
HAL Id: hal-02304918
https://hal.science/hal-02304918

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional connectivity and neuronal dynamics: insights
from computational methods

Demian Battaglia, Andrea Brovelli

To cite this version:
Demian Battaglia, Andrea Brovelli. Functional connectivity and neuronal dynamics: insights from
computational methods. David Poeppel, George R. Mangun and Michael S. Gazzaniga. The Cognitive
Neurosciences, Sixth Edition, 2020. �hal-02304918�

https://hal.science/hal-02304918
https://hal.archives-ouvertes.fr


Functional connectivity and neuronal 
dynamics: insights from computational 
methods 
 

Demian Battaglia
1
 & Andrea Brovelli

2 

 

1
 Institut de Neurosciences des Systèmes (INS), UMR1106, Aix Marseille Université, 

INSERM, 13385 Marseille, France 
2
 Institut de Neurosciences de la Timone (INT), UMR 7289, Aix Marseille Université, 

CNRS, 13385 Marseille, France 

 

 

Abstract 
 

Brain functions rely on flexible communication between microcircuits in distinct cortical 

regions. The mechanisms underlying flexible information routing are still, however, largely 

unknown. Here, we hypothesize that the emergence of a multiplicity of possible information 

routing patterns is due to the richness of the complex dynamics that can be supported by an 

underlying structural network. Analyses of circuit computational models of interacting brain 

areas suggest that different dynamical states associated with a given connectome 

mechanistically implement different information routing patterns between system‘s 

components. As a result, a fast, network-wide and self-organized reconfiguration of 

information routing patterns – and Functional Connectivity networks, seen as their proxy– 

can be achieved by inducing a transition between the available intrinsic dynamical states. We 

present here a survey of theoretical and modelling results, as well as of sophisticated metrics 

of Functional Connectivity which are compliant with the daunting task of characterizing 

dynamic routing from neural data.   

 

Theory: Function follows dynamics, rather than structure 
 

Neuronal activity conveys information, but which target should this information be 

―pushed‖ to, or which source should new information be ―pulled‖ from? The problem of 

dynamic information routing is ubiquitous in a distributed information processing system as 

the brain. Brain functions in general require the control of distributed networks of inter-

regional communication on fast time-scales compliant with behavior, but incompatible with 

plastic modifications of connectivity tracts (Bressler & Kelso, 2001; Varela et al., 2001). This 

argument led to notions of connectivity based on information exchange – or more 

generically, an ―interaction‖– between brain regions or neuronal populations, rather than 

based on the underlying STRUCTURAL CONNECTIVITY (SC, i.e. anatomic). An entire zoo of 

data-driven metrics has been introduced in the literature and this chapter will review some of 

them. Notwithstanding, they track simple correlation, or directed causal influence (Friston, 

2011) or information transfer (Wibral et al., 2014) between time-series of activity. These 



FUNCTIONAL CONNECTIVITIES
1
 (FC) share the key property of being reconfigurable even 

when the underlying SC is fixed. Nevertheless, it is not fully understood which circuit 

mechanisms allow flexible FC at the brain-wide scale. 

Candidate circuit mechanisms for reconfigurable inter-regional communication range from 

neural circuitry dedicated to routing (Vogels & Abbott, 2009; Zylberberg et al., 2010), 

conditional signal propagation along interacting ―synfire chains‖ (Kumar et al., 2008; Hahn 

et al., 2014) and oscillatory rate modulation enabling signal (de)multiplexing through 

frequency filtering scheme (Akam & Kullmann, 2014). More generally, dynamic patterns of 

inter-regional oscillatory coherence over multiple frequency bands may have the potential to 

orchestrate selective and directed information transfer (Engel et al., 2001; Varela et al., 2001; 

Bastos et al., 2015). According to the influential COMMUNICATION-THROUGH-COHERENCE 

(CTC) hypothesis (Fries, 2005; 2015), neuronal groups oscillating in a suitable phase 

coherence relation –such to align their respective ‗‗communication windows‘‘– are likely to 

exchange information more efficiently than neuronal groups which are not synchronized. A 

growing body of experimental evidence has been cumulated in support to communication-

through-coherence mechanisms. Yet, our understanding of how inter-areal phase coherence is 

flexibly regulated is largely incomplete. This challenge is exacerbated by the fact that neural 

oscillations are far from ideal ―metronomes‖ (Xing et al., 2012; Ray & Maunsell, 2015). 

In this chapter, we will show how theoretical and computational neuroscience approaches 

can bring fresh air into the debate on flexible routing and dynamic functional connectivity.  

