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Abstract

This paper describes a unified view of parallel evolutionary algorithms for multi-

objective optimization problems. The parallel optimization algorithms are de-

tailed from both design and implementation aspects. The proposed taxonomy

is based on three hierarchical parallel models. Moreover, various parallel archi-

tectures are taken into account. The performance assessment issue of parallel

multi-objective evolutionary algorithms (MOEA) is also presented. This work

can be extended to any population-based metaheuristics such as particle swarm

and scatter search.

Keywords: Parallel evolutionary algorithms, metaheuristics,

multi-objective optimization

1. Introduction

Many multi-objective optimization problems (MOPs), such as in finance, lo-

gistics/transportation, engineering design and life science, are complex. Indeed

most of the practical and academic MOPs are NP-complete. Moreover they are

CPU time and memory consuming. Even if the use of multi-objective evolu-5

tionary algorithms (MOEAs) allows to decrease the computational complexity

of the algorithms, this complexity remains important for a great majority of

MOPs in multiple domains of applications, in which the constraints and the
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objective functions associated to the problem are resource intensive and the size

of the decision and/or objective space is important.10

Additionally, the fast evolution of technology in the development of networks

(local networks such as Infiniband or wide area networks such as optical net-

works), data storage, and processors (e.g. multi-core processors, vector units,

GPUs, ARM, FPGAs), make the use of high-performance computers popular.

Such parallel machines represent an interesting opportunity for the develop-15

ment of parallel multi-objective evolutionary algorithms. Indeed, sequential

machines are reaching technological limitations. Even workstations and laptops

are composed of multi-core processors and GPUs. The ratio between cost and

performance is constantly decreasing. The proliferation of puissant processors

and networks have shown the apparition of architectures such as many-cores,20

GPUs, networks of workstations (NOWs), clusters of processors (COWs), Grids

and Clouds for high-performance computing.

High-performance computing architectures are used in the development of

MOEAs for the enclosed goals:

• Reduce the time to approximate the Pareto front: the objective25

here is to speedup the search time. For instance this improves the de-

velopment of interactive optimization algorithms which is an important

aspect for multi-criteria decision making. It is an important issue for a

given family of MOPs in which there are hard constraints on time such

as in dynamic MOPs and operational MOPs such as time-critical control30

and planning [1].

• Enhance the properties of the Pareto front: parallel models for

MOEAs enable to enhance the properties of the Pareto front. Indeed,

exchanging knowledge between optimization heuristics will modify their

behaviour in exploring the decision and objective spaces associated to35

the MOP. The main objective in a cooperation between algorithms is to

improve the quality of the Pareto front. One can improve both the search

time and the convergence/diversification of the Pareto front. A parallel
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model for MOEAs may be more efficient than a sequential one even on a

single machine.40

• Resolve large instances of MOPs: parallel MOEAs enable to resolve

big instances of MOPs. Those big instances cannot be resolved on a

sequential computer. One can also resolve more accurate and then more

complex models of MOPs. Enhancing the accuracy of models increases

the complexity of the associated problems. Additionally, many MOPs45

need the handling of big databases such as machine learning of big data.

Parallel MOEAs can be used with systems such as Hadoop and Spark

which provide significant computing power in the mining of big databases

[2].

• Enhance the robustness: robustness may be measured in terms of50

solving in an effective manner different MOPs and various instances of

a given MOP. It can also represent the sensitivity of the MOEA to its

parameters.

In this taxonomy a clear difference is made between the design issue and

the implementation issue of parallel MOEAs. A unified description of parallel55

MOEAs is proposed. In the implementation issue, we will focus on the efficiency

of parallel MOEAs on various types of parallel machines. The impact of parallel

languages and programming environments, such as message passing and shared

memory are analyzed. Several criteria from the architecture point of view are

taken into account such as: sharing of memory, homogeneity of resources, mul-60

tiplicity of users, and network locality. Those considered criteria will influence

on the development of efficient load balancing and fault-tolerant approaches.

The organisation of the paper is as follows. In section 2 the main concepts

of multi-objective optimization are given. Section 3 details the main parallel

models in the design of MOEAs. In section 4 we will focus on the parallel65

implementation aspects of MOEAs. The most important concepts of parallel

machines related to the parallel implementation of MOEAs are underlined. The
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performance metrics used to assess the performance of parallel MOEAs are also

detailed.

2. Multi-objective optimization70

Definition 2.1 (Multi-objective optimization problem). A multi-objective op-

timization problem (MOP) may be defined as:

(MOP ) =







min F (x, p) = (f1(x), f2(x), . . . , fn(x))

s.c. x ∈ S
(1)

where n (n ≥ 2) is the number of objective functions, x = (x1..., xk) is the vector

representing the decision variables, S represents the set of feasible solutions

in the decision space associated with equality and inequality constraints, and

explicit bounds. F (x) = (f1(x), f2(x)..., fn(x)) represents the objective space

to be optimized1.75

Definition 2.2 (Pareto dominance). An objective vector u = (u1, . . . , un) is

said to dominate v = (v1, . . . , vn) (denoted by u ≺ v) if and only if no com-

ponent of v is smaller than the corresponding component of u and at least one

component of u is strictly smaller, i.e.

