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Abstract In this study, a new methodology for the calibration of microscopic parameters
for the Cohesive Beam Model (CBM) of discrete element method (DEM) applied to elastic
brittle material is presented. This method enables the entry of material mechanical values di-
rectly into DEM simulations without any calibration steps. Several DEM simulations of ten-
sile tests with different microscopic parameter values were carried out to generate a database
of macroscopic parameter responses. This database was analyzed in order to deduce analytic
laws by using non linear least square method. To validate the proposed calibration method,
DEM simulations, that use the results of the calibrated microscopic parameters, were car-
ried out. The macroscopic responses were compared to theoretical or experimental values.
These validation tests were performed separately for two typical brittle elastic materials,
i.e., soda-lime glass and alumina, with different shapes/sizes of discrete domain and vari-
ous boundary conditions. Results between numerical and experimental values are in good
accordance regarding the variability induced by this stochastic approach.

Keywords Discrete Element Method (DEM) · Brittle materials · Cohesive beam bond ·
Calibration · Analytical law between microscopic /macroscopic parameters

1 Introduction

In the mechanical engineering field, continuum approaches are widely used to model con-
tinuous media through reliable stress-strain laws. However, continuum approaches can not
manage easily fracture phenomena that involve high amount of discontinuities, complex
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crack geometries and crack closures. Discrete Element Method (DEM) could be an alterna-
tive way to study these phenomena because it takes naturally into account discontinuities.
The DEM implements a group of distinct elements (also named discrete elements) in inter-
action through contacts or cohesive laws. The advantages of this method are the description,
in a natural way, of crack initiations, crack propagations, their coalescences and closures.
However, the fundamental difficulty of this approach is to simulate quantitatively the con-
tinuum behavior [35].

Different contact models of DEM can be found in the literature. For example, in the
bonded-particle method, developed by Potyondy et al [35] for modeling rocks, the material
is modeled as assembly of nonuniform-sized rigid spherical particles that may be bonded
together at their contact points. Mainly, two models of bonds are used in bonded-particle
method: contact bond and parallel bond. The contact bond model can be considered as a
pair of elastic springs with constant normal and shear stiffnesses that act at contact points
between particles. These two springs have specified tensile and shear strength which limit
the tensile force and shear force respectively. The bond is broken if the normal force or
shear force exceeds the corresponding bond strength. This model allows only transmission
of force through contact. The parallel bond model can be consider as a set of elastic springs
with constant normal and shear stiffnesses, uniformly distributed over a cross-section lying
on the contact plane and centered at the contact point. Parallel bond can transmit both force
and moment through contact. Force and moment act on the two contacting particles and
can be related to maximum normal and shear stresses. If one of these maximum stresses
exceeds its corresponding bond strength, the parallel bond is broken. The bonded-particle
method is widely used to study fracturing and fragmentation processes of brittle materials.
This method is implemented in many common DEM softwares, such as PFC [22] and YADE
[25]. However, one of major drawbacks of the bonded-particle methods is that determining
the proper set of bond properties (microscopic parameters) is difficult. In fact, the input
parameters of the model are set at the microscopic scale and they do not correspond to
the material properties. A pre-processing step is necessary (calibration process) to reach
quantitative results. This drawback is due to the high number of microscopic parameters, for
example, 10 microscopic parameters are needed to determine the contact bond model [47]:
contact modulus, stiffness ratio, friction coefficient, contact-bond normal strength, contact-
bond shear strength, etc. In parallel, the Cohesive Beam Model (CBM) has been developed
by different authors [1, 3, 6, 15, 29]. This contact model is able to simulate the behaviour of
perfect brittle-elastic media defined by a Young’s modulus, a Poisson’s ratio and a tensile
failure strength. In this framework, discrete elements are connected by cylindrical cohesive
beams which are able to work in tension, compression, bending and torsion. The Euler-
Bernoulli beam theory is implemented to compute the beam forces and moments. In the
contact model proposed by André et al [1,3], the cohesive beam bond is defined by only two
microscopic parameters. The calibration process of this model seems to be less complex
than the previous bond models.