Our core theoretical idea is that the relation between SC and FC is not direct, but necessarily 

mediated by emergent collective system dynamics. More specifically, the anatomy of brain 

circuits constrains the functional interactions that these circuits can support (Honey et al., 

2007), but cannot determine them fully (Aertsen et al., 1989; Battaglia et al., 2012; Hansen et 

al., 2015). Indeed, a given structural network can engender a rich repertoire of possible 

collective dynamical states, also known as the DYNOME (Kopell et al., 2014). On its turn, 

every dynamical state within the dynome (e.g., different patterns of oscillatory phase 

coherence between inter-connected neuronal populations) will mechanistically implement a 

different modality of exchanging information among the network nodes, or ―Information 

Routing Pattern‖ (Kirst et al., 2016). Thus, streams of information will propagate through the 

network (or not propagate at all) along different pathways, conditionally on the dynamical 

state in which the system is prepared (Figure 1). Switching from one information routing 

pattern to another can simply be induced by biasing neural circuits dynamics to self-organize 

collectively into another of its possible intrinsic modes. Such scenario for state-dependent 

routing is robust to noise (Battaglia et al., 2012; Kirst et al, 2016) and is also well compatible 

with stochastic-like and transient oscillatory dynamics (Palmigiano et al., 2017). 

Since the dynome level is not accessible to direct experimental observation, 

COMPUTATIONAL MODELS OF NEURAL DYNAMICS are necessary to investigate it. Time-series 

can be generated from simulations of ―virtual brains‖ of increased complexity – from toy 

brains with a few coupled areas (Battaglia et al., 2012; Palmigiano et al., 2017) up to whole 

thalamo-cortical networks (Deco et al., 2011) – and FC can be estimated using precisely the 

same metrics used for actual brain recordings. It becomes thus possible to validate our 

hypothesis that different dynamical states map to different FC networks and ways of 

exchanging information between brain regions. Furthermore models can be used to interpret 

FUNCTIONAL CONNECTIVITY DYNAMICS (FCD), i.e. the structured temporal variability of 

FC networks observed in the resting state (Hutchison et al., 2013; Calhoun et al., 2014) or 

                                                 
1
 Note the use of the plural, to encompass several generalizations within a common notion, thus emphasizing 

meaning besides technical differences. 



along tasks (Brovelli et al., 2017) in terms of the sampling of the available dynome (Hansen 

et al., 2015). 

Importantly, the insights achieved by studying information routing and FCD in 

computational models call for a redesign of the way in which empirical results are analyzed 

to extract FC information, as we will speculate in the Conclusion section.  

 

Methods: quantification of functional connectivity, information 
routing and their dynamics 

 

We provide here a quick survey of common data-driven FC metrics
2
. Despite their 

different specializations and relative complexity, all these metrics share a fundamental 

qualitative aspect: their dependence from the underlying dynamical state. Furthermore, all of 

them can be applied to the analysis of both empirical and simulated time-series.  

 

A zoo of functional connectivity metrics 
 

The plethora of FC metrics used in cognitive neuroscience can be categorized into 

undirected and directed measures. UNDIRECTED FC METRICS include various measures 

based on covariance, such as Pearson‘s and Spearman‘s rank CORRELATION COEFFICIENTS 

(CC). As an extension of linear CC, MUTUAL INFORMATION (MI) provides a more general 

measure of the dependence between signals by capturing also nonlinear relations. MI 

quantifies shared information between two signals and it reflects the reduction in uncertainty 

about one variable given knowledge of another (MacKay, 2003). When dealing with 

oscillatory neural signals, their functional coupling can vary as a function of frequency. The 

most commonly-used metric quantifying coupling in the frequency-domain is the 

MAGNITUDE-SQUARED COHERENCE (MSC), which can be seen as the frequency-domain 

analogue of squared CC and measures the linear correlation between signals, at each given 

frequency. The coupling between neural oscillations can also be quantified using concepts 

based on: PHASE SYNCHRONIZATION (Rosenblum et al., 1996), defined as the entrainment of 

phases irrespectively of amplitude correlations; or, PHASE-LOCKING VALUE (Lachaux et al., 

1999), detecting preferred values of the phase difference at a given frequency between 

signals. In its more general form, phase synchrony can occur across different frequencies, a 

process termed n:m SYCHRONIZATION (Tass et al., 1998). A more general way to establish 

FC among spectrally complex oscillatory signals relies on cross-frequency coupling (Canolty 

& Knight, 2010) that can be tracked using metrics such as the PHASE-TO-AMPLITUDE 

COUPLING (Aru et al., 2015). 