∀i ∈ {1, . . . , n} : ui ≤ vi ∧ ∃i ∈ {1, . . . , n} : ui < vi.

Definition 2.3 (Pareto Optimality). A solution x∗ ∈ S is Pareto Optimal2 if

for every x ∈ S, F (x) does not dominate F (x∗), i.e. F (x) ⊀ F (x∗).

A MOP contain a set of solutions known as the Pareto optimal set. The

image of this set in the objective space is denoted as the Pareto front. This

set of solutions represents the compromise solutions between the different con-80

flicting objectives. The main goal in the resolution of a MOP is to obtain the

1It is assumed, without loss of generality, the minimization of all the objectives.
2The Pareto optimal solutions are also known under the name of acceptable solutions,

efficient, not-dominated, non-inferior.
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Pareto optimal set and, consequently, the Pareto front. Notwithstanding, when

metaheuristics (e.g. evolutionary algorithms) are applied, the goal becomes to

obtain an approximation of the Pareto optimal set having two properties: con-

vergence to the Pareto optimal front and uniform diversity. The first property85

ensures the generation of near-optimal Pareto solutions, while the second prop-

erty indicates a good distribution of the obtained solutions around the Pareto

optimal front, so that no valuable information is lost.

3. Design of parallel MOEAs

In the design of parallel MOEAs, three main parallel hierarchical models are90

identified (Tab. 1):

• Parallel algorithmic-level for MOEAs: in this model, a parallel algo-

rithm is composed of cooperating MOEAs. This model is not dependant

on the target MOP to be solved. If the different MOEAs are independent,

the search will be similar to the sequential execution of the algorithms.95

However, the cooperative model will modify the behaviour of the MOEAs

and allow to enhance the quality of the obtained Pareto front.

• Parallel iteration-level for MOEAs: in this parallel model of MOEAs,

an iteration of a MOEA is parallelized. This model is not dependant on

the target MOP to be solved. This model will not modify the behaviour100

of the MOEA. The main goal is to speedup the search time of MOEAs

manipulating large populations of individuals.

• Parallel solution-level for MOEAs: in this model of MOEAs, the

algorithm will handle in parallel a single solution of the decision space.

This model is dependant on the target MOP to be solved. It consists in105

the parallel evaluation of the different objectives or constraints associated

to the MOP. Let us notice that in many MOEAs, the most costly operation

is the evaluation of solutions. This model will not modify the behaviour of

the algorithm. It deals with improving the search time of the algorithm.
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Table 1: Parallel models of MOEAs in solving MOPs.

Parallel MOP Behaviour Granularity Objective

level dependent

Algorithm No Modified MOEA Algorithm Quality & Speedup

Iteration No Non modified MOEA Iteration Speedup

Solution Yes Non modified MOEA Solution Speedup

3.1. Algorithmic model of MOEAs110

In the algorithmic parallel model of MOEAs, different evolutionary algo-

rithms are executed in parallel. They may be independent or cooperative in

solving MOPs.

3.1.1. Independent algorithmic model of MOEAs

In the independent algorithmic model of parallel MOEAs, the various MOEAs115

are executed without any exchange of information. The various MOEAs are

initialized with different populations. Different parameters are used for the

MOEAs such as the probability of crossover and mutation. Each component of

a MOEA may be developed differently: operators (e.g. mutation, crossover),

representation, objective functions, constraints, diversity preservation, fitness120

assignment, and elitism. Some other parameters will depend on the problem

formulation. For instance one can use different reference points to generate var-

ious MOPs problems solved by the same MOEA [3]. The reference points can

be uniformly distributed within a region that covers the Pareto Frontier.

This model is straightforward to develop. The master/workers pattern is125

well adapted to this parallel model. A worker implements a MOEA. The mas-

ter defines the various parameters used by the workers and agregates the best

found Pareto front from those obtained by the different workers. In addition to

speedup the MOEA, this parallel model allows to improve its robustness [4].

This parallel model evokes the question below: is it comparable to launch k130

MOEAs during a given time t and to launch a single MOEA during k ∗ t? The
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answer relies on the characteristics of the decision and objective spaces of the

MOP (e.g. distribution of the Pareto optimal solutions).

3.1.2. Cooperative algorithmic model of MOEAs

In the cooperative algorithmic model of MOEAs, the various MOEAs are135

cooperating and then exchanging extracted knowledge from the search with the

intent to compute a better and more robust Pareto front [5]. In most MOEAs an

archive is maintained outside the current population. This archive is composed

generally of all generated Pareto optimal solutions.

In the development of this parallel model for cooperative MOEAs, the fol-140

lowing questions occur:

• The communication criterion (When?): the communication of data

between the MOEAs can be carried out in a blind (probabilistic or pe-

riodic) manner or using an adaptive criterion. Periodic communication

arises in each MOEA after a given number of iterations; this kind of145

exchange is synchronous. In probabilistic communication, an exchange

operation is carried out after each iteration with a given probability. In

adaptive communication, the exchange of information is conducted by

some knowledge extracted from the multi-objective search. As an exam-

ple one can use any information about the improvement of the quality of150

the Pareto front. A traditional criterion can be associated to the update

of the Pareto archive when a new Pareto solution is found.

