
HAL Id: hal-02304882
https://hal.science/hal-02304882v1

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Parallel fractal decomposition based algorithm for big
continuous optimization problems

Amir Nakib, Léo Souquet, El-Ghazali Talbi

To cite this version:
Amir Nakib, Léo Souquet, El-Ghazali Talbi. Parallel fractal decomposition based algorithm for big
continuous optimization problems. Journal of Parallel and Distributed Computing, 2019, 133, pp.297-
306. �10.1016/j.jpdc.2018.06.002�. �hal-02304882�

https://hal.science/hal-02304882v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Parallel fractal decomposition based algorithm for big
continuous optimization problems

A. Nakiba, L. Souqueta,b, and E-G. Talbic

aUniversité Paris-Est, Laboratoire LISSI,
122 Rue Paul Armangot, 94400 Vitry sur Seine, France

bData ScienceTech Institute, DSTI Labs
950 Route des Colles, Les Templiers, 061410 Biot, France

cINRIA Lille - Nord Europe Parc Scientifique de la Haute Borne
40, Avenue Halley, Bat A, Villeneuve d’Ascq, France

Abstract

Fractal Decomposition Algorithm (FDA) is a metaheuristic that was recently

proposed to solve high dimensional continuous optimization problems. This ap-

proach is based on a geometric fractal decomposition which divide the search

space while looking for the optimal solution. While FDA and its fractal de-

composition has shown to be an effective optimization algorithm, its running

time grows significantly as the problems dimension increases. To overcome this

expensive computational time, a parallelized version of FDA, called Parallel

Fractal Decomposition Algorithm (PFDA) is proposed. The focus was on par-

allelizing the exploration and exploitation phases of the original algorithm on a

multi-threaded environment. The performances of PFDA were evaluated on the

same Benchmark used to illustrate FDA efficiency, the SOCO 2011. It is com-

posed of 19 functions with dimensions going from 50 to 5000. Results shows that

PFDA reaches similar performances as the original version with a significantly

reduced computational time.

Keywords: very-Large-scale optimization, Metaheuristics, Geometric Fractal

Decomposition, Local Search. Continuous optimization.

Preprint submitted to Journal of LATEX Templates March 30, 2018

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0743731518304003
Manuscript_c68c9b997bf1316e4b8181ad2ae763ac

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0743731518304003
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0743731518304003


1. Introduction

For a couple of years, massively parallel architectures are now available to

a broader public, where it was before reserved for super-computers. The access

to those parallel architectures through cloud platforms, grid computer allow to

reduce the running time to solve complex problems. Algorithms need to be5

designed, implemented or modified to take profit from the power of all these

new architectures. In other words, developers must either adapt an existing

algorithm to benefit from the new resources or design new algorithms.

In the first approach, we can cite [1, 2, 3] where authors aimed to parallelize

the well known mataheuristic Simulated Annealing. Other metaheuristics have10

also been modified to take benefit from Graphical Processing Units (GPU) such

as ant colony optimization algorithm [4]. In the second approach, in [5] authors

proposed a new parallelized metaheuristic based on Particle Swarm Optimiza-

tion (PSO) principle, especially designed to be run on parallel architectures.

For more detailed review on parallel metaheuristics reader can refer to [6].15

Another approach to tackle global optimization problems is the Divide-and-

Conquer (D&C) approach. It is efficient to solve small problems, however, due

to the exponential complexity of these algorithms, they cannot be used for large

scale problems. Recently, some works, inspired from the parallel work on branch

and bound as in [7], were proposed to use this approach in large scale by using20

High Performance Computing (HPC) architectures.

As pointed out, adapting existing algorithms has been popular in the last

decade. Generally, D&C based techniques are straightforward to parallelize,

however, the challenge lies in achieving high performance and scalability in

parallel. These algorithms divide the search space into sub-regions recursively,25

then, generate a search tree. In [7] the authors have implemented a (B&B)

algorithm running on CPU, multi-GPU and/or heterogeneous environments. In

a multi-CPU environment, a simple illustration would be to explore the different

generated branches on different CPUs, in parallel.

In this work, the goal is to use the principle of the geometric fractal decom-30

2



position to divide the search space. This new approach was proposed in [8] to

solve large-scale continuous optimization problems. The algorithm called Frac-

tal Decomposition Algorithm (FDA), takes profit from a fractal decomposition

and uses hyperspheres geometric form to divide the search space. Authors argue

that the flexibility of the approach to cover the search space and its low com-35

plexity lead to this choice. Moreover, this choice was confirmed by the fact that

