provide
hardware multiplier to get a predictable multiprocessor system.

Sobel4 The 3rd Sobel-Filter experiment uses the same
mapping as in the SobelP2P experiment, but now on the 7-Tile
hardware platform (Fig. 5 right). Again, the mapping considers
the usage of hardware multiplication.

These three Sobel-Filter experiments are used to evaluate
the communication model of our simulation and static analysis
model. Compared to the Sobel-Filter, the JPEG decoder is
much more compute intensive and uses algorithms that come
with much more execution paths.

JPEG1 In the 1st JPEG experiment we run all actors of
the decoder on tile 0, that does not provide any hardware ac-
celerators for multiplications and floating point operations. So
these operations are done in software (via libgcc 8.2.0) which
introduces further execution paths. H3: This mapping should
lead to highly unpredictable execution times and challenge our
probabilistic approach.

JPEG3 The 2nd JPEG experiment uses 3 tiles. H4: This
experiment should the execution paths since the actors benefit
from the hardware accelerators they need.

JPEG7 In the last experiment all 7 tiles are used for
mapping the actors to focus on highest possible parallelisation.
The actors are mapped on tiles that provide the hardware
accelerators they can make use of. H5: This should lead to
better predictable execution times for the computational part,
but lead to much communication on the bus. This experiments
challenges the communication model of our simulation and the
static analytical model.

For the simulation using injected data we do 1 000 000
simulation runs, so that we make use of all observed timings.
This is not an exhaustive simulation since this covers not
all possible combination of execution times. For the WCET
simulation we do only 10 000 runs, because the variety of
input data is much less (one delay per actor).

D. Characterization
To estimate the execution time of an iteration of the exe-

cuted application, the timing behavior for each actor needs to

TABLE I
MAPPING OF THE SOBEL-FILTER AND JPEG EXPERIMENTS ON THE TILES

OF THE HARDWARE PLATFORM.

Experiment→ JPEG JPEG JPEG Exp. → Sobel Sobel
Actor ↓ 1 Tile 3 Tile 7 Tile Actor ↓ 1 Tile 4 Tile

Get MCU 0 0 0 GetPixel 1 1
IQY 0 1 1 GX 1 2
IQCr 0 1 2 GY 1 3
IQCb 0 1 3 ABS 1 0
IDCTY 0 4 4
IDCTCr 0 4 5
IDCTCb 0 4 6
YCrCb RGB 0 0 0

be characterized once.
In our heterogeneous platform (Fig. 5) we have 3 different

kinds of tile-based architectures. A simple MicroBlaze archi-
tecture without any extension, an FPU extended MicroBlaze
and a MicroBlaze with a hardware multiplication unit (MUL).

Our two applications (Fig. 4) are compiled for all three
architectures to make use of the additional instructions. The
compilation process is only done once per architecture to make
sure that the timing behavior of an actor never changes after
it got characterized. The compiled actors then get only linked
into the firmware of each processing element.

For measurement, a start and a stop instruction for the
measurement infrastructure get placed into a test application.
The position of the measurement instructions are around the
call of the actors function, after the read-phase and before the
write-phase. So only the compute-phase gets measured.

Then the actor gets executed with representative stimuli
data. For our experiments, we used a 48 px× 48 px gray-
scale white-noise image for our Sobel-Filter application. For
the JPEG decoder a 128 px× 128 px landscape photo with a
quality of 95% is used. Each actors compute phase, compiled
for each architecture got measured 1 000 000 times.

For our probabilistic simulation we use all measured sam-
ples to have a realistic execution time distribution. The simpli-
fied Worst-Case-Simulation only uses the observed worst-case
execution time for each actors samples.

For our static analytical model we use the observed worst-
case execution time for tcompute for the worst-cases analysis.
The average case analysis is done by using the average
execution time of all actor’s samples for tcompute.

For the evaluation of our experiments, we also need to
measure the execution time of whole iterations of the appli-
cation. This requires instrumentation of the actual application
without changing its timing behavior. Starting and stopping a
measurement takes exact 2 clock cycles. To avoid changing
the temporal behavior of the measured software this needs
to be considered. At any point access to the measurement
infrastructure is required, No-Operation instructions must be
placed that take the exact same amount of time. For our use-
cases it is before the first actor and after the last actor of our
applications are called.