DIRECTED FC METRICS include statistical approaches that can resolve the direction of 

influence between neural signals and are thus in principle better suited to capture dynamic 

information routing. In the sense of GRANGER-WIENER CAUSALITY (GC, Wiener, 1956; 

Granger, 1969; Bressler and Seth, 2011), a time-series exert a causal influence on another if 

the variance of the autoregressive prediction error of the latter is reduced by including the 

past measurements of the former.  Beyond autoregressive modeling, Granger (1980) 
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 We will not review here on the contrary the so-called ―effective connectivity‖ (EC) approaches –such as 

Dynamic Causal Modelling (Friston et al., 2003)–, which attempt quantifying the strength of causal influences 

between neural populations or brain areas, in an interventional sense. Whereas FC is usually considered as a 

model-free approach describing the dynamic interplay between neural populations just based on data-driven 

features, EC methods are model-based, relying upon explicit models of neuronal coupling. 
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formalized a general condition of ―Granger-non causality‖ between two time series X and Y 

as: 

 

p(Yi+1| Y 
(i)

, X
 (i)

) = p(Yi+1| Y 
(i)

)                  (1) 

 

where the super-index (i) refers to the past history of the time series up to and including 

sample i. Accordingly, ―causality‖ can be defined as a deviation from this condition of ―non-

causality‖, and quantified by calculating the information-theoretical Kullback–Leibler 

divergence (MacKay, 2003) between the two conditional probabilities in Equation (1). In a 

bivariate context comprising only X and Y, this divergence can be written as follows: 

 

FX→Y  ≡ H(Yi+1| Y 
(i)

) -H(Yi+1|  X 
(i)

 , Y 
(i)

)  = MI(Yi+1; X 
(i)

 | Y 
(i)

)  (2) 

 

The difference of two conditional entropies H on the right-hand side of Equation (2) 

quantifies the decrease in uncertainty about future values Yi+1 when the past history X 
(i)

 is 

also known. However, even more interesting is the further rewriting of TEX→Y  as a mutual 

information term MI(Yi+1; X 
(i)

 | Y 
(i)

). In layman terms, this term quantifies the amount of 

information that wasn‘t already encoded by Y ‘s past history but that can be found in Y ‘s 

present because it was transferred there from X. Such quantity TEX→Y  has been named 

TRANSFER ENTROPY (TE, Schreiber, 2000) and represents the most general measure of 

information transfer capturing any (linear and nonlinear) time-lagged conditional dependence 

(Wibral et al., 2014). Note that, for Gaussian variables, TE and GC have been shown to be 

mathematically equivalent (Barnett et al., 2009). Furthermore, TE implies GC (Marinazzo et 

al., 2008), but not the other way around. 

Directed FC metrics have also been generalized to capture information transfer in the 

frequency-domain, a feature particularly suitable when investigating the role of neural 

oscillations in establishing inter-regional interactions at different frequencies. Pairwise time-

domain GC can be additively decomposed by frequencies using autoregressive models 

(Geweke, 1982). More recently, parametric estimation of SPECTRALLY-DECOMPOSED 

GRANGER CAUSALITY has been generalized to the non-parametric case, meaning that GC 

spectra can be estimated from Fourier and wavelet transforms of time series data (Dhamala et 

al., 2008). However, there is not yet consensus on how to generalize TE to the spectral 

domain. 

 

Single-trial based functional connectivity metrics 
 

A common strategy to track the temporal dynamics of FC couplings, independently from 

the used metric, is to assume that experimental trials are realizations of the same stationary 

stochastic process. In the framework of autoregressive models, this allows the estimation of 

model coefficients across trials on short time windows for the computation of coherence and 

Granger causality spectra with high temporal precision (Figure 2A, Brovelli et al., 2004). 

Neural coupling, however, may vary across trials, and reflect behavioral modulations 

occurring during learning and adaptive behaviors (e.g., changes in reaction time across trials). 

There is therefore a need for FC metrics that can be extracted based on single trials. 

A classical approach to estimate single-trial FC is to compute the spectral density matrices 

over sub-segments of time series within a trial stepped to cover the whole duration of the 

trial. Such approach can be used for the estimate of SINGLE-TRIAL PHASE SYNCHRONY 

(Lachaux et al., 2000), and SINGLE-TRIAL GRANGER CAUSALITY using a combination of 

general linear models and non-parametric spectral techniques (Brovelli, 2012) or covariance-

based methods (Brovelli et al., 2015). Alternatively, JACK-KNIFE APPROACHES have been 

https://paperpile.com/c/WdAz7v/aBgD
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shown adequate for single-trial estimate of spectrally-resolved FC metrics (Richter et al., 

2015). 