FDA performs well on large-scale problems. Deterministic and single solution

based, FDA can be seen as a Divide-and-Conquer approach, because it splits

the search space using hyperspheres as an elementary geometric form, then,

builds a search tree. While navigating through the tree FDA identifies, at each40

decomposition level, candidate optimal hyperspheres: areas where the global

optimum could be found. This principle is illustrated in Figure 1 with in case

of a four-level decomposition, the red hypersphere being the best one at each

level. Once the maximum fractal depth k is reached, a local search is triggered

to find the optimal solution. The performances of the algorithm were analyzed45

via a benchmark taken from the special issue of soft computing on scalability of

evolutionary algorithms (SOCO 2011). It consists in 19 large-scale optimization

test functions with dimensions going from 50 to 1000. The obtained results were

compared to other competing metaheuristics designed to solve similar problems

as well as state-of-the-art algorithms.50

In its original version, FDA was running on a mono-threaded environment

and therefore its computational time increases significantly when the problems’

dimension increases. The motivation of the current work was to address this is-

sue. Reducing the execution time, solving big optimization problems (problems

with dimensions higher than 1000), and maintaining the original precisions. We55

recall that as FDA is a D&C based approach, a search tree is built with hy-

perspheres. In this paper, a parallelized version of FDA, called PFDA, running

on a multi-threaded environment using the framework OpenMP and following

the Fork/Join model is proposed. This approach is motivated by the fact that

each thread can explore and exploit hyperspheres simultaneously. The aim is to60

significantly improve its running time with a focus on big optimization problems.

3



(a) 1st level (b) 2nd level

(c) 3rd level (d) 4th level

Figure 1: Illustration of the fractal decomposition of the search space: the depth of the

decomposition is equal to 4.

The rest of this paper is organized as follow: in Section 2, the literature

on parallelized metaheuristics is reviewed briefly. Section 3 recalls the Frac-

tal Decomposition Algorithm. In Section 4 an analysis of the mono-threaded

FDA is presented. Section 5 tackle the different challenges that parallelizing65

FDA. Section 6 illustrates and discusses the results obtained by the parallel

implementation of the FDA algorithm. Finally, a conclusion ends the paper.

2. Related work

2.1. Parallelized metaheuristics

The parallelization of metaheuristics has been popular over the last three70

decades in the field of optimization. Indeed, several works have mainly focus on

4



adapting existing algorithms to allow them to take profit from multithreaded

or multi-nodes environments.

For instance, Simulated Annealing was parallelized in 1987, to solve real life

optimization problems [1, 2, 3]. Authors explored different strategies for running75

the algorithm on shared-memory multiprocessors by distributing the selection

and evaluation parts to different processors in parallel. Similar optimization

results (in terms of the cost function) as the serial version was obtained in

shorter running time. In [3] the authors report an improvement of the speed by

a factor of 6 on 8 processors.80

In [12], the authors focused on parallelizing the well known metaheuristic

called Genetic Algorithm (GA). They developed a parallelized version, called

Parallel Genetic Algorithm (PGA). The main idea behind this algorithm is to

distribute the selection scheme by making each individual looking for a good

solution, but only among its neighbors. This approach allowed to obtain good85

results on the Travel Salesman problem.

Decades later, parallelizing metaheuristic is still a popular field with many

other approaches being parallelized. The Ant Colony Optimization (ACO) al-

gorithm has been the subject of many works [13, 14, 15, 16]. In their work [13],

the authors run iteratively different sequential ACO [14], the parallelization is90

made at the colony or ant level, searching independently and sending back their

results synchronously or asynchronously, depending on the parallel model. The

latter has parallelized the algorithm on a multi-core processor environment us-

ing OpenMP. They concluded that the execution time can be greatly reduced

without loosing quality of the final solution. In [16], authors studied a paral-95

lelized version of the ACO algorithm applied to the Taxi-Passenger Matching.

The idea was to divide the city being optimized into several regions to reduce

the dimension of the problem. Hence, making the approach similar to a D&C

strategy. They explore regions in parallel allowing the algorithm to find a good

solution faster.100

5



2.2. Decomposition methods

As FDA is a Divide-and-Conquer based algorithm, then, the literature on

Branch-and-Bound algorithms can also be take into account. In [17], the authors

mentioned different strategies to parallelized B&B algorithms: 1. Parallelizing

the nodes’ evaluation; 2. Parallelizing the construction of the search tree; 3. A105

combination of the first two. They studied these three strategies on a multi-

thread environment, reaching a linear tendency of the SpeedUp.

Only few algorithms that use the geometric decomposition of the search

space were proposed in the literature: DIviding RECTangles (DIRECT) [18],

FRACTOP [19] and Multiple Optima Sierpinski Searcher [20]. However, when110

dividing the search domain, both DIRECT and FRACTOP suffer from an ex-

ponential growth of subregions, making those algorithms computationally ex-

pensive on large-scale problems not applicable for big optimization. In the case

of Multiple Optima Sierpinski Searcher, the authors stated that the chosen geo-

metric forms will not allow the algorithm to cover the entire search domain. As115

DIRECT does not perform well on high dimensions problems, in [21], authors

proposed a parallelized version of the algorithm to tackle this issue. To do so,

multi-start strategy was used via evaluating multiple starting points on different

processors. The evaluations of the objective function was also distributed among

the different CPUs. This algorithm is implemented using both OpenMP for the120

multi-threading part and MPI for passing messages over multiple processors. It

is known that DIRECT divides the search space into hypercubes, the number

of vertices to evaluate grows exponentially, when the dimension of the problem

increases making the algorithm computationally expensive on large-scale prob-

lems: seventeen (17) hours were necessary to reach 238397 function evaluations125

using 141 processors. It shows that even parallelized, DIRECT is not suited for

large scale problems. FDA has been designed to address these two main issues

that decomposition methods face, i.e not being able to cover the entire search

domain and falling to solve large-scale and big optimization problems.