• The communication topology (Where?): the exchange topology de-

notes for each MOEA node its neighbor(s). It defines the source and the

destination of the information exchanged. The most popular topologies155

are the regular ones such as mesh, hypercube and rings [6]. Dynamic and

random topologies can also be used [7].

• The exchanged knowledge (What?): here we have to define the

knowledge extracted from the search to be exchanged between the MOEAs.

Generally, the exchanged knowledge consists of:160
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– Non-dominated solutions: the selection strategy of a MOEA can be

based on the non-dominated solutions generated during the search.

A given number or percentage of the Pareto set can be selected to be

communicated to neighbors.

– Multi-objective search knowledge: except the Pareto solutions, other165

informations extracted from the multi-objective search can be com-

municated such as performance indicators of the local Pareto set, or

utopian solutions [7].

• The consolidation policy (How?): this question is related to the strat-

egy applied when the communicated knowledge is received. Generally, the170

local knowledge of a MOEA is renewed with the received one. For instance,

when a MOEA receives some non-dominated solutions from its neighbors,

an update of its local population or archive is carried out. Many classical

replacement approaches (e.g. deterministic, stochastic) can be used. One

can use a deterministic elitist approach in which the Pareto solutions from175

the merging of the local Pareto set and the received Pareto set is selected.

A small number of parallel evolutionary algorithms have been developed for

multi-objective optimization compared to single objective optimization [4]. The

popular parallel model of evolutionary algorithms, the cellular model, may be

reduced tho the migration model in which an island consists of a single solution.180

The cell of the grid is represented by a single solution. The selection strategy

is based on the neighbors of the solution. Consequently, this parallel model

supports more diversification than in a sequential search. In [8], it has been

shown for many practical applications that parallel cellular models for MOEAs

are more efficient in the generation of the Pareto front than sequential MOEAs.185

Some parallel models of MOEAs may be based on the partitioning of the

objective space. Indeed, a given MOEA may be concerned by a subset of the ob-

jective functions (Fig. 1). A MOEA can also manage a single objective. Another

strategy may be based on using various scalarization strategies of the objectives

set such as different weights of a linear aggregation [9]. This approach has been190
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used in the MOEA/D algorithm which is based on the decomposition of the

objective space [10][7]. Other parallel models can be based on the partitioning

of the decision space [11][12]. Hence a given MOEA will focus its search on a

partition of the decision space.

Algorithmic-level Solution-level

Parallel multi-objective metaheuristics

Iteration-level

      Data 
decomposition

  Subset of 
   solutions

Subset of 
objectives

   Functional 
decomposition

Different subsets 
   of objectives

Global decision and
   objective space

 Distributed 
Pareto front

Centralized 
Pareto front

Same set of 
  objectives

Partial decision or
   objective space

Independent algorithmic
           model

Cooperative algorithmic
           model

Figure 1: A taxonomy of parallel MOEAs for multi-objective problems.

Another classification criterion may be related to the cenralized or dis-195

tributed ways to generate the whole Pareto front. Two strategies may be devel-

oped (Fig. 1):

• Centralized approach: in this approach, the Pareto set is represented in a

shared global memory. All MOEAs update this centralized structure in

parallel [13] [14][15][16].200

• Distributed approach: here the Pareto set is distributed between the differ-

ent MOEAs. Each MOEA maintains a local copy of the Pareto set. Then,

a global update is carried out at the end of the computation [17][18][19].
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3.2. Iteration-based model for MOEAs

The iteration-based parallel model for MOEAs consists in the parallelization205

of a single iteration of evolutionary algorithms. This model consists generally

in handling in parallel the population of individuals. The CPU-time consuming

component of any MOEA is the fitness assignment of the solutions composing

the population. This parallel model does not depend on the target MOP. Only

problem-independant search components are parallelized such as the evaluation210

of the objective function and the update of the population. Moreover, there is

no modification of the behaviour of the algorithm. The goal is only to acceler-

ate the search process. This is a straightforward and popular model for parallel

MOEAs. Pratically, many MOPs are characterized by expensive objective func-

tions. As an example, many computational engineering optimization problems215

are concerned by complex solvers using surrogate models from finite element

methods, electromagnetics, fluid dynamics [20][21]. In multi-disciplinary de-

sign optimization, complex simulations are handled to evaluate the objective

functions associated to the problem [22].

In parallel MOEAs the population of solutions may be controled in parallel.220

In a classical master/workers model, the master will handle the initialization of

the population, the selection and the replacement phases, while the variation

phase (e.g. mutation, crossover) and the fitness assignment phases are man-

aged by the workers [17] (Fig. 2). In the fitness assignment and the update of

the Pareto archive, the Pareto ranking is a costly operation that can also be225

parallelized [23].

Two different strategies may be developed:

• Synchronous approach: this approach is equivalent to a sequential

MOEA. All operations are handled in a synchronous way and then finalised

before starting a new iteration. The master has to wait for all results from230

the whole set of workers. Then a new iteration of the evolution mechanism

can be handled.