As mentioned previously, the first step of quantitative simulations with DEM, consists
in calibrating the microscopic parameters (bond properties) at the discrete element scale.
Typically, calibration is achieved through a trial-and-error procedure in which microscopic
parameters are adjusted until the DEM results match the expected behaviour. Such cali-
bration step is necessary to achive quantitative results but it is complicated and time con-
suming. Many calibration methodologies has been reported. Dimensionless relationships
between DEM micro parameters and macroscopic properties were established in different
researches [12, 36, 49]. In these works the micromechanical parameters have been deter-
mined using the methodology developed by Huang [19], based on the combination of the
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dimensional analysis with numerical simulation of the standard laboratory tests for rocks.
Rojek et al [36] introduce a dimensionless micro-to-macro relationships for 2D and 3D
discrete element models by analyzing macroscopic responses of Brazilian tests and Un-
confined Compression Tests (UCT). In this research, the authors consider the parallel bond
model which is determined by 6 microscopic parameters. The considered macroscopic rock
properties are the Young’s modulus E, Poisson’s coefficient ν , compressive strength σc and
tensile strength σt . Based on Buckingham π theorem [27], 4 dimensionless functional re-
lationships linking macroscopic and microscopic parameters were established. Simulations
of both the UCT and Brazilian tests have been performed with different values of stiffness
ratio in order to provide specific forms of dimensionless relationships. The proposed re-
lationships were applied for modelling rock cutting and seems to give satisfactory results.
However, assumption about normal and shear cohesive bond strength ratio is required and
no analytic function is proposed by authors to describe micro-to-macro relationships. Re-
cently, several calibration methods able to describe evolution of macroscopic parameters
versus microscopic parameters have been developed without any assumption [10,16]. Estay
et al [10] propose a matrix methodology to predict the Young’s modulus of a specimen as
a function of bond elastic parameters. This calibration method is validated through uniaxial
compression tests. Han et al [16] propose a fitting function to characterise relationship be-
tween macroscopic tensile strength and the micro mechanical breakage parameters by using
simulations of Brazilian test. In these researches, the calibration method is applied for only
one macroscopic parameter and validated through only one type of numerical experiment.
The precision of the proposed calibration methods are not discussed for other type of DEM
simulations.

The present study focuses on the Cohesive Beam Model proposed by André et al [1, 3].
Relationships between microscopic and macroscopic parameters of Cohesive Beam Model
are deduced from 8,000 uniaxial virtual tensile tests. In order to deduce macro-to-micro an-
alytic laws, this high amount of data is analyzed through non linear least square methods.
Then, the deduced relationships are verified by using academic test cases : tensile test, hy-
drostatic compression test, torsion test and brazilian test. This methodology considers three
mechanical properties that define a perfect elastic brittle behaviour: the Young’s modulus,
the Poisson’s ratio and the tensile strength. The goal of this work is to propose a fast and
robust DEM calibration method that allows direct computation of microscopic parameter
values from material properties. This method could eliminate the need for repeating trial-
and-error calibration and facilitate the usage of DEM for non-specialists. In addition, several
improvements are proposed for the calculation of equivalent Cauchy stress tensors involved
in the local failure criterion computation.

Following this introduction, the present paper is divided into 4 sections. Section 2 intro-
duces the DEM model applied to brittle elastic media. In this section, a virial stress-based
model to simulate brittle behaviour is presented. In section 3, a direct calibration method of
microscopic parameter of DEM is proposed. In section 4, the proposed method is validated
through numerical experiments that involve several virtual sample shapes. Convergent re-
sults of macroscopic properties are obtained with the difference to theoritical values lower
than 8%. In addition, the fracture criterion is validated through glass and alumina disk sub-
jected to Brazilian tests, torsion tests and compressive tests. Finally, this paper will be closed
by several conclusions and perspectives.
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Fig. 1 The cohesive beam bond