6



3. The Fractal Decomposition Algorithm: Recall130

The Fractal Decomposition Algorithm [8] (FDA) a D&C based algorithm

that has been designed to solve large-scale continuous optimization problems.

While searching, FDA builds a search tree of promising optimum areas of a

depth k (called fractal depth), by dividing the search space recursively using

geometrical hyperspheres. The algorithm is composed of three main phases: 1.135

Initialization detailed in Sub-Section 3.2; 2. Exploration phase (in Sub-Section

3.3); 3. Exploitation Phase (in Sub-Section 3.4).

Algorithm 1 highlights the structure of the approach and Figure 4 shows the

main life cycle using Unified Modeling Language (UML). For more details on

FDA, the reader can refer to [8].140

3.1. FDA Parameters

To be fine tuned FDA requires the setting of four different parameters, their

values were taken from the original paper [8]. A recall of these values is given

in the following:

• (k) = 5, the fractal depth;145

• ϕ = 0.5, the coefficient by which the step-size is decreased, used in the

Intensive Local Search (ILS) (Section 3.4);

• α = 1.75, the relaxation coefficient used in the exploration procedure

(section 3.3);

• ωmin = 10−20, the tolerance threshold, also used in ILS (section 3.4).150

3.2. Initialization procedure

The first hypersphere, at level l = 0, is initialized at the center of the search

space, and lies within its limits, as shown on Figure 2(a). It is the biggest

hypersphere that can be created within the domain and both center ~C(1) and

radius r are computed using the expressions (1) and (2), respectively.155

~C
(1)
j = L+ (U − L)/2, for j = 1, 2, . . . , D (1)

7



where ~C(1) are the coordinates of the center of the biggest hypersphere within

the search space, D the dimension of the search space and r the hypersphere’s

radius.

r = (U − L)/2 (2)

where U is the upper bound, L is the lower bound of the whole search space.

Once the first hypersphere is created, it is partitioned into 2 × D child-160

hyperspheres using the expression (3) and as shown on Figure 1a.

~C
(i)
k = ~C

(i)
k + (−1)i× ((r − r′)× ~ek) (3)

where ~C(i) represents the center of the ith child-hypersphere with i = 1, . . . , 2 ×

D, r′ = r/(1 +
√

2) and ~ek the unit vector at the dimension k.

3.3. Exploration procedure

FDA uses a heuristic, called promising hypersphere selection heuristic for the165

exploration phase which is designed to detect the most promising hyperspheres

to be further decomposed.

As the hyperspheres do not cover all the search space, FDA increases the

radius of newly generated hyperspheres by a ratio α at the evaluation of the

quality of the hyperspheres.170

This procedure is called relaxation and is illustrated in Figure 2. It is applied

to all 2 × D child-hyperspheres. Their respective qualities are then computed

and only the best one is selected to be decomposed, using expression (3), which

leads the algorithm to move down one level in the search tree (l = l+ 1). While

evaluating hyperspheres, FDA keeps track of the best solution encountered and175

updates it after each hypersphere evaluation.

Hyperspheres that have not been decomposed are sorted according to their

quality and stored in a stack for further decomposition. If all hyperspheres at a

level l have been explored, FDA selects the next one in the stack at level l = l−1

to be partitioned. This would have the effect of creating a new branch in the180

8



O

α

C2C4

C1

C3

B

A

O C2

α

B

(a) Geometric decomposition at level 1 (b) Geometric decomposition at level 2

Figure 2: Illustration of the decomposition procedure in the case of a 2D search space, where

A is the biggest hypersphere inside the search space (B), C1, C2, C3, and C4 are centers of

hyperspheres at the first level

search tree. FDA stops either when the stopping criterion is reached or when

all the search tree has been explored (all branches of depth k are explored).

3.4. Exploitation procedure

For the current explored branch of the search tree, when the k − th level

is reached, FDA triggers a local search aiming to explore all generated child-185

hyperspheres in attempt to find better solution. At this step, different learning

based optimization methods can be used. However, to satisfy the low complexity

design constraint, a simple algorithm, called Intensive Local Search (ILS) was

implemented.

For each hypersphere at the level k, ILS starts with ~xs being initialized at190

the center ~C moving along each dimension and evaluating two solutions ~xs1 and

~xs2 as expressed in (4) and (5), respectively.

~xs1 = ~xs + ω × ~ei (4)

~xs2 = ~xs − ω × ~ei (5)

9



where ~ei is the unit vector where the ith element is set to 1, and other elements

to 0. ω is the step size in which ~ei changes.

Afterwards, the best solution among ~xs, ~xs1 and ~xs2 is chosen to be the next195

current solution ~xs and ILS moves to the next dimension.