E. Results
The results of our experiments are presented in Tab. II. We

compare the observed execution times of an iteration of our



TABLE II
COMPARISON OF THE STATIC MODEL AND THE SIMULATION RESULTS WITH THE ACTUAL OBSERVED BEHAVIOR. THE TOP HALF COMPARES THE WCET

(IN CYCLES), THE SECOND HALF THE AVERAGE CASE. THE ERROR TO THE OBSERVED BEHAVIOR IS SHOWN NEXT TO THE RESULTS.

Experiment Measured Anal. Model WC Simulation Prob. Simulation

W
or

st
C

as
e Sobel, 1 Tile 22 052 27 650 25.39% 23 654 7.26% 23 645 7.22%

Sobel, P2P 14 342 17 305 20.66% 15 396 7.35% 15 396 7.35%
Sobel, 4 Tile 18 128 34 277 89.08% 17 318 −4.47% 17 326 −4.42%
JPEG, 1 Tile 2 746 197 2 848 154 3.71% 2 792 946 1.70% 2 768 023 0.79%
JPEG, 3 Tile 1 185 223 1 262 589 6.53% 1 190 392 0.44% 1 190 287 0.43%
JPEG, 7 Tile 1 185 483 1 258 751 6.18% 1 175 734 −0.82% 1 175 713 −0.82%

Av
er

ag
e

C
as

e Sobel, 1 Tile 21 878 27 362 25.07% 23 366 6.80%
Sobel, P2P 14 191 17 017 19.91% 15 108 6.46%
Sobel, 4 Tile 17 946 33 989 89.40% 17 019 −5.17%
JPEG, 1 Tile 2 385 860 2 445 913 2.52% 2 390 002 0.17%
JPEG, 3 Tile 940 836 1 013 566 7.73% 941 352 0.05%
JPEG, 7 Tile 941 059 1 009 812 7.31% 926 771 −1.52%

use-cases with the results of the static analytical model and our
simulation. We also shows the error of our models compared
to the observed behavior. In the first column (Experiment),
the experiments from Sec IV-C are listed. The top half of
the table shows the observed worst case execution times, the
bottom half the average case. After the experiments names,
the measured iteration duration of our SDF applications are
presented (Measured). For the worst case analysis, the highest
observed delay is shown, for the average case the average
of all observed delays is shown. The next three columns
(Anal. Model, WC Simulation and Prob. Simulation) present
the results of our analysis. The input data (actor execution
time) varies between the analysis approaches. For the static
analytical model, the measured WCET of the actors are used
for the worst case analysis, and the average execution time
for the average case analysis. The worst case simulation (WC
Simulation) uses only the WCET of an actor and only returns
the worst case iteration time. For the probabilistic simulation
(Prob. Simulation) the distribution of execution time is used as
input These simulations also return a distribution of possible
iteration delays (Shown in Fig. 6). For the worst case analysis,
the highest returned iteration duration got selected. For the
average case the average value of all returned iteration delays
got calculated.

The static analytical model tends to over-approximation,
especially for applications that actors get executed in parallel.
The simplified and more predictable communication for the
SobelP2P experiment reduced the over estimation. For the
Sobel-Filter executed on 4 Tiles (Experiment Sobel4) the
analysis has the highest error of 89.40%.

Our simulation based approached has higher error for single
processor applications with an error of up to 7.22% for
the Sobel1 experiment. Also for the peer-to-peer connection
based platform for experiment SobelP2P the error is high
with 7.35%. Tab. II also shows, that for mappings with high
communication (more tiles) the simulation under-approximates
with up to −5.17% for average case simulation of the Sobel-
Filter application (Sobel4).

In general the analytical model has higher errors than
the simulation compared to the measured execution times.
Because we focus on DSE and not on WCET analysis,
under-approximation is not considered worse than over-

TABLE III
SIMULATION TIME IN HOURS WITH INJECTED DATA FOR 1 000 000
ITERATIONS. AND WCET SIMULATION WITH 10 000 ITERATIONS.