A note of caution should, however, be sounded for what concerns the estimation of 

directed and directed FC metrics, especially when time-resolved. The most common factors 

that may limit correct estimate and interpretability of FC measures are the sample-size bias 

problem, varying levels of signal-to-noise ratio, volume conduction and common input or 

indirect interaction effects (see Bastos and Schoffelen (2015) for a review). Note that the 

problem of FC estimation is much less severe when dealing with simulated signals which can 

be arbitrarily long and artifact-free. We expect nevertheless that new techniques first tested 

―in silico‖ will also become applicable to actual data, thanks to the development of improved 

estimators, as e.g. for TIME-RESOLVED TRANSFER ENTROPY (Wollstadt et al., 2014). 

 

Hierarchical FC analyses 
 

A promising strategy for a robust FC characterization could be to combine a hierarchy of 

COMBINED FC METRICS. In the case of phase-synchronized brain networks, power and 

coherence spectral analyses can be used in a first step to identify the relevance of brain 

regions or neural populations in a given cognitive task. As a second step, GC analysis can 

evaluate the pattern of directional influences between those networks. For example, the 

analysis of beta frequency (14–30 Hz) oscillations in pre- and postcentral cortical areas of 

macaque monkeys during a motor maintenance behavior revealed a large-scale network of 

beta synchronization. Granger causal influences were then observed from primary 

somatosensory cortex to both motor and inferior posterior parietal cortices, with the latter 

also exerting Granger causal influences on motor cortex (Figure 2A). The somatosensory 

cortex therefore played a driving role in the network, whereas intraparietal and motor cortex 

acted respectively as relay and receiver nodes (Brovelli et al., 2004).  

More recently, a hierarchical pipeline has been developed for POWER-TO-POWER FC 

ANALYSES of high-gamma activity (generalizable to other frequency-bands as well). The 

pipeline first isolates regions whose linear correlation and mutual information (i.e., the 

TOTAL GRANGER INTERDEPENDENCE between neural signals) increases statically, then 

parses the relative direction of this influence using covariance-based Granger causality 

methods (Figure 2B). The analysis of human high-gamma MEG activity during the 

performance of visuomotor stimulus-response associations was characterized by an increase 

in gamma-power and FC over the sensorimotor and frontoparietal network, in addition to 

medial prefrontal areas. The superior parietal area played a driving role in the network, 

exerting Granger causality on the dorsal premotor area. Premotor areas acted as relays from 

parietal to medial prefrontal cortices, which played a receiver role in the network (Brovelli et 

al., 2015).  

 

 

Task-relevant Functional Connectivity Dynamics 
 

Ultimately, cognition necessarily unrolls in time, and mental operations are built out of 

successive steps (Moro et al., 2010), which assemble into a cognitive architecture, mixing 

serial and massively-parallel information processing, also dubbed a ―human Turing machine‖ 

(Zylberberg et al., 2011). Time-resolved FC analyses can be used to probe how cognitive 

functions arise from the time-ordered interplay of multiple networks. In a recent work 

(Brovelli et al., 2017), time-resolved and single-trial FC analyses of human high-gamma 

activity showed that visuomotor mapping arises from a SEQUENTIAL RECRUITMENT 



SCHEDULE of FC networks (Fig. 2C): first, a network involving visual and parietal regions 

coordinated with sensorimotor and premotor areas (Fig. 2D, left); second, the dorsal 

frontoparietal circuit together with the sensorimotor and associative frontostriatal networks 

took the lead (Fig. 2D, center); finally, cortico-cortical interhemispheric coordination among 

bilateral sensorimotor regions coupled with the left frontoparietal network and visual areas 

(Fig. 2D, right). These cortico-cortical and cortico-subcortical FC networks –partly 

overlapping– were interpreted as reflecting the processing of visual information, the 

emergence of visuomotor plans, and the processing of somatosensory reafference or action‘s 

outcomes, respectively. More generally, FCD analyses showed that the interdependence 

between brain regions and networks is nonstationary, displays switching dynamics and areal 

flexibility over timescales relevant for task performance. To conclude, FCD approaches help 

elucidating the relation between fast dynamic FC reconfiguration and the algorithmic build-

up of executive functions. 

 

Modeling dynamic routing and functional connectivity 
 

One structural network engenders many functional networks 
 

As previously introduced, dynamics on a fixed structural connectome gives rise to a  

repertoire of possible dynamical modes, composing the connectome‘s dynome. This 

phenomenon is epitomized by simple toy-models involving a small number of coupled areas. 