If no improvement has been made for ~xs, then ω is reduced by factor 1/ϕ,

Intensive Local Search stops when one of the following conditions is satisfied:

• Stopping criterion is reached.

• The step size reaches ωmin, the tolerance or the precision need of the200

problem being solved.

Once a hypersphere has been explored, ILS returns ~xs containing the best

solution found locally. Then, the best solution found so far is updated if it is

worst than ~xs.

Once all hyperspheres at the k− th level have been explored, if the stopping205

criterion has not been yet met, then, FDA backtracks in the search tree, and

the next hypersphere to be decomposed is selected at the level l = l − 1. This

procedure allows the algorithm to explore other regions of the search space.

To illustrate this behavior, the Figure 3 shows different levels explored by

FDA when solving the shifted Griewank problem where D = 5. As it can be210

seen, once FDA explored all hyperspheres at the 5-th level, it selects the next

one of the 4-th level to be decomposed, and triggers again ILS on each 5-th level

hyperspheres. Once all hyperspheres at the 4-th level has been decomposed, it

selects the next one from the 3-rd level, and continues until the stopping criterion

is met.215

Moreover, this illustration points out the fact that FDA explores the whole

search space. In other terms, if none stopping criterion was set, FDA will stop

when the entire search tree has been explored.

4. Analysis of the mono-thread implementation of FDA

The Figure 5 illustrates four main phases of FDA. Figure 5a represents220

the first hypersphere (in red) being decomposed into 2×D child-hyperspheres

10



Algorithm 1: FDA Algorithm

Input: Deep of the fractal decomposition: k = 5 and precision threshold:

ωmin = 1× e−20

Input: Coefficient step-size: λ = 0.5, inflation coefficient: α = 1.75 and

dimension of the problem: D

// Initialization phase as described in Section 3.2

Initialize the center ~C of the first Hypersphere, at the center of the search

space using (1)

while Stopping criterion is not reached do
Partition the current hypersphere H using the Fractal procedure

given in expression (3)

// Exploration phase as in Section 3.3

for 2×D l-level hypersphere do

Relaxe hypersphere by α and compute its quality

end

Sort the 2×D hyperspheres at the current l-level by their quality

Replace the current hypersphere H by the first of the sorted

hyperspheres at the current level

if l==k then

// last level reached

// Exploitation phase as in Section 3.4

for 2×D hypersphers at the last level do

Apply the ILS heuristics on each created hypersphere

end

if stopping criterion is not reached then

Move up one level (l = l − 1)

end

else

Go to next level: l = l + 1

end

end

Result: the best solution BestSol and its coordinates

11



Figure 3: Illustration of the way FDA backtracks in the search tree in dimension D = 5

(CHi). For more clarity, in this example the dimension is set to D = 2. It can

be seen on Figure 5b that child-hyperspheres are evaluated sequentially. Once

the child-hypersphere with the best quality is found (CH2 colored in red in this

case), then, it is also decomposed into 2 × D child-hyperspheres (Figure 5c).225

When the depth k is reached (k set to two in our example), ILS is triggered

on all created child-hyperspheres. In Figure 5d one sphere is exploited by the

heuristic at a time. When all k−th level child-hyperspheres have been exploited,

FDA either terminates if the stopping criterion has been reached or backtracks

in the search tree and continues.230

One can remark that both the exploration and exploitation phases handle

hyperspheres sequentially and create bottlenecks.

5. Proposed Multi-threaded Implementation Strategy

Finding a good solution (if the optimum is not known) and within a rea-

sonable time are the two main aspects to be taken into account when designing235

a metaheuristic. The increase in the complexity of the problem will naturally

increase the computation time required for the algorithm to find the desired

solution.

12



Figure 4: Illustration of life-cycle of the mono-threaded version of FDA.

This section describes the proposed Parallel FDA, called PFDA, with OpenMP.

When parallelizing, one should aim for achieving a trade-off between improving240

performance, while minimizing the overheard of the parallelized mechanisms

which includes communication, synchronization between threads, memory shar-

13



(a) First decomposition

(b) Evaluation of spheres (Exploration)

(c) Decomposition

(d) Exploitation phase

Figure 5: Illustration of Exploration phase (a) and (b) and the Exploitation phase (c) and

(d) of a 2D problem with fractal depth 2 on a single threaded environment. The sphere in red

having the highest quality at level 1 (a) and being decomposed (c) for exploitation phase (d).

14



ing and simplicity of implementation.

The idea behind parallelizing FDA was to remove the bottlenecks mentioned

earlier, i.e. the exploration and exploitation phases. They are also the steps245

when function evaluations are consumed. Hence, these two phases need to be

parallelized.

The Figure 6 illustrates the used strategy based on the previous example.