Experiment Distribution WCET Measurement
[HH:MM:SS] [HH:MM:SS] [HH:MM:SS]

Sobel, P2P 0:00:06 0:00:03 0:09:28
Sobel, 1 Tile 0:00:14 0:00:04 0:14:36
Sobel, 4 Tile 0:00:39 0:00:05 0:11:59
JPEG, 1 Tile 0:00:35 0:00:06 13:14:31
JPEG, 3 Tile 0:38:30 0:00:34 5:12:58
JPEG, 7 Tile 1:46:30 0:01:25 5:13:02

Intel® Xeon® CPU E5-2630 v4 (2.20GHz) at https://ccipl.univ-nantes.fr
Simulation split into 20 processes, each on a dedicated processor

approximation.
In Fig. 6, the measured (blue) and the simulated (green)

distribution of the execution time of an iteration are presented.
The dotted line marks the average execution time, the solid
line the observed worst case. For the Sobel-Filter experiments
the relative high error of up to 7.22% (Sobel1, WCET) and
−5.17% (Sobel4, Average case) is visible. For the JPEG
decoder the figure shows a better fitting of the simulated execu-
tion times with the observed ones. Fig. 6 also demonstrates the
advantages of considering the distribution of execution times.
The distribution of the analyzed execution times come close
to the distribution of the observed execution times.

In Tab. III the execution time to run the simulations is
shown. We simulated with 1 000 000 computation time sam-
ples for each actor. Each simulated experiment represents our
7 Tile platform with exception of the SobelP2P experiment.

The left column of Tab. III shows the simulation time
considering the distribution of execution times. We simulated
1 000 000 iterations. For efficiency we split our simulation
into 20 processes (each on a dedicated processor), each sim-
ulating 50 000 iterations.

The middle column shows the worst case simulation con-
sidering only the worst observed computation time for each
actor. Since there is no variance in the computation time we
simulated only 10 000 iterations. During these simulations we
observed the worst case execution time (Tab. II, WC Simula-
tion) at minimum of 715 times for the Sobel4 experiment.

The right column shows for comparison the time it took to
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Fig. 6. Distribution of the measured data (blue) compared to the results of the probabilistic simulation (green) for all experiments. The dashed lines show
the median of the distribution, the solid lines the observed worst case.
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Fig. 7. Detailed analysis of the JPEG1 experiment. We compare Simulation
runs to the error of the analysis results compared to the observed average and
worst-case behavior for different distributions.

measure the actual execution time on the real platform. Again,
1 000 000 samples were measured.

The simulation time varies from a few seconds up to one
hour for the JPEG7 experiment.

F. Discussion

In preliminary work [1], [13], [19] we compared different
delay distribution of the simulated actors of our model regard-
ing the error of the results. We repeated this experiment for
the JPEG1 experiment because it is more compute intensive
(Hypothesis H3) than the Sobel-Filter of our previous work.
The results are presented in Fig. 7. Beside the distributions
(Uniform (magenta), Gaussian (blue), Injected (teal)) we also
varied the amount of simulation runs (Fig. 7 ordinate). We
compared the results of the simulation with the observed
behavior regarding average execution tile (filled data points)
and WCET (outlined data points). The error is depicted on
the abscissa of Fig. 7. The uniform distribution of delays
between the observed BCET and WCET are suitable for quick
WCET estimations but have a high error for the average case,

independent how many simulation runs are performed. The
reason is that the average case of our applications is not in
the center between their BCET and WCET. For our worst-case
estimation (Tab. II, WC Simulation) we did 10 000 simulation
runs using only one static delay. The Gaussian distribution
is good for a quick average case estimation because the
center point of the distribution is based on the mean value
of our observed actor delays. The width of the Gaussian
distribution leads to a very high over estimation of the WCET.
The injected distribution, provides good average case and
good worst case estimation. A downside is the need of many
simulation runs to reduce the error. For our simulation using
the injected distribution (Tab. II, Prob. Simulation) we did
1 000 000 simulation runs.