• Asynchronous approach: in the asynchronous approach, the master
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f1 f2 fnF=(f1,...,fn)

Sol. 1 Sol. k set of k solutions

f1 f2 fn

Sol. 1 Sol. k

Worker 1 Worker k

Worker 1 Worker n

Worker 1 Worker k.n

(a) Parallel evaluation of the population. (b) Parallel evaluation of the objectives

(c) Combined parallel evaluation of the population and the objectives

Figure 2: The iteration-based parallel model for MOEAs.

process can handle a new iteration before all the workers finalize their

process. For instance in asynchronous steady-state MOEAs, the variation235

and the evaluation phases may be handled in parallel. Two queues of solu-

tions with fixed sizes are managed in parallel: the queue of solutions to be

evaluated and the queue of already evaluated solutions. The free workers

will handle the solutions of the first queue. Hence the master process han-

dle the selection phase from the second queue without waiting the results240

from all the workers. This asynchronous model is not equivalent to the

sequential one. Indeed, there is no guarantee that the order of selecting

and replacing the solutions is the same than in sequential algorithms.

In swarm based multi-objective algorithms, knowledge other than solutions

is used to generate new solutions. This knowledge must be shared by all agents245

of the swarm. As an example, in ant-based optimization, this knowledge is

represented by the pheronome matrix. The master process must distribute this

matrix to each worker. An agent of the swarm is handled by a worker. Each

11



worker acquires the pheromone matrix, generate and assign a fitness to the new

solution and then return the result to the master. The pheromone matrix is250

updated once all results are collected from the workers [24][25].

3.3. Solution-based model for MOEAs

In this parallel model the main goal is to reduce the search time of a MOEA.

This model focus on the parallelisation of the functions treating a single solution

such as the calculation of objective function and constraints. Two different255

decomposition strategies may be applied[26][9][27] (Fig. 1):

• Decomposition of data: many big MOPs can be decomposed accord-

ing to the data involved in the problem. Hence the objective functions

and/or the constraints can be evaluated in parallel for each partition [28].

Depending on the target MOP, a partition can be a geographical area, a260

data structure or a database.

• Decomposition of functions: the objectives or the contraints of a MOP

can be decomposed in many sub-functions. Those sub-functions can be

handled in parallel by a set of workers. The master needs to collect and

combine the results from the workers to assign a global fitness to a solution265

in terms of convergence and diversification. The parallelism degree of such

a parallel model is defined by the numer of sub-functions associated to the

objectives and constraints.

3.4. Models combination for parallel MOEAs

The various parallel models of MOEAs can be associated in a single parallel270

model using a hierarchical organization [29]. Hence this combined scalable par-

allel model will offer a high degree of parallelism k ∗m ∗ n where k represents

the number of independent or cooperating MOEAs, m represents the popula-

tion size and n represents the number of sub-functions or partitions of the data

associated to the MOP.275
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4. Implementation issues of parallel MOEAs

This section will focus on the efficient implementation of the proposed par-

allel models of MOEAs on different types of high-performance machines.

4.1. High-performance computing architectures and programming environments

High-performance computing architectures are emerging rapidly. The clas-280

sification criteria for parallel machines having a great influence in the efficient

implementation of parallel MOEAs are: shared or distributed memory, homo-

geneity or heterogeneity of machines, multiple users sharing of the machines,

and locality of the communication network. All the proposed parallel models of

MOEAs will be analyzed according to those criteria.285

Shared/distributed memory: the set of processors of a shared-memory

machine are linked through a global shared memory. Various topologies have

been developed for the communication network (e.g. multistage crossbar, shared

bus). This kind of parallel machines are comfortable in terms of programming

in a way that classical sequential paradigms can be reused. However this kind of290

architecture has limited scalability and an important cost. A popular example

of such high-performance machines are multi-core architectures and symmetric

multiprocessors.

In a distributed memory machine, the processors have their local memory.

The processing elements are coupled by a communication network using various295

topologies such as rings, hypercubes and fat-trees. This type of machines is

much more complicated to program but is more scalable. Communication of

information must be handled by message passing. The most popular example

of distributed memory machines is the clusters of processors (COWs).

Homogeneous/heterogenous machines: the homogeneity of resources300

(e.g. processors, networks) is an important characteristic that has to be taken

into account. One can qualify clusters of processors by the homogenity of the

processing elements. Some networks of workstations (NOWs) can be distin-

guished by the heterogeneity of the processors and the communication networks.
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Single/multiple users: many high-performance computing machines such305

as COWs are non-shared among multiple users. Those machines are dedicated

for a single user at a given time. However, some parallel machines such as NOWs

can be shared by multiple users.

Local-area network/wide-area network (WAN): local-area networks

(LAN) are generally the adopted networks for massively parallel architectures310

and clusters. Wide-area networks represent loosely coupled networks and are

used in grid computing systems and large network of workstations. Those net-

works are characterized by a highest cost in terms of communication.

A grid is generally composed of a large set of distributed heterogeneous

resources which are administrated across multiple domains [30]. Two different315

families of Grids may be found:

• High-Performance Grid: in high-performance Grids (HPC Grid) a ded-

icated high-performance network is used to interconnect the different clus-

ters and supercomputers. HPC Grids are generally non shared by multiple

users. At a given time a single application is executed on a subset of pro-320

cessors.

• Desktop Grid: in desktop Grids, many private workstations are con-

nected through a large scale networks (e.g. internet). Desktop Grids are

generally shared by many applications and users.