Figures 6b and 6d represent the parallelized version of the exploration and

exploitation phases, handling hyperspheres simultaneously, respectively.250

The initialization phase remains on a single thread, the hypersphere is being

decomposed and only at this point the exploration phase starts. Instead of

evaluating hyperspheres one at a time, from one to N hyperspheres with N =

2×D, PFDA is able to evaluate hyperspheres in parallel. The algorithm returns

to a mono-threaded state and sort all hyperspheres, selecting the best one to255

be decomposed. This is being repeated until the last level k is reached. At this

point the most promising region is decomposed triggering different instances

of ILS. Then, 2 × D generated hyperspheres are exploited in parallel. Once

all hyperspheres have been exploited, PFDA terminates if stopping criterion is

reached or backtracks in the search tree otherwise.260

In other terms, PFDA alternates between mono-threaded and multi-threaded

phases which corresponds to the well known Fork/Join model. It is important

to notice that the algorithm was designed to be easy to implement.

Regarding the programming environment for implementation, OpenMP is

commonly used in the literature for multi-threaded environments, and stands265

out in terms of popularity, performance and simplicity of implementation [29,

30, 31].

6. Results and Discussions

In this section, the obtained results are presented and analyzed. When

adapting an existing metaheuristic it is important to be able to measure the270

benefits of the improvement. In this case, the main concern being the computa-

15



(a) First decomposition (b) Evaluation of spheres (Explo-

ration)

(c) Decomposition (d) Exploitation phase

Figure 6: Illustration of the proposed strategy. Illustration of Exploration phase (a) and (b)

and the Exploitation phase (c) and (d) of a 2D problem with fractal depth 2 on a multi-

threaded environment. The child-hypersphere in red having the highest quality at level 1

(a) is being decomposed (c) for exploitation phase (d) which is also ran on a multi-threaded

environment

tional time of the algorithm, this study will focus on the SpeedUp criteria [32].

This metric is defined by:

S =
T1
Tn

(6)

16



where S represents the SpeedUp, T1 the execution time of the algorithm on a

single thread and Tn, the execution time on n threads.275

As shown in [32] this is not a valid comparison for non-deterministic algo-

rithms. Originally FDA is deterministic, however, parallelizing the exploration

phase adds a stochastic effect. Therefore, the SpeedUp remains suited for eval-

uating our approach.

6.1. Performances evaluation280

To evaluate the performance of the proposed algorithm on the large-scale

continuous optimization benchmark of the Special Issue of Soft Computing

on Scalability of Evolutionary Algorithms (SOCO 2011) was considered. This

benchmark is composed of six functions from the CEC’2008 special session and

competition on large-scale global optimization ([33]), and other problems gen-285

erated by hybridizing these functions.

The comparison was performed between the computation time taken by

PFDA and that of FDA to solve the benchmark. For the sake of the comparison,

the stopping criterion of the benchmark was conserved: the number of functions

evaluations set to 5000×D, D being the dimension of the problem. In addition,290

only the dimensions D = 50, D = 100 and D = 1000 have been studied.

The machine used for experimentations has the following characteristics: a

processor Intel Xeon E5-2686 v4 with 256GB of RAM with the technology Intel

Turbo Boost Technology. The SpeedUp has been computed on the following

number of threads: 4, 8, 16, 32, 64.295

In Figure 7 variations of the SpeedUp over the number of threads are pre-

sented. One can see that the increase of the number of threads allows to reduce

significantly the running time to reach the stopping criterion. It can also be

noticed that for small dimensions, the increase of the number of threads does

not automatically decreases the running time. However, for large problems, it300

is clear that the increase of the number of threads significantly decreases the

execution time. The Figure 7c illustrates this remark in case of the dimension

D = 1000, where the SpeedUp is equal to 24.22 with 32 threads.

17



(a)

(b)

(c)

Figure 7: SpeedUp versus the number of threads for solving the 19 functions (combined). (a)

D = 50, (b) D = 100, (b) D = 1000.

18



To analyze the performances regarding different kind of problems, a focus

was made on first six functions F1-F6 [33], on the dimensionD = 1000. These six305

functions represent the different types of problems: separable and non-separable.

The best obtained SpeedUp found is equal to 27.73 in case of a non-separable

problem (Rosenbrock F3 function). The different SpeedUps obtained for the

previous considered problems are presented in Figure 8. It can be noticed that

in all cases a linear tendency of the increase of the SpeedUp can be observed.310

This confirms the results illustrated in Figure 7c.

Regarding the quality of the final solution obtained by the algorithm, re-

sults of both versions (FDA and PFDA) are summarized in Table 1. It can

be noticed from these results that when FDA found the optimum, PFDA also

found it. However, the functions where FDA did not find the optimum, results315

of PFDA are far from the optimum. The quality of the solution, in this case,

decreases with the increase of the number of threads. This is due to the stopping

criterion being based on the number of function evaluations. Indeed, as n = 64,

n hyperspheres are being explored in the same time, meaning that functions

evaluations are performed in parallel. Hence, PFDA cannot exploit as deep the320

first hypersphere (supposed to be the most promising one) as FDA, which ex-

ploits them one at a time and can therefore go deeper in the first hypersphere.

For instance, all functions evaluations are consumed in the first hypersphere

generated on the last level k in case of the optimization of Rosenbrock problem

via FDA.325

Hence, FDA intensifies the search in the first hyperspheres more than PFDA

can do. Indeed, PFDA exploits n hyperspheres at once.