Following Battaglia et al. (2012), we consider in Figure 3A a toy brain of two reciprocally 

connected brain regions. Such an abstract structural motif serves as a metaphor for canonical 

cortical circuits in which the relative weights of top-down and bottom-up functional 

influences must be dynamically adjusted. Every brain region is modelled as a local network 

of thousands of excitatory and inhibitory spiking neurons, connected by random recurrent 

connectivity. Parameters are selected in such a way that each local region generates sparsely 

synchronized collective oscillations, i.e. the firing of individual neurons remain realistically 

irregular even when the average population activity oscillates periodically at frequencies in 

the gamma range (40-80 Hz). Since firing is Poisson-like, spike trains have a high entropy 

and a large amount of information can be conveyed by the oscillating population within every 

oscillation cycle. In other words, the oscillation themselves are not likely to encode 

information, but act as carriers for general code-words encoded in detailed spiking patterns
3
, 

―surfing on the wave‖. When coupled by long-range excitation, the oscillating regions will 

phase-lock with preferred phase-relations which depend on inter-areal delays and influenced 

by the strength of local inhibition within each region (Battaglia et al., 2007). In particular, for 

sufficiently strong inhibition, a multiplicity of out-of-phase locking modes tend to emerge, in 

which one of the two regions leads in phase over the other, despite the reciprocity of 

coupling. 

We quantified the FC associated with different phase-locking modes through the analysis of 

time-series of LFP-like signals (average regional activity) using TE as a metric of choice. For 

weak inter-regional coupling, TE was significant only in the direction from the leader (i.e., 

the sender) to the laggard (receiving) region, in agreement with physiological intuition from 

the CTC hypothesis (Fries, 2015). Importantly, the directionality of coupling inferred by TE 

between collective region-level activations also captures the efficiency in information 
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However, we stress that the representations that can be routed by oscillations are not bounded to be rate-based 

and could be in principle based on arbitrarily complex encoding schemes (e.g. Arabzadeh et al., 2006).  



transfer encoded at the microscopic level of spiking code-words (Figure 3B, top). As 

quantified by MI analyses at the level of spiking code-word streams, ~70% of the information 

conveyed by code-words from source neurons in the sending region can be decoded from 

code-words emitted at the same oscillation cycle by target post-synaptic neurons in the 

receiving region. In contrast, decoding efficiency in the opposite direction does not rise above 

chance level. However, when a transition to a different collective phase-locking state occurs, 

causing the leader and laggard regions to invert their roles, the relative efficiency of decoding 

in the two directions is also suddenly inverted within the time of one oscillation cycle only. 

Besides unidirectional transfer of information, other FUNCTIONAL MOTIFS can be 

implemented by our toy brain (Figure 3C). At stronger inter-regional coupling, other 

dynamical states enrich the dynome – notably, different types of chaotic oscillations 

(Battaglia et al., 2007; 2012). At the FC level, these emerging dynamical states map to 

topologically different motifs, in which information transfer becomes bidirectional, either 

anisotropic or symmetric. Effective disconnection between the regions is another possible 

motif, arising from anti-phase locked oscillatory modes. Thus, even a very simple toy brain 

can give rise to a very rich dynome, translating into a multiplicity of qualitatively different 

information routing patterns.  

 

Self-organized control of information routing 
 

Under the effect of an arbitrary perturbation, the system will be transiently destabilized, 

but its dynamics will then converge back to one of the available intrinsic modes. If the 

applied perturbation kicks the system out of the phase-space basin of attraction of the current 

dynamical state –a valley in an idealized landscape –, the system will converge toward a 

different state within its dynome. As a result, the implemented FC network will also switch to 

the one associated to the newly recruited state (cf. Figure 1). Various mechanisms could force 

the system to leave its current state and then be used for implementing routing control. A first 

possibility would be to modulate the relative attractiveness of different states (in the 

landscape metaphor of Figure 1, this would correspond to make one valley deeper and 

broader than the others). In presence of multi-stability between multiple dynamical 

configurations (as the two out-of-phase locking configurations of Figure 3B), it would be 

enough to apply a STEADY INPUT BIAS to one of the two populations to automatically enhance 

its probability to become phase-leader, and thus act as an effective information sender 

(Palmigiano et al., 2017). Importantly, an unspecific and weak bias would be enough, 

because its role would just be to favor the otherwise self-organized selection of a specific 

routing state from a pre-existing repertoire. This means that no additional circuitry for the 

control of routing would be required besides the one already responsible for the generation of 

collective oscillations themselves, at contrast with other proposed mechanisms for routing 

(e.g. Vogels & Abbott, 2009; Zylberberg et al., 2010). At the level of physiological 

implementation, such a steady bias could be provided by context-dependent top-down 

modulatory signals, neuromodulation or even stimulus saliency itself. 

Furthermore, our theory predicts that, if the system‘s dynamical states are sufficiently 

stable –as in the case of strong oscillatory power– robust rerouting could be induced by 

PRECISELY-PHASE PULSE-LIKE INPUTS, removing the need for a steadily applied bias. 

Simulations in Battaglia et al. (2012) demonstrate, in agreement with analytical expectations, 

that the reversal of information flow can be triggered with near-to-one probability by a pulse 

perturbation delivered to a small fraction of randomly chosen neurons (e.g. in the laggard 

region), provided that the pulse is applied within a suitable and narrow phase range. 