Volatile/non-volatile parallel machines: a volatile machine is a parallel325

architecture in which there is a dynamic availability of resources. For instance,

in a desktop Grid, there is a volatility in terms of processors. Moreover, the

probability of failure (e.g. shutdown) of processors is important.

The following table 2 summarizes the properties of the main HPC machines

according to the proposed criteria.330

Embedded systems, which are small size, reduced complexity and low-power

architectures, can be used in the development of parallel efficient MOEAs [31].

The most popular specific architectures are Graphical Processing Unit (GPU),

Field Programmable Gate Arrays (FPGAs) and ARM family of processors.

14



Table 2: Propoerties of the main HPC machines.

Criteria Shared Memory Homogeneity Resource Sharing Network Volatility

SMPs Yes Yes Yes/No LAN No

Multi-cores

COWs No Yes/No No LAN No

NOWs No No Yes LAN Yes

HPC-Grid No No No WAN No

Desktop-Grid No No Yes WAN Yes

FPGAs are implemented hardware devices by a programming process [32].335

We expect that the exploitation of FPGAs (e.g. Xilinx) will be widespread

in the implementation of parallel MOEAs especially for some challenging and

highly used applications such as in bioinformatics [33][34]. Some parallel im-

plementations of MOEA have been carried out on specific architectures (e.g.

microcontrollers) [35]. Initially GPUs have been dedicated to graphics render-340

ing and then generalized to numerical compuations. GPUs are based on a SIMD

(Single Instruction Multiple Data Streams) structure [36]. Many efficient imple-

mentations of parallel MOEAs on GPUs have been proposed in the literature

[37][38][31][39]. ARM is a family of reduced instruction set computing (RISC)

architectures for processors. They are extensively used in consumer electronic345

devices such as smartphones and tablets. The implementation of parallel evo-

lutionary algorithms on embedded systems based on single-core and multi-core

ARM processors starts to be explored [40].

The target parallel architecture will affect the selection of the suited pro-

gramming environment for the implementation of a parallel MOEA. Shared-350

memory or message passing are the most popular programming paradigms that

can be used. For shared-memory HPC machines, there are three main options:

• Multi-threading: a thread is a light process. Multiple threads com-

posing a process share the same memory space. An important issue in

multi-threading is the recovery between computation and communication.355
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Multi-threaded programming may be used within libraries (e.g. Pthreads)

[41] or programming languages (e.g. Java threads) [42].

• OpemMP and CUDA: OpenMP (Open Multi-Processing) and CUDA

are the most popular programming environment based on shared memory

concepts. Various programming langages (e.g. Fortran, C and C++) are360

interfaced with OpenMP and Cuda [43]. CUDA is used for the GPUs and

its portability is limited to Nvidia GPUs. The CUDA framework can be

accessed by a directive based language such as OpenACC (Open Acceler-

ators). The OpenACC environment has advantages both in efficiency and

portability for programming heterogeneous systems composed of GPU and365

multi-cores.

Message passing is the main paradigm for distributed memory environments.

The tasks composing a program communicate by message exchange using a

synchronous or asynchronous communications. The most popular environment

is MPI (Message Passing Interface).370

4.2. Performance assessment of parallel MOEAs

Speedup and efficiency are the most popular performance measures to eval-

uate the scalability of parallel MOEAs [44]. They define the gain obtained

by the parallelization of the program. The speed-up SN is the ratio between

the sequential time T1 on a single processor and the execution time TN on N

processors

SN =
T1

TN

The wall-clock time can be used instead of the CPU time. The wall-clock

time can be defined as the whole program time which includes the input and

output processes. The CPU time is defined as the time which corresponds to

the execution of the program. A super-linear (resp. linear) speedup is achieved375

if SN > N (resp. SN = N) [45]. In most of the cases a sub-linear speedup

SN < N is performed, caused by the overhead of the communications costs.
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The efficiency EN with N processors can be formulated as the ratio between

the speed-up SN and the number of processors N .

EN =
SN

N

When all processors are fully exploited the efficiency will be equal to 100%.

The speedup measure may have different formulations. The selection of a

given formulation will depend on the goal of the performance assessment pro-380

cess. One can use the absolute speedup, when the sequential time T1 is defined

as the best known sequential time to solve the problem. In multi-objective op-

timization using MOEAs, it is hard to make out the best sequential program.

Hence this definition is almost never used. One can use the relative speedup

when the sequential time T1 is formulated as the parallel algorithm implemented385

on a single processor. If we take into account the bottlenecks of the architec-

tures where the MOEAs are going to be run (e.g., maximum bandwidth between

memory and CPU on shared memory machines), those metrics represent upper

bounds. Other metrics to evaluate the performance of parallel MOEAs can be

used. An important issue can be the energy consumption, for example the en-390

ergy and the power dissipation to find the Pareto front. Another aspect can be

related to the financial cost if the implementation of parallel MOEAs is carried

out on commercial clouds. Hence the performance evaluation can be itself for-

mulated as a multi-objective optimization problem dealing with speedup, energy

consumption and financial aspects.395

Various termination criteria may be applied for the algorithms:

• Number of iterations: a given a priori fixed number of iterations can

be defined. This is the most popular measure for parallel MOEAs. One

can obtain a superlinear speedup (i.e. SN > N) [46]. It is justified by the

properties of the parallel machine in which there are more resources than400

a sequential machine. For instance, when having more cache memory in

the parallel architecture, the swapping time will be more important for

the sequential program.
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• Convergence: a given quality of solution may be fixed as an achieve-

ment. One can use this measure to assess the effectiveness of a parallel

MOEA. This measure is useful only for algorithmic-level parallel models

of MOEAs, in which the behaviour of the parallel algorithm is different

from the sequential one. A super-linear speedup may be obtained and is

justified by the properties of the parallel search, in which the landscape of

the decision space is not visited by a parallel search in the same order as

a sequential search. When dealing with stochastic MOEAs, the average

speedup

SN =
E(T1)

E(TN )

must be used.