The static analytical model shows good results for appli-
cation with high computational parts (Experiments JPEG1,
JPEG3 and JPEG7), because it benefits from our measurement
based analysis of the execution times of each actor. The static
analysis of the Sobel-Filter executed on 4 Tiles (Experiment
Sobel4) has an error of 89.40%. This is due to the fact, that
the static model does not considers interleaving of execution
phases of depending actors executed in parallel (Assumption
A11). For the Sobel4 experiment, the actor GX could already
start its read phase while GetPixel is still in its write phase,
writing data on the channel to GY. For applications with
short computation phases and long communication phases, this
situation has a huge impact to the analyzed execution time.

Our simulation results are closer to the actual system
because of the detailed communication model. Anyway, there
is still a high error for the Sobel1 and Sobel4 experiments.
The negative error of the Sobel4 and JPEG7 simulation may
be due to an over optimistic communication model, because
for the Sobel-Filter as well as for the highly parallel JPEG



decoder a good communication model is crucial.
The different worst case estimations of the WC Simula-

tion and Prob. Simulation are due to the different inputs
of the simulation. While the WC Simulation only uses one
static delay for each actor (the worst observed delay), the
probabilistic simulation uses the whole distribution of all
observed execution times. In case of the JPEG1 experiment,
this allows more than 1.17× 1021 different combinations of
actor delays which is not covered by our simulation. Therefore
the combination of all worst actor delays may be not included
in the 1 000 000 simulation runs. The Sobel4 experiment shows
that considering only the worst case actor delays may not
reveal the worst case iteration delay. Using the whole range
of possible delays lead to a situation where the impact of the
communication between actors caused a longer iteration time.

The error of the SobelP2P experiment is because of lim-
itations of our communication model. While our hypothesis
H2 is valid regarding the simplicity of the communication
hardware, the software to access the hardware FIFOs is hard
to model because the processor architecture uses different
instructions to access individual FIFOs. This leads to code
with high branching behavior that is hard to represent in our
communication model for the simulation [1] as well as the
model used for our static analysis Sec III-D.

The results of our analysis also show, that the distance
between the worst case and the average execution time of an
iteration is low. For the Sobel-Filter, the reason is the small
interval of the actual execution time (Sobel 1: 21802 . . . 22052,
Sobel 4: 17887 . . . 18128). For the JPEG Decoder, in average
the execution time is closer to the worst case than to the best
case execution time as it can be seen in Fig. 6.

Fig. 6 also shows that our simulation comes close to the
observed distributions, despite some offsets for the Sobel-
Filter. The knowledge of the distribution of execution times
can be used estimate how close the average case or the median
is to the worst case. This can be useful for soft-real-time
applications since it allows to estimate how often a certain
deadline can be missed.

The JPEG experiments demonstrate the benefit of our
approach for design space exploration. While increasing the
number of tiles from 1 to 3 tiles with different accelerators, the
execution time of an iteration decreased by the factor of 2.3 in
average (Based on the Prob. simulation results in Tab. II). By
further increasing the number of tiles to 7, so that each color
channel of the JPEG image can be decoded in parallel, the
average execution time only decreased by the factor of 1.01
compared to the 3 tile mapping. The JPEG decoder benefits
from a heterogeneous 3 tile system compared to only 1 tile.
Further tile have only little influence in the performance of
the decoder and can be avoided to lower the hardware cost.

The fast simulation time (Tab. III) allows exploring differ-
ent hardware configurations an mappings in short time. The
comparison with the measurement time shows the benefit of
our simulation. Beside the fact that the simulation makes the
existing of the actual system needless, it is also faster than
measuring each possible mapping. The reason for the long
measurement time for the JPEG Decoder is the circumstance
that the execution time of the decoder itself is very high For the

JPEG1 experiment, an iteration takes up to 2 746 197 cycles
for the worst case. At a tile frequency of 100MHz this is
approximately 27ms per iteration. For 1 000 000 samples the
execution time can be up to 19 h. This is why the measurement
time in Tab. III correlates with the execution times in Tab. II.