It is obvious that the parallelized version needs more evaluations of the

objective function to reach results similar to those of the single threaded version.

In Figure 9, one can see the different SpeedUps obtained by FDA on single330

thread and PFDA on 64 threads. To analyze the performance in terms of

SpeedUp when a target value of the objective function is considered as a stopping

criterion. The Figure 10 presents obtained results. As it was expected, PFDA

reaches similar results in a shorter computational time.

19



T
a
b

le
1
:

R
es

u
lt

s
er

ro
r

o
f

th
e

1
9

fu
n

ct
io

n
s

o
f

S
O

C
O

2
0
1
1

fo
r

F
D

A
a
n

d
P

F
D

A
.

F
u

n
ct

io
n

O
ri

gi
n

al
F

D
A

N
B

T
h

re
a
d

4
N

B
T

h
re

a
d

8
N

B
T

h
re

a
d

1
6

N
B

T
h

re
a
d

3
2

N
B

T
h

re
a
d

6
4

F
1

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
2

3.
11
E
−

01
3.

6
7E

+
0
1

5
.4

3
E

+
0
1

6.
4
3E

+
0
1

7.
1
9E

+
0
1

8.
5
1E

+
0
1

F
3

1.
13
E

+
03

1.
4
1E

+
0
3

2
.4

1
E

+
0
3

3.
2
4E

+
0
3

4.
4
6E

+
0
3

4.
6
3E

+
0
3

F
4

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
5

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
6

1.
91
E
−

12
1.

9
2E
−

1
2

1
.9

2
E
−

1
2

1.
8
9E
−

1
2

1.
9
2E
−

1
2

1.
8
9E
−

1
2

F
7

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
8

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
9

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
10

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
11

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
12

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

1.
4
5E
−

1
4

F
13

7.
69
E

+
02

9.
7
8E

+
0
2

1
.0

5
E

+
0
3

1.
0
8E

+
0
3

1.
1
8E

+
0
3

1.
5
5E

+
0
3

F
14

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

1.
4
5E
−

0
7

F
15

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

F
16

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

1.
2
6E
−

0
7

F
17

1.
95
E

+
02

3.
7
6E

+
0
2

3
.9

2
E

+
0
2

4.
3
0E

+
0
2

4.
5
2E

+
0
2

6.
8
8E

+
0
2

F
18

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

5.
8
9E
−

0
8

F
19

0.
00
E

+
00

0.
0
0E

+
0
0

0
.0

0
E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0
0

0.
0
0E

+
0

20



F
ig

u
re

8
:

S
p

ee
d

U
p

v
er

su
s

th
e

n
u

m
b

er
o
f

th
re

a
d

s
co

n
ce

rn
in

g
th

e
si

x
fi

rs
t

fu
n

ct
io

n
s

o
f

th
e

S
O

C
O

2
0
1
1

b
en

ch
m

a
rk

.

21



F
ig

u
re

9
:

O
b

ta
in

ed
S

p
ee

d
U

p
s

o
n

a
6
4
-t

h
re

a
d

en
v
ir

o
n

m
en

t
w

it
h

st
o
p

p
in

g
cr

it
er

io
n

a
t

2
0
0
0
0
×

D
fo

r
b

o
th

F
D

A
a
n

d
P

F
D

A

22



F
ig

u
re

1
0
:

O
b

ta
in

ed
S

p
ee

d
U

p
s

o
f

si
n

g
le

th
re

a
d

ed
F

D
A

a
n

d
6
4
-t

h
re

a
d

P
D

F
A

w
h

en
a

ta
rg

et
v
a
lu

e
o
f

th
e

o
b

je
ct

iv
e

fu
n

ct
io

n
is

u
se

d
a
s

a
st

o
p

p
in

g

cr
it

er
io

n
.

23



6.2. Exploring higher dimension335

In these experimentations the goal is to solve big optimization problems

via PFDA. The considered problems are the first six functions of SOCO 2011

benchmark, where the dimension is D = 5000. The number of thread considered

was 64. For the purpose of this study the stopping criterion will remain at

5000 ∗D.340

Originally, the benchmark SOCO 2011 sets the maximum dimension at D =

1000. To increase the dimension, instead of shifting the functions as provided by

the benchmark, we shifted them randomly between in the interval [L/10, U/10],

where L is the lower-bound and U is the upper-bound.

The Figure 11 shows the obtained SpeedUps. Overall SpeedUps are higher345

than in the case of the dimensionD = 1000 (Figure 8), except for the function F1

Shifted Sphere. This can be explained by the nature of this problem (separable

without local optima), both algorithms converges quickly to the optimum (it is

known here). Therefore ILS is lost in trying to explore intensively, hyperspheres

where an optimal or near optimal solution was already found. It is important to350

mention that this happens only if the stopping criterion is based on evaluation

numbers. If PFDA is configured to stop when a target solution is found, then,

the SpeedUp would be significantly higher.