Conversely, an equal strength pulse received outside of such control phase-range would fail 

to induce rerouting, confirming the robustness of intrinsic dynamical modes (Figure 3B, 



bottom). Such theoretical prediction has not yet been confirmed, but could be experimentally 

validated, using e.g. closed-loop optogenetic stimulation (Witt et al., 2013). 

Another non-intuitive –and in perspective testable– prediction of our theory is that local 

perturbations of a target region could induce distributed changes in FC between distant 

regions, opening the way to a REMOTE CONTROL OF INFORMATION ROUTING (Kirst et al., 

2016). In this study, simple phase-oscillator models were used to describe individual network 

elements allowing to explore, even analytically, the interplay between SC, FC and dynamics 

in arbitrarily large and complex network architectures. In the example of Figure 3D, a 

modular network including two bidirectionally coupled regions X and Y, plus a third ―remote 

controller‖ region Z is constructed. Plasticity of one local synapse between two network units 

i and j within Z is then simulated, by changing the value of a specific control synaptic 

coupling kij
(Z) 

. Directed FC analyses of units from two remote regions X and Y showed that 

the dominant direction of transfer and sharing of information can be globally reversed by 

plastic changes of single synapses within Z. At first sight, the sensitivity of global 

information routing patterns to microscopic local changes may be seen as an obstacle to the 

reliable functioning of the system. In reality, the resulting inter-regional FC networks are 

stable over very broad intervals of synaptic values. As a matter of fact, the dominant 

directions of information transfer between the three regions X, Y and Z remain unchanged 

unless the coupling kij
(Z) 

crosses a critical threshold, at which point an abrupt reversal of X-to-

Y connectivity would be triggered. Operating near a critical threshold of some local control 

parameter
4
 –an eventuality supported by additional arguments (Chialvo, 2010)– would thus 

open the way to a ―digital-like‖ control of brain-wide FC. In this scenario, a desired target 

information routing pattern could be stabilized just by moving farther away the critical 

threshold (or destabilized by crossing to the other side in order to induce rerouting). 

Note that the possibility to remotely control FC appears paradoxical only when 

considering the simulated network circuit as a collection of local nodes. In reality, as for any 

complex system, the collective system‘s behavior cannot be reduced to the sum of its parts. 

The system as a whole should be considered as a single emergent entity of a new type and, in 

this sense, every effect would be ―local‖, including the network-wide effects of local control 

actions.  

 

Self-organized routing with transient and stochastic oscillations 
 

The toy models considered in Figure 3 give rise to unrealistically ―clock-like‖ collective 

oscillations. In reality, oscillatory episodes in vivo are usually transient, lasting only a few 

aligned cycles and arising at stochastic timings (Xing et al., 2012). Furthermore, oscillations 

frequency is volatile and its fluctuations inconsistent with input changes (Ray & Maunsell, 

2010; Jia et al., 2013). Last but not least, the diversity of inter-regional transmission delays is 

daunting and could threaten the reliable control of brain-wide synchronization (Ray & 

Maunsell, 2015). Dynamic self-organization of coordinated oscillatory behavior is once again 

the ingredient that could rescue the CTC hypothesis, making it compatible with stochastic 

oscillations transients. In Palmigiano et al. (2017), we have modified the toy models of 

Battaglia et al. (2012) (Figure 3A-C) to bring them at the edge of developing oscillatory 

synchrony. By introducing parameter heterogeneity  at the level of input conductance to 

different neurons, such models can give rise to a robust and broad regime in which 

asynchronous activity co-exist with stochastically occurring meta-stable oscillatory bursts. 

Remarkably, model simulations show that the oscillatory burst of coupled regions continue to 

be stochastic, but that correlations in both time of occurrence and fluctuating frequency 
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spontaneously develop between coupled regions. Once again, from a complex systems point 

of view, matching oscillatory bursting events may represent an intrinsic system‘s collective 

mode in which bursts in different regions are ―born coordinated‖ from scratch, rather than 

requiring an ad hoc additional mechanism to properly re-align them. Indeed, even circuits in 

a transient synchrony regime give rise to a rich dynome. Co-occurring bursts can manifest 

with different sets of favorite phase-relations and each set of phase-relations map to a 

different META-STABLE INFORMATION ROUTING PATTERN, as in the case of the higher 

synchrony models of Figure 3. In order to prove it, we can take full advantage of the 

flexibility of information-theoretical metrics and restrict TE and MI analysis to time epochs 

pre-labeled as belonging to a specified target state. For instance, in Figure 4A, we defined 

―state-selecting filters‖ tagging an epoch as belonging to a given routing state if instantaneous 

coherence exceeds a certain threshold and the inter-regional phase difference between two 

coupled regions X and Y falls in a specified interval. Different filters can be defined to track 

the stochastic manifestation of different routing states (e.g. X phase-leading or phase-lagging 

over Y). STATE-DEPENDENT FUNCTIONAL CONNECTIVITY is then extracted by pooling 

together activity measurements collected at instants tagged to belong to each given state. 