2 Discrete element model applied to continuous media

In the present paper, the variation of DEMs described by André et al. is used to model
continuous materials [1,4,23]. This approach is ”hybrid” between lattice models and particle
models as it was first proposed by Potyondy [35]. The simulations presented in this paper
were performed with the GranOO software [3]. GranOO uses an explicit integration scheme,
named Verlet velocity scheme, that is well suited to high velocity phenomena, such as crack
propagation or impact and massive DEM simulations [37]. At this time, GranOO embeds
some models that enable the quantitative simulation of mechanical, thermal and electrical
behaviour of continua with DEM [3,20,45]. This section introduces the main aspects of the
numerical models to model mechanical behaviour of continuous media.

2.1 Cohesive beam bond model

The cohesive beam model was first introduced by H. J. Herrmann in 1988 [17]. This model
was first used in a 2D ordered lattice network [40, 41], and later, in disordered 2D lattice
networks [7, 8, 21, 26, 39]. In reference [39], the authors have considered that microscopic
and macroscopic Young’s modulii and Poisson’s ratios are similar. The related calibration
method is not described in depth. Authors recommend trial and error tests using experimen-
tal and numerical approaches. In the present study, mechanical properties of the cohesive
beams will not be considered as similar to the reference material. So, microscopic local
properties could be driven to produce the desired behaviors at the macroscopic scale.

Fig. 1 draws two discrete elements bonded by a cohesive beam. The cylindrical geome-
try is chosen because it’s dimensional description requires only two independent parameters:
a length Lm and a radius rm

1. In addition, mechanical properties of cohesive beams are: a
Young’s modulus Em and a Poisson’s ratio νm. These four geometric and mechanical pa-
rameters fully describe a cohesive beam. Cohesive beams are mass-less; mass properties are
assigned only to discrete elements.

For the sake of clarity Fig. 2 shows a configuration in which the discrete elements have
been moved away. The cohesive beam is symbolized by its median line. Both cohesive

1 To distinguish micro from macro properties, micro parameters are denoted by ’m’ indices and macro
parameters by ’M’ indices.
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bond ends are fixed to the discrete element centers O1 and O2. The discrete element frames
F1 (O1,X1,Y1,Z1) and F2 (O2,X2,Y2,Z2) are oriented such that X1 and X2 are normal to
the beam cross section ends. At the initial time, the beams are relaxed (figure 2(a)). Fig. 2(b)
shows the cohesive beam in a arbitrary loading state.

(a) Relaxing state (b) Loading state

Fig. 2 Cohesive beam bond configurations

The analytic model of Euler-Bernoulli beam is well known [46]. Indeed, special at-
tention are given to local frame positionning. Figure 2(b) illustrates the beam local frame
positioning. The center of discrete element 1 (O1) is considered as the origin. The ”aligned”
configuration, in which O1O2 = kX1 =−kX2, is considered as the non-bending state and is
taken as reference. Consequently, the cohesive beam local frame F (O,X,Y,Z) is oriented
such that (see figure 2(b)):

X =
O1O2
‖O1O2‖

and Y = X∧X1 and Z = X∧Y

In the local frame F , the deflections at O1 and O2 are null. Cross section bending rotations
at O1 and O2 are defined, respectively, by θ1 = (X,X1) and θ2 = (−X,X2). In addition, the
small rotation hypothesis is used at local frame (θ1 and θ2 < 12◦). Consequently, the force
and torque reactions acting on discrete elements 1 and 2 are:

FDE1 =+EmSm
∆ lm
lm

X− 6EmIm

l2
m

((θ2z +θ1z)Y+(θ2y +θ1y)Z) (1)

FDE2 =−EmSm
∆ lm
lm

X+
6EmIm

l2
m

((θ2z +θ1z)Y− (θ2y +θ1y)Z) (2)

TDE1 =+
GmIom

lm
(θ2x−θ1x)X− 2EmIm

lm
((θ2y +2θ1y)Y− (θ2z +2θ1z)Z) (3)