7. Conclusion

In this work, a parallel version of the FDA algorithm, called PFDA, was355

proposed. The algorithm has been extensively tested on the SOCO 2011 Bench-

mark on large scale problems, going from 50 to 5000. Based on the SpeedUp

criterion, it is easy to see that parallelizing FDA has improved significantly its

performances on large-scale problems. However, during the exploration phase

PFDA consumes lot of functions evaluations.360

When the stopping criterion is a target value of the objective function a high

SpeedUp was obtained. It can be concluded that this new approach enforces

24



Figure 11: SpeedUp at dimension D = 5000 for the first six functions of the benchmark SOCO

2011 with number of threads n = 64

the original strengths as it converges significantly faster. However, PFDA re-

mains less efficient in the case of highly non-separable problems. This is due

to the heuristic used to explore hyperspheres, ILS. In work under progress, we365

aim to develop a new method for the exploration phase to enhance the perfor-

mance to solve highly non-separable problems. In addition, the parallelization

could go even further in running the exploration and exploitation phases on a

heterogeneous environment with multi-nodes and/or GPU.

References370

[1] F. Darema, S. Kirkpatrick, V. A. Norton, Parallel algorithms for chip place-

ment by simulated annealing, IBM Journal of Research and Development

31 (3) (1987) 391–402.

[2] S. A. Kravitz, R. A. Rutenbar, Placement by simulated annealing on a mul-

tiprocessor, IEEE Transactions on Computer-Aided Design of Integrated375

Circuits and Systems 6 (4) (1987) 534–549.

[3] A. Casotto, F. Romeo, A. Sangiovanni-Vincentelli, A parallel simulated

annealing algorithm for the placement of macro-cells, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 6 (5) (1987)

838–847.380

25



[4] A. Delvacq, P. Delisle, M. Gravel, M. Krajecki, Parallel ant colony opti-

mization on graphics processing units, Journal of Parallel and Distributed

Computing 73 (1) (2013) 52 – 61.

[5] S. Gulcu, H. Kodaz, A novel parallel multi-swarm algorithm based on com-

prehensive learning particle swarm optimization, Engineering Applications385

of Artificial Intelligence 45 (2015) 33 – 45.

[6] E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: Recent ad-

vances and new trends 20 (2013) 1–48.

[7] T.-T. Vu, B. Derbel, Parallel branch-and-bound in multi-core multi-cpu

multi-gpu heterogeneous environments, Future Generation Computer Sys-390

tems 56 (2016) 95 – 109.

[8] A. Nakib, S. Ouchraa, N. Shvai, L. Souquet, E.-G. Talbi, Deterministic

metaheuristic based on fractal decomposition for large-scale optimization,

Applied Soft Computing 61 (Supplement C) (2017) 468 – 485.

[9] A. Reyes-Amaro, É. Monfroy, F. Richoux, Posl: A parallel-oriented395

metaheuristic-based solver language, in: Recent Developments in Meta-

heuristics, Springer, 2018, pp. 91–107.

[10] S. Santander-Jimnez, M. A. Vega-Rodrguez, Parallel multiobjective meta-

heuristics for inferring phylogenies on multicore clusters, IEEE Transac-

tions on Parallel and Distributed Systems 26 (6) (2015) 1678–1692.400

[11] X. Y. Zhang, J. Zhang, Y. J. Gong, Z. H. Zhan, W. N. Chen, Y. Li, Parallel

genetic algorithm for the set cover problem and its application to large-scale

wireless sensor networks, IEEE Transactions on Evolutionary Computation

20 (5) (2016) 695–710.

[12] M. Gorges-Schleuter, Asparagos an asynchronous parallel genetic optimiza-405

tion strategy, in: Proceedings of the Third International Conference on Ge-

netic Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1989, pp. 422–427.

26



[13] W. Baocheng, W. Tiane, W. Zenghui, The implementation of parallel ant

colony optimization algorithm based on matlab, in: 2012 Third Global410

Congress on Intelligent Systems, 2012, pp. 27–29.

[14] H. Liu, Z. He, Parallel ant colony optimization algorithms for time series

segmentation on a multi-core processor, in: 2012 4th International Confer-

ence on Intelligent Human-Machine Systems and Cybernetics, Vol. 1, 2012,

pp. 340–343.415

[15] P. Delisle, M. Krajecki, M. Gravel, Multi-colony parallel ant colony opti-

mization on smp and multi-core computers, in: 2009 World Congress on

Nature Biologically Inspired Computing (NaBIC), 2009, pp. 318–323.

[16] X. Situ, W. N. Chen, Y. J. Gong, Y. Lin, W.-J. Yu, Z. Yu, J. Zhang, A

parallel ant colony system based on region decomposition for taxi-passenger420

matching, in: 2017 IEEE Congress on Evolutionary Computation (CEC),

2017, pp. 960–967.

[17] J. F. R. Herrera, J. M. G. Salmerón, E. M. T. Hendrix, R. Asenjo, L. G.

Casado, On parallel branch and bound frameworks for global optimization,

Journal of Global Optimization.425

[18] D. R. Jones, C. D. Perttunan, B. E. Stuckman, Lipshitzian optimization

without the Lipshitz coefficient, Journal of Optimization Theory Applica-

tions 79 (1) (1993) 157–181.