4.3. Main characteristics of parallel MOEAs405

The granularity of a parallel MOEA is the most important property of its

performance. It can be defined as the ratio between the computation and the

communication times. The achieved speedup is better when the granularity is

larger. The parallel models of MOEAs have a declining granularity from large

grain (algorithmic-level) to fine-grain (solution-level). The maximum amount410

of parallel processes composing a parallel MOEA represents its degree of con-

currency.

An important issue in the implementation of parallel MOEAs is the schedul-

ing of the different processes. Various scheduling techniques may be applied:

• Static: in static scheduling, the number of processes of MOEAs and their415

placement are identified before the execution (at compilation). It is an

effective strategy for homogeneous architectures, non-volatile and non-

shared HPC machines. Undeniably, for heterogeneous architectures, there

is a difference in load or power among processors. Hence the time for an

iteration of MOEAs is deduced from the least powerful processor or the420

highly loaded, and then many processes are often idle.
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• Dynamic: in dynamic scheduling, the placement of processes is defined

during their execution but the number of processes is fixed at compile

time. It is an effective strategy for shared architectures in which the load

of processors cannot be predicted at compile time. It is also an important425

issue for non-regular parallel MOEAs where the execution time of the

different processes cannot be efficiently estimated at compile time. It can

happen for instance when the evaluation time of the different objective

functions depends on the solution itself.

• Adaptive: in adaptive scheduling, the set of processes is changing dy-430

namically. The number of processes may vary according to the load of the

processors. For instance, a process can be created (resp. killed) when a

processor becomes idle (resp. overloaded). Adaptive scheduling is essen-

tial for highly volatile HPC machines such as desktop Grids.

Fault-tolerance is an important concern for CPU-time intensive MOEAs im-435

plemented on loosely tolerant HPC machines such as NOWs and Grids. One has

to apply application-level checkpointing and recovery strategies which are more

efficient than system-level ones. Minimal information is stored for application-

level checkpointing such as the population of solutions and the iteration number.

4.4. Parallel algorithmic-level for MOEAs440

Granularity: the parallel algorithmic-level model has a relatively big gran-

ularity. Communication cost is generally reduced compared to the execution

cost. The communication cost will depend on the frequency of communication

and the amount of exchanged knowledge (e.g. set of Pareto solutions). This

model is the most appropriate for large scale HPC machines and networks such445

as NOWs and Grids. The frequency of migration (resp. size of communicated

knowledge) must be associated to the latency (resp. bandwidth) of the network.

The communication topology between MOEAs can be defined in correlation with

the interconnection network.
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Degree of concurrency: in terms od scalability, the degree of concurrency450

of the parallel algorithmic-level MOEA is bounded by the number of involved

MOEAs. This number is generally tuned according to the effectiveness of the

parallel MOEAs and the resources of the target HPC machine. In general there

is a threshold in which increasing the number of MOEAs will not allow to

improve the quality of results.455

Asynchronous versus synchronous exchange: the communication ex-

change in the algorithmic-level parallel model can be synchronous or asyn-

chronous. In the synchronous exchange of knowledge, the MOEAs carry out

a synchronization step at a predefined generation. This operation guarantees

the same evolution stage for all MOEAs. The synchronous communication is460

not fault tolerant and then is less efficient on a computational Grid. Indeed a

fault of a single MOEA involves the blocking of the global model in a volatile

environment.

In the asynchronous approach, a decision criterion for migration is associated

to each MOEA [6]. At each iteration, if the criterion is satisfied, the MOEA465

exchanges some knowledge with the neighbors. If the target HPC machine is

heterogeneous, the MOEAs may be at various evolution steps leading to the

super-solution or non-effect situations, i.e. the reception of bad solutions at an

advanced stage will generally not bring any improvements for the local popula-

tion. In the inverse situation, the exchange will precipitate the convergence. An470

important advantage of asynchronous exchange is the non-blocking operation.

It will be more critical for shared HPC machines such as desktop Grids and

NOWs (e.g. multiple users). As the load of processors and networks is het-

erogeneous, the use of synchronous exchange will deteriorate the performances

of the parallel MOEA. Indeed, the least powerful processor will arbitrate the475

performance.

In a volatile HPC machine such as desktop Grids, it is difficult to preserve

regular topologies such as torus and rings. The fault of a processor makes

necessary a dynamic reconfiguration of the logical topology. This is a costly op-
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eration which makes the migration of knowledge inefficient. The use of random480

and adaptive topologies is recommended for highly volatile HPC machines such

as desktop Grids.