Tab. III shows the simulation time for our experiments in
hours. The low simulation times for the Sobel-Filter exper-
iments and the JPEG-Decoder that got mapped on one Tile
comes from the efficient communication between the actors.
As long as no other actor is polling on data, the simulation
can proceed the simulated time by the execution time of an
actor. When there is an actor polling on data in parallel,
then the simulation can only proceed by the time steps of
the communication model. In our model, polling takes about
20Cycles. If an actor polls on data of a preceding actor
with an execution time of about 66 000Cycles (GetMCU of
the JPEG application) that gets executed in parallel, then the
simulation gets slowed down by the factor of 3300. So the less
polling is necessary for the simulated application, the faster
the simulation is. An improvement of the simulated model
(using events) and improving the communication model (more
abstraction) can improve the simulation speed tremendously.
This will remain future work.

V. CONCLUSION

In this paper we presented the benefits and limitations
of our simulation based real-time analysis method. In com-
parison with a static mathematical model, the error of our
model is smaller. Furthermore does our method provide an
approximation of the distribution of execution times for the
analyzed system. The increasing simulation time for system
with large application (long computation time) and many cores
is currently limiting our approach to small systems.

Our approach is limited to tile-based multiprocessor sys-
tems. To apply measurements to actors on this platform it
furthermore must provide the necessary individual independent
outputs. In our experiments we synthesized such a system
on an FPGA. But there are also commercial off-the-shelf
platforms available that fulfill these requirements [20].

The advantage of our approach is that our analysis not
only estimates a WCET, but also provides an approximation
of the distribution of possible execution times. Furthermore
we use actual observed actor execution times as input which
reduces the error of the analysis, because approximated func-
tion can lead to execution times that are outside the observed
BCET/WCET boundaries (Gaussian distribution) or represent
an unrealistic average execution time (Uniform distribution).

This allows us using a single tile (e.g. on a cheep evaluation
board) for characterizing all actors of an application, and
later decide, based on our simulations, how many tile in
combination of different mappings and features are suitable
for a specific application.

With our experiments we confirmed that our model is con-
sistent and matches the reality with an error of less than 7.4%
for WCET estimation and 6.8% for the average case. Our
model needs some improvements to avoid negative errors for
WCET analysis. For the average case, the negative errors are
less critical. The accuracy in combination with the distribution



of possible execution times and fast analysis time our approach
is very suitable for design space exploration.

VI. FUTURE WORK

In future work we plan to improve simulation quality as
well as simulation speed by creating a more abstract commu-
nication model and considering data dependencies to reduce
the amount of simulation runs as well as lowering the error
for some application. Our current communication model rep-
resents communication in detail. A more abstract probabilistic
model as used for the computation can increase simulation
speed. We also did not consider any data dependency in
our model. By considering data dependency, our model can
not only be used for functional testing but also provides the
possibilities to reduce simulation runs by avoiding redundancy
and having a metric for determine the coverage of data paths.

One further step would be reduce the required number of
simulation runs with SMC methods. SMC methods, such as
the Monte Carlo method, allow the number of simulation runs
to be controlled with given level of confidence. By controlling
the number of simulation runs, a trade-off between high con-
fidence and fast analysis time is possible. The instrumentation
and monitoring of SystemC models to carry out statistical
analysis were presented in [21]. This approach could thus
be adopted to quantitatively evaluate from the created models
properties like the probability to miss a deadline.

In the context of WCET analysis, authors in [22], [23]
proposed a measurement-based approach in combination with
hardware and/or software randomization techniques to conduct
a probabilistic worst-case execution time (pWCET) through
the application of Extreme Value Theory (EVT). In future
work we are going to analyze under which conditions (as-
sumptions on the measurement and model calibration) we can
apply EVT on our analytical execution time distributions to
provide an analytic pWCET.
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[22] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston et al., “Proartis: Probabilis-
tically analyzable real-time systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 2s, p. 94, 2013.

[23] F. J. Cazorla, J. Abella, J. Andersson, T. Vardanega, F. Vatrinet, I. Bate,
I. Broster, M. Azkarate-Askasua, F. Wartel, L. Cucu et al., “Proxima:
Improving measurement-based timing analysis through randomisation
and probabilistic analysis,” in Digital System Design (DSD), 2016
Euromicro Conference on. IEEE, 2016, pp. 276–285.