[19] M. Demirhan, L. Özdamar, L. Helvacğlu, c. I. Birbil, Fractop: A geometric

partitioning metaheuristic for global optimization, J. of Global Optimiza-430

tion 14 (4) (1999) 415–436.

[20] D. Ashlock, J. Schonfeld, A fractal representation for real optimization, in:

2007 IEEE Congress on Evolutionary Computation, 2007, pp. 87–94.

[21] J. He, M. Sosonkina, C. A. Shaffer, J. J. Tyson, L. T. Watson, J. W.

Zwolak, Hierarchical parallel scheme for global parameter estimation in435

27



systems biology, in: 18th International Parallel and Distributed Processing

Symposium, 2004. Proceedings., 2004, pp. 42–.

[22] A. Al-Dujaili, S. Suresh, N. Sundararajan, Mso: a framework for bound-

constrained black-box global optimization algorithms, Journal of Global

Optimization (2016) 1–35.440

[23] D. Molina, M. Lozano, A. M. Sánchez, F. Herrera, Memetic algorithms

based on local search chains for large scale continuous optimisation prob-

lems: MA-SSW-Chains, Soft Computing 15 (11) (2011) 2201–2220.

[24] M. Z. Ali, N. H. Awad, P. N. Suganthan, Multi-population differential evo-

lution with balanced ensemble of mutation strategies for large-scale global445

optimization, Applied Soft Computing 33 (2015) 304–327.

[25] T. Liao, M. A. Montes de Oca, D. Aydin, T. Stützle, M. Dorigo, An incre-

mental ant colony algorithm with local search for continuous optimization,

in: Proceedings of the 13th Annual Conference on Genetic and Evolution-

ary Computation, GECCO ’11, ACM, 2011, pp. 125–132.450

[26] A. LaTorre, S. Muelas, J.-M. Peña, A MOS-based dynamic memetic differ-

ential evolution algorithm for continuous optimization: a scalability test,

Soft Computing 15 (11) (2011) 2187–2199.

[27] O. R. Castro, R. Santana, J. A. Lozano, A. Pozo, Combining cma-es and

moea/dd for many-objective optimization, in: 2017 IEEE Congress on Evo-455

lutionary Computation (CEC), 2017, pp. 1451–1458.

[28] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, K. M. Jambi, Lshade with

semi-parameter adaptation hybrid with cma-es for solving cec 2017 bench-

mark problems, in: 2017 IEEE Congress on Evolutionary Computation

(CEC), 2017, pp. 145–152.460

[29] D. Akhmetova, R. Iakymchuk, O. Ekeberg, E. Laure, Performance study

of multithreaded mpi and openmp tasking in a large scientific code, in:

28



2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 756–765.

[30] M. Arnautovi, M. Curi, E. Dolami, N. Nosovi, Parallelization of the ant465

colony optimization for the shortest path problem using openmp and cuda,

in: 2013 36th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2013, pp. 1273–

1277.

[31] D. D. Domenico, J. V. F. Lima, A. S. Charao, Openmp with parallel loops470

or asynchronous tasks: a performance evaluation focusing the nqueens

benchmark, IEEE Latin America Transactions 15 (9) (2017) 1793–1800.

[32] E. Alba, G. Luque, Evaluation of parallel metaheuristics, 2006.

[33] K. Tang, X. Yáo, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen,

Z. Yang, Benchmark functions for the cec’2008 special session and compe-475

tition on large scale global optimization, Nature Inspired Computation and

Applications Laboratory, USTC, China (2007) 153–177.

Annexe A

Recall of original FDA performances

The benchmark SOCO 2011 has been used to test the performance of FDA,480

and in [8] authors compared the performances compared to DIRECT algorithm

[18]. We recall that DIRECT is one of the most popular algorithm in the D&C

based optimization approach. Its is known that DIRECT does not perform

well on high dimensions. For this reason the comparison was performed on six

functions with dimensions D = 50 and D = 100. For all functions in both485

dimensions, FDA performed significantly better than DIRECT. For instance,

FDA found the global optimum in six problems out of twelve, while DIRECT

found none.

29



Another comparison was performed with seven of the best SOCO 2011 par-

ticipants. Among which can be found MA-SSW-Chains [23] or Multi-population490

Differential Evolution with balanced ensemble of mutation strategies for large-

scale optimization (mDE-bES) [24]. To confirm the performance of FDA, a

Friedman Rank Sum score was first computed to highlight the fact that FDA

was ranked first. In addition a Wilcoxon pairwise test was used with an Holm

procedure to adjust the p-values. This allowed to statistically show that FDA495

outperformed the other algorithms.

Finally, using the same functions and statistical tools, the third comparison

has been conducted with five other recent metaheuristics, such as IACOR-Hybrid

[25] or 2S − Ensemble [26]. Once again the competitiveness of FDA has been

proven with regards to other algorithms.500

All results and comparisons details can be read in the original paper [8].

30