One can thus demonstrate that flexible and controllable selective routing of input signals 

can be implemented even based on highly transient and stochastic oscillations. An important 

prediction of the model is that directed information transfer between coupled regions should 

be strongly enhanced during co-occurring oscillatory bursts and that should be reduced to 

baseline or even actively suppressed between these oscillatory events (Palmigiano et al., 

2017). In such a scenario, information processing would be segregated within each cortical 

module for a large fraction of time and the results of local computations would be allowed to 

―flow‖ from or toward other regions only when specific selective routing events are triggered 

to occur (speculatively, as an effect of the completion itself of local computations). 

 

Beyond toy-brains 
 

Recently, MEAN-FIELD WHOLE BRAIN MODELLING (Deco et al., 2011) has been used to 

study the emergence of FC networks from the collective self-organized dynamics of a SC 

network embedding realistic connectome data, deriving e.g. from tractography data. 

Stereotypical neural mass models (Deco et al., 2008) are used to directly describe in terms of 

a limited number of variables the collective dynamics of each local brain region. 

Most analyses so far have focused on the rendering in silico of time-averaged resting-state 

functional connectivity that is tentatively emulated by the noise-driven dynamics of brain 

models. Converging results suggest that resting-state FC is best rendered by these mean-field 

models when tuning its global control parameters –global scale of inter-regional connection 

strength and coupling delay– to be in strict proximity of a rate instability critical point (see 

Deco et al., 2011 for a review). However, only a few models have attempted to capture the 

structured fluctuations of resting-state FC over time known as Functional Connectivity 

Dynamics (FCD), or ―chronnectome‖ (Hutchison et al., 2013; Calhoun et al., 2014). A recent 

modelling study (Hansen et al., 2015) has shown that such structured FCD can be 

qualitatively rendered when the global parameters of the model are tuned to a different 

working point, which is slightly subcritical with respect to the rate instability and maximize 

the richness of the model‘s dynome. This finding is not surprising according to our theory, 

since sampling a richer dynome is expected to lead to switching between a larger number of 

possible FC networks.  

Nevertheless, modelling of FCD at the whole brain level is still at its first steps and largely 

limited to resting state only –e.g. not yet task FC schedules as in Figure 2C-D– and the 

rendering of plain Pearson Correlation networks. Promising recent developments (see e.g. 



Mejias et al., 2016) suggest that mean-field models could become in a near future a valuable 

tool to study emergent brain-wide networks of flexible multi-frequency coherence.  

 

Implications for FC analyses 
 

We propose that FC networks are a measurable proxy for information routing patterns 

implemented by collective dynamics of neural circuits. According to this vision, the richness 

of the dynome of a given structural circuit will translate into a parallel variety of possible FC 

networks that can be observed at different moments in time. A large number of classic 

analyses of FC are based on averaging FC metrics over very long times or over many trials, 

eventually time-aligned to some extrinsic reference event, such as a sensory cur given during 

a cognitive task (Figure 4B, top). However, if a rich repertoire of states is sampled, either 

spontaneously as an effect of noise, or in a way guided by exogenous –sensory– or 

endogenous –cognitive– bias, we expect that FC could vary even dramatically along time. 

Every averaging procedure is thus going to destroy the precious information that could be 

present in this time-variability of FC (Hutchison et al., 2013). This is true even for trial-

averaging since we cannot a priori guarantee that transitions between internal states are really 

so tightly linked to task-related events. Figure 4 depicts a cartoon situation in which trial 

averaging would led to the conclusion that a weak, sustained inter-areal phase-coherence 

exist between two probed channels. In reality (Figure 4B, bottom), matching oscillatory 

bursting events with different phase relations are stochastically occurring along each trial and 

at different timings for different trials. A more correct interpretation should then have been 

that the two regions transiently exchange information in different direction with a large 

efficiency, but only at selected times.  