TDE2 =−
GmIom

lm
(θ2x−θ1x)X− 2EmIm

lm
((2θ2y +θ1y)Y− (2θ2z +θ1z)Z) (4)

where:

– FDE1 and FDE2 are the beam force reactions acting on discrete elements 1 and 2.
– TDE1 and TDE2 are the beam torque reactions acting on discrete elements 1 and 2.
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– lm and ∆ lm are the initial beam length and the longitudinal extension.
– θ DE1(θ1x,θ1y,θ1z) and θ DE1(θ2x,θ2y,θ2z) are the rotations of beam cross section at the

points O1 and O2 expressed in the beam local frame.
– Sm, Iom and Im are the beam cross section area, polar moment of inertia and moment of

inertia along Y and Z.
– Em and Gm are the Young’s and shear modulus.

Reaction force and torque are expressed in the beam local frame F (O,X,Y,Z). With such
model, the cohesive beam bond is defined by four parameters:

• two geometrical parameters: length Lm and radius rm.
• two mechanical parameters: Young’s modulus Em and Poisson’s ratio νm.

Indeed, the cohesive beam length value Lm depends on the distance between discrete element
centers and is not a free parameter because it is defined through the compact process (see
section 2.3). In addition, the νm has no influence on the macroscopic elastic behavior [1].
So, only two parameters Em and rm must be calibrated to match macroscopically a perfect
elastic media defined by a Young’s modulus EM and a Poisson’s ratio νM .

The dimensionless beam radius noted rm is preferred to the beam radius. This dimen-
sionless beam radius is defined as the ratio between the cohesive beam radius and the average
discrete element radius. The rm value is the same for all the cohesive beams involved in a
discrete model. It allows us to consider the cohesive beam as a length-free model. It means
that the input values, i.e, the Young’s modulus Em and the radius ratio rm, do not depend
on the length of the sample. In other words, the mechanical elastic property of a discrete
sample, defined by its apparent Young’s modulus and Poisson’s ratio, do not depend on its
size. This is an important feature of the cohesive beam model.

2.2 Failure criterion through virial stress tensor

Within the discrete element approach, cracks are generally simulated by breaking cohesive
bonds if an imposed criterion is reached [44] [42]. The main existing approaches are based
on the computation of bond strains [6] or stresses [35]. However, these approaches seems to
be not suitable for simulating complex crack paths such as the Hertzian cone crack exhibited
by fused silica glass [4]. In this study, a fracture criterion, based on the computation of an
equivalent Cauchy stress tensor (the so-called virial stress tensor) and maximal principal
stress value, is involved. Several researches pointed out that virial stress-based model seems
to be suitable for simulating elastic brittle material [4, 14, 24]. Mainly, virial stress tensors
are used as post-processing tool for computing stress maps in a DEM calculation. Here, this
mathematical tool is used during a DEM calculation for computing accurately the failure
criterion in terms of maximal stresses. Because previous formulations lack of accuracy, a
new formulation is proposed here by considering several neighbour level as explained later.
The equivalent Cauchy stress tensor σΩ is computed as [51]:

σΩ =
1

2Ω
∑
i∈Ω

(
1
2

N

∑
j=1

(ri j⊗ fi j + fi j⊗ ri j)

)
(5)

where :

• Ω is the volume associated to the virial stress computation,
• σΩ is the equivalent Cauchy stress tensor of the considered volume Ω ,
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• j takes values 1 to N neighbors of the discrete element i,
• ⊗ is the tensor product between two vectors,
• fi j is the force imposed on the discrete element i by a cohesive beam that bonds the

discrete element i to its ”neighbour discrete element” j,
• ri j is the relative position vector between the center of the two bonded discrete elements

i and j.