Scheduling: in the algorithmic-level model of parallel MOEAs, the pro-

cesses correspond to MOEAs. One can use the following strategies for scheduling

MOEAs:485

• Static: in static scheduling, the set of MOEAs is fixed and related to the

number of processors. Moreover, a static placement of the MOEAs on

the processors is carried out. The placement is not modified during the

search.

• Dynamic: in dynamic scheduling, the different MOEAs are dynamically490

placed on the processors. A migration of the MOEAs is carried out during

the search according to the load state of the processors.

• Adaptive: in adaptive scheduling, the number of MOEAs implicated in

the search can fluctuate dynamically. For instance, a new MOEAs is

recovered when a processor becomes idle, and a MOEA is interrupted495

when a processor becomes busy.

Fault tolerance: in this parallel model of MOEAs, the memory state re-

quired to checkpoint a parallel MOEA is represented by the search memory of

the MOEA (i.e. population of individuals, Pareto archive, iteration number).

4.5. Parallel iteration-level for MOEAs500

Granularity: the parallel iteration-level model for MOEAs has a medium

granularity. The granularity will be determined by the ratio between the evalua-

tion of a sub-population (i.e. partition) and its communication cost. The model

is effective when the size of the sub-populations is important or the evaluation

of the multiple objectives is time-consuming.505

Scalability: this model has a degree of concurrency which is bounded by

the size of the population. Solving MOPs with many objectives and using large
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population sizes will enhance the scalability of the parallel iteration-level model

of MOEAs.

Asynchronous/synchronous exchange: using asynchronous communi-510

cations will enhance the effectiveness of the parallel iteration-level model of

MOEAs. The evaluation of sub-populations and the generation of solutions

must be done in an asynchronous way. For instance, steady-state algorithms

may be used in the reproduction phase [47]. Asynchronism will be more cru-

cial for heterogeneous or volatile and shared HPC machines [48]. It is also an515

essential property for MOPs in which the computation time of the objective

functions is not deterministic and depends on the carried solution.

The main advantages of the asynchronous model are fault tolerance and

robustness. The synchronous model is blocking and therefore less efficient on

a heterogeneous grids. The disappearance of an evaluating process needs the520

redistribution of its solutions to other processes. Then, it is crucial to keep the

solutions not yet evaluated.

Scheduling: in this parallel model, processes correspond to the construc-

tion/evaluation of a subset of solutions. Hence, the different scheduling strate-

gies will differ as follows:525

• Static: in static scheduling, a partitioning of the population is carried out

at compilation time. Is it well adapted for homogeneous non-shared ma-

chines in which the population is splitted into equal size partitions related

to the number of processors. A static placement of the partitions on the

processors is carried out. For heterogeneous non-shared machines, the size530

of each partition must be initialized in relation to the performance of the

nodes. Moreover, the static mapping approach is not efficient for vari-

able computational costs of equal partitions. For instance, it can happen

for optimization problems where various CPU-times are associated to the

evaluation of different solutions.535

• Dynamic: in dynamic scheduling, a migration of tasks can be handled
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during the execution of MOEAs. The migration decisions depend on the

load of processors. In general the number of processes is related to the

size of the population and the number of objectives. Many processes may

be scheduled on the same processor. The approach based on the master-540

workers cycle stealing may be used. To each worker is first assigned a

small number of individuals. Once it has performed its iterations the

worker requests from the master additional individuals. All the workers

are stopped once the final result is returned. Faster and less loaded pro-

cessors handle more solutions than the others. This approach allows to545

reduce the execution time compared to the static scheduling approach.

• Adaptive: in adaptive scheduling the number of generated partitions de-

pend on the load of the target HPC machine. This approach is more

efficient for shared, volatile and heterogeneous machines such as desktop

Grids.550

Fault-tolerance: the memory of the parallel iteration-level model needed

for checkpointing is collected from the partitions. The partitions are composed

of a set of (partial) solutions and their associated fitnesses.

4.6. Parallel solution-level for MOEAs

Granularity: the parallel solution-level has the smallest granularity. In555

the functional decomposition model, the granularity is the ratio between the

evaluation cost of the sub-functions and the communication cost of an individ-

ual. In the data decomposition model, the granularity is the ratio between the

evaluation of a data partition and its communication cost.

This parallel model is less appropriate for large-scale distributed machines560

in which the communication cost (in terms of bandwidth and/or latency ) is

significant, such as in computational Grids. Indeed, its implementation is often

restricted to clusters or shared memory machines.

Scalability: the degree of concurrency of the model is limited by the number

of data partitions or sub-functions. The use of the solution-level parallel model565
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in conjunction with the other parallel models helps to extend the scalability of

parallel MOEAs.

Asynchronous/synchronous communications: the implementation of

this model is always synchronous. In general a master/workers paradigm is

implemented. The master must wait for all partial results to compute the global

value of the objective functions. The execution time T will be bounded by

the maximum time Ti of the different tasks. An exception occurs for highly-

constrained MOPs, where feasibility of the solution is first checked. The master

terminates as soon as a given process detects that the individual does not satisfy

a given constraint. Due to its highly synchronization steps, this parallel model

is worth applying to MOPs in which the computations needed at each iteration

are CPU-time consuming. The relative speedup may be computed as follows:

Sn =
T

α+ T/n

where α is the communication cost and n is the number of processors.