The two interpretations are qualitatively different and lead to radically diverging visions of 

how information processing works. The static vision conveyed by time- and trial-averaging 

may be too strongly influenced by our a priori hypotheses about how the brain is supposed to 

work, given the task design that we have chosen. We foresee that tackling the formidable 

technical challenge of developing new approaches for single-trial and state-based FC 

analyses will led us to find –paraphrasing Haldane (1927)– that the brain is not only queerer 

than we suppose, but also queerer than we can suppose.  
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Figure 1. From structural to functional connectivity via dynamics. Structural connectivity 

(SC) of a neuronal circuit shapes but does not fully determine neural dynamics. Even for a 

fixed connectome, a multiplicity of collective dynamical states can exist, e.g. different 

patterns of oscillatory phase-locking between network units. The set of possible dynamical 

states compatible with a given connectome constitutes its associated ―dynome‖ (Kopell et al., 

2014), or internal repertoire of available dynamical modes. Every dynamical state 

implements a different way of exchanging information between network units, leading to 

alternative functional connectivities (Battaglia et al., 2012; Kirst et al., 2016; Palmigiano et 

al., 2017). Eventually, as a result of the stochastic sampling of the dynome, switching 

transitions between these many possible functional connectivity (FC) networks may occur 

even at rest, giving rise to non trivial functional connectivity dynamics (FCD), also referred 

to as the ―chronnectome‖ (Calhoun et al., 2014) 

  



 
Figure 2. From static to dynamic functional networks. A. Beta oscillatory networks in 

monkey sensorimotor cortex as revealed from undirected Coherence (Left) and directed 

Granger causality (Right) FC analyses for LFP recordings from two monkeys (top and 

bottom). Adapted from Brovelli et al. (2004). B. FC between visuomotor-related Broadmann 

areas, estimated from MEG recordings during a visuomotor remapping task. We show 

undirected and directed graphs of linear correlation between BAs (Left), links with significant 

increases in total Granger interdependence (Middle) and, finally, directed Granger causality 

graphs (Right). The hierarchical sequence of analyses steps involving different metrics led to 

better interpretable directed FC graphs. Adapted from Brovelli et al. (2015). C-D. Time-

resolved FC estimated along the performance of a similar task. Three different partially 

overlapping networks (shown in panel D) activate and de-activate with a characteristic 

recruitment schedule (shown in panel C). Adapted from Brovelli et al. (2017).  

  



 
 

Figure 3. Functional Connectivity depends on the oscillatory state. A. A toy-brain of two 

coupled model brain regions X and Y, undergoing sparsely synchronized oscillations. Even if 

the collective rhythm is regular, individual neurons fire irregularly, in such a way that spike 

patterns (―code-words‖) can convey a large amount of information at every oscillation cycle. 

Depending on the collective oscillatory state in which the structural motif is set, 

communication in the two possible directions will be more or less efficient. B. Two possible 

inter-regional phase-locking modes exist, in which either X (Left) or Y (Right) region are 

leading in phase. In each of the two possible states, information conveyed by spiking code-

words emitted by source neurons in the phase-leading area can be decoded from code-words 

emitted by target neurons in the phase-laggard area. However, decoding efficiency does not 

rise above chance level (•) in the opposite laggard-to-leader direction. Switching between 

phase-locking modes can be induced by precisely-phased pulse perturbations, applied within 

a specific control phase range (correctly predicted by theory, colored range). C. The rich 

dynome associated to the toy-brain of panel A. Different dynamical states supported by the 

structural connectivity motif give rise to functional connectivity motifs with different 

topologies. Here an arrow denote detection of statistically-significant Transfer Entropy in a 

given direction. The thickness of the arrow reflect the relative strength of transfer in different 

directions. Adapted from Battaglia et al. (2012). D. Modular network of coupled phase 

oscillators, representing a toy-brain with three regions, X, Y and Z. The dominant direction of 



information transfer between two regions X and Y can be remotely controlled by plastic 

changes of local connections within a third controller region Z. Control in connectivity is 

―digital-like‖, with the inversion of direction occurring sharply when the control synaptic 

strength kij
(Z) 

crosses a threshold Kc . Adapted from Kirst et al. (2016). 

  



 
 

Figure 4. Transient information routing patterns. A. Oscillatory events in vivo are highly 

transient and occur at stochastic times (Xing et al., 2012). Transfer entropy (TE) and Mutual 

Information (MI) analyses can be restricted to time epochs only for which a specific set of 

state-filtering conditions are fulfilled, such as e.g. instantaneous coherence above a threshold, 

and phase-relation within alternative specified ranges (here, ΔΦ↑,↓ corresponding respectively 

to X or Y as phase leading regions). Thus directed information transfer can be computed for 

each specific class of meta-stable oscillatory transients (information routing states). Adapted 

from Palmigiano et al. (2017). B. The stochasticity of the timing of different routing 

oscillatory events may lead to spurious interpretations when computing average FC over 

time-aligned trials, rather than computing FCD along single trials. There is thus a need for 

methods allowing to estimate state-specific FC, by pooling together epochs belonging to a 

same putative state. 

 

 

 

 

 

 