As illustrated on Fig. 3, the stress tensor is always computed for the central discrete element.
Thus, different volumes Ω can be considered depending on the neighbor level. Neighbor
elements that connect directly with the central element through cohesive beams are defined
as neighbor level 0. Discrete elements that connect directly with the discrete elements in
neighbor level 0 are defined as neighbor level 1 and so on. The volume Ω is simply defined
as :

Ω =
1
fv

∑
i∈Ω

Ωi (6)

where :

• i is related to a discrete element,
• Ωi is the volume of the discrete element i and
• fv is the global volume fraction of the discrete domain.

With such a model, high value of neighbour level corresponds to non-local and averaged
stress tensor while low value of neighbour level is related to local value with lower precision.
A good compromise of the neighbour level is discussed further in this section.

To model brittle failure, the fracture criterion assumes that fracture occurs if the maximal
principal stress σI , deduced from the virial stress, is higher than a threshold value σm:

σI ≥ σm (7)

where σm is the microscopic fracture threshold. The maximal principal stress σI is de-
duced from the virial stress σΩ thanks to linear algebra computations [43] able to compute
eigen vector (σXX ,σYY ,σZZ) from symmetric matrices. In addition, the related principal
base F (X,Y,Z), in which the virial stress tensor is diagonal, is computed. The maximal
principal stress is simply deduced as :

σI = max(σXX ,σYY ,σZZ) (8)

In a previous study [4], all the bonds that belong to a discrete element that reaches the
fracture criterion were broken. As a consequence, a debonded discrete element occurs and a
debris is created. This can lead to a loss of mass and volume of the virtual sample. To avoid
this problem, when failure occurs, only one cohesive beam is broken. Hence, a computation
to select the broken beam is required. The failure direction di of discrete element i is assumed
to be the direction of the eigen vector of virial stress tensor that corresponds to the maximal
principal stress σI . This direction can be simply deduced from the F (X,Y,Z) frame where
di corresponds to the X, Y or Z axes (see equation 8). The cohesive beam included in the
neighbour level 0 which has the most similar direction with di is broken.

The accuracy of different neighbor levels are examined in order to choose the most
appropriate one. Several simulations of tensile tests (see section 2.4) with neighbor levels
0, 1 and 2 were carried out. The value of microscopic Young’s modulus Em was arbitrary
fixed at 500 GPa. Radius ratio was set from 0.2 to 1.0. The macroscopic normal stress σMxx
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Central element

di

Broken beams
Neighbour element

Neighbor level 0
Neighbor level 1

Fig. 3 Illustration of neighbour levels in 2D used for virial stress computation

is computed thanks to Equation 10 (see next section). This value is compared to the mean
< σmxx > of the xx component of local virial stress tensor σmxx . The discrete elements in
the loaded boundaries are not taken into account. Finally, the relative difference between
< σmxx > and σMxx is computed by the following equation.

error =
< σmxx >−σMxx

σMxx

×100 (9)

The results are summarized in Table 1. This table shows that simulations with neighbor level
1 have the lowest difference (lower than 2 %). This results comes from the case of coordi-
nation number cn = 10. The same tendency was observed for other coordination number.
Consequently, the neighbour level equal to 1 will be used to perform DEM simulations in
the presented study.

Table 1 Average relative errors between local virial stress and global normal stress

rm lv 0 lv 1 lv 2

0.2 1.48% 0.66% 1.37%
0.4 1.28% 1.25% 1.95%
0.6 1.44% 1.38% 2.05%
0.8 1.59% 1.42% 2.08%
1.0 1.62% 1.51% 2.14%