Scheduling: in the parallel solution-level model, processes correspond to

data partitions in the data decomposition model and to sub-functions in the570

functional decomposition. The different scheduling approaches can be defined

as follows:

• Static: in static scheduling, the date or sub-functions are decomposed

into equal size partitions. A static placement between the data partitions

(or sub-functions) and the processors is carried out. This static scheme575

is efficient for parallel homogeneous non-shared HPC machines. For a

heterogeneous non-shared machine, the size of each partition in terms of

sub-functions or data must be tuned according to the performance of the

processors.

• Dynamic: dynamic scheduling is crucial for shared parallel machines and580

MOEAs characterized by variable costs for the sub-functions or data par-

titions. Dynamic load balancing may be easily achieved by evenly dis-

tributing at run-time the sub-functions or the data among the nodes. In
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MOPs where the computing cost of the sub-functions is unpredictable,

dynamic scheduling is necessary.585

• Adaptive: in adaptive scheduling, the number of generated data partitions

or sub-functions vary in function of the load of the processors. This ap-

proach is more appropriate to shared, volatile and heterogeneous parallel

machines such as desktop Grids.

Fault-tolerance: the memory of the solution-level parallel model needed590

for the checkpointing mechanism is straightforward. It is composed of the solu-

tion(s) and their partial objective values.

Depending on the target parallel machine, table 3 shows a guideline for

the efficient implementation of the various models of parallel MOEAs. For

each model (algorithmic-level, iteration-level, solution-level), the table presents595

its characteristics according to the highlighted criteria (granularity, scalability,

asynchronism, scheduling and fault-tolerance).

Table 3: Efficient implementation of parallel MOEAs.

Property Algorithmic-level Iteration-level Solution-level

Granularity Coarse Medium Fine

(Frequency of exchange, (Nb. of solutions (Eval. sub-functions,

size of information) per partition) eval. data partitions)

Scalability Number Neighborhood size, Nb. of sub-functions,

of MOEAs populations size nb. data partitions

Asynchronism High Moderate Exceptional

(Information exchange) (Eval. of solutions) (Feasibility test)

Scheduling and MOEA Solution(s) Partial

Fault-tolerance solution(s)

5. Conclusions and perspectives

The development of parallel MOEAs allows to improve speedup of the search,

the quality of the approximated Pareto front, the robustness, and to solve large600
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scale MOPs. The distinction between parallel design and implementation issues

of MOEAs is crucial to analyze parallel MOEAs. The essential conclusions of

this paper can be summarized as follows:

• In terms of design of parallel MOEAs, the various parallel models have

been unified. Three complementary hierarchical models have been high-605

lighted: algorithmic-level, iteration-level and solution-level parallel mod-

els.

• In terms of implementation of parallel MOEAs, we deal with the question

of an efficient placement of a parallel MOEA on a given parallel machine.

The focus was made on the main criteria of parallel machines that have610

an impact on the efficiency of parallel MOEAs.

This paper illustrates the unified parallel models on evolutionary algorithms.

However, the proposed framework can be extended to any population-based

metaheuristic such as scatter search, particle swarm, and ant colonies.

In the next years, the main perspective is to attain Exascale performance.615

The emanation of heterogeneous and hybrid HPC machines build of multi-cores

and many-cores will accelerate the accomplishment of this goal. In terms of

parallel programming environments, cloud computing will become an important

alternative to traditional high performance computing for the development of

MOEAs that harness large scale computational resources. This is an important620

challenge as nowadays cloud software frameworks for parallel MOEAs are just

emerging.

In the future design of high-performance computers, the ratio between power

and performance will be important for sustainable supercomputing. The power

represents the electrical power consumption of the machine. In the last year, the625

greenest HPC machines in the world doubled their energy efficiency, thanks to

the manycore processors, GPUs and ARM based architectures. Exascale HPC

machines operating at less than 20MW will be realizable in two years.
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In terms of solving multi-objective optimization problems, parallel MOEAs

constitute inevitable strategies for big real-life applications such as engineering630

design and machine learning. Parallel MOEAs represent an important solution

to solve dynamic real-time MOPs [49], large-scale and many-objective optimiza-

tion problems [50]. Moreover, parallel models for MOPs with random or epis-

temic uncertainties have to be developed. The sources of uncertainty in MOPs

are due to many factors such as environment parameters, decision variables and635

objectives functions.
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[47] M. Depolli, R. Trobec, B. Filipič, Asynchronous master-slave paralleliza-

tion of differential evolution for multi-objective optimization, Evolutionary

Computation 21 (2) (2013) 261–291.775

[48] S. Mostaghim, J. Branke, A. Lewis, H. Schmeck, Parallel multi-objective

optimization using master-slave model on heterogeneous resources, in:

IEEE Congress on Evolutionary Computation CEC’2008, 2008, pp. 1981–

1987.

[49] Y. Dujardin, D. Vanderpooten, F. Boillot, A multi-objective interactive780

system for adaptive traffic control, European Journal of Operational Re-

search 244 (2) (2015) 601–610.

[50] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, Test problems for large-scale

multiobjective and many-objective optimization, IEEE Transactions on Cy-

bernetics 1 (99) (2016) 1–14.785

32