2.3 Geometrical properties of discrete domain

In this study, continuum is represented by a discrete domain which is an assembly of non
deformable spherical discrete elements. In such type of discrete domain, voids exist between
elements. To reduce these undesirable voids, a compaction process is accomplished by an
original algorithm, named cooker, detailed and explained in [23]. This algorithm ensures
that discrete domains satisfy a good level of contact isotropy. The contact isotropy is defined
here using an original statistical tool that involves 3D histograms, solid angle and platonic
solids. More information about this intuitive 3D statistical tool are given in [1].
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To guarantee a good level of contact isotropy, discrete element radii are randomly choosen
through a uniform distribution with a range equal to 25% [1]. This randomization process
prevents ordered configuration, also known as crystallization, in the obtained packing [33].
The cooker algorithm is able to fill a space of arbitrary shape with spherical discrete ele-
ments. It stops when the coordination number reach the 6.2 value that corresponds to the
definition of a random close packing [13]. Then, a post processing algorithm is involved for
replacing all the contacts by cohesive beams. This step may include a dichotomy algorithm
ables to fit a given value of coordination number. The discrete element radii artificially ex-
panses until it reaches the expected coordination number value. This algorithm allows us to
choose the coordination number value and to connect elements even if they are not really
in contact. As it was shown in [50] structural properties of assemblies has strong effects on
apparent elastic responses. So, this post-processing step, able to fit a coordination number,
enables to study the influence of the coordination number the macroscopic Young’s modulus
and Poisson’s ratio.

2.4 Tensile test simulation and computational methods of elastic reponses

In discrete element models, macroscopic parameters can not be introduced directly as in-
put parameters. Indeed, they need to be measured numerically through virtual experiments.
Here, uniaxial tensile test simulations are used for deducing the apparent Young’s modulus,
Poisson’s ratio and failure strength. For such simulations, cubic samples are build with the
cooker algorithm (see previous section) with length of 2 millimeters and contains around
10,000 discrete elements. As it was shown in [1, 2, 4], this number of discrete elements en-
sures a good level of convergence. It means that if higher values of element are choosen, the
obtained results will not be different from those one obtained with 10,000 elements. In order
to load the sample, opposite displacements at constant velocity are imposed to the discrete
elements that belong to the Sx+ and Sx− faces of these cubic domains (Fig. 4).

Fig. 4 The cubic discrete domain used to perform tensile tests simulation

The lengths Lx, Ly and Lz of the bounding box associated to the discrete domains are
updated during the computation. This is done by taking into account the mean position of
the discrete elements that belong to the box faces. Finally, these bounding length Lx, Ly and
Lz are computed by adding the mean diameter of the discrete elements. From the knowledge
of the bounding box lengths Lx, Ly and Lz and the applied force Fx (Fig. 4), the average
macroscopic normal stress σMxx along the x axis can be deduced as:
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σMxx =
Fx

Ly×Lz
(10)

The macroscopic engineering strain εMxx , εMyy and εMzz along the x, y and z axes are ex-
pressed as :

εMxx =
∆Lx

Lx
εMyy =

∆Ly

Ly
εMzz =

∆Lz

Lz
(11)

So, the macroscopic Young’s modulus EM is :

EM =
σMxx

εMxx
(12)

The macroscopic Poisson’s ratio νM is computed by averaging the macroscopic Poisson’s
ratio values along the y and z axes as :

νMy =−
εMyy

εMxx
,νMz =−

εMzz

εMxx
(13)

νM =
1
2
(νMy +νMz) (14)

where νMy ≈ νMy . Finally, the macroscopic failure stress σM is the macroscopic tensile
stress σMxx when the failure occurs.

The density of discrete elements are chosen in order to fit a continuum as :

ρm =
ρM

fv
(15)

where fv is the volume fraction of the assembly (mainly equal to 63%), ρM is the density of
the simulated material and ρm is the density affected to the discrete elements. So, the mass
mi of a discrete element i is computed as :

mi = ρm×Vi (16)

where Vi is the volume of a discrete element i.

2.5 Overview of the numerical scheme

The temporal differential equation is solving by using an explicit integration scheme that is
well suited for massive DEM simulations [37] and high velocity phenomena, such as crack
propagation or impact. The velocity Verlet scheme is chosen for its simplicity and efficiency.
The discrete element orientations are described by quaternions, which provide an efficient
way of computing the discrete element rotations [34]. The quaternions must be normalized
at every time step to prevent numerical drift. If it is required, a pure numerical damping
factor is introduced in the numerical scheme as described by Tchamwa and Wielgosz [30]
to allow a quick convergence rate toward the static solution.
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3 Direct calibration method of microscopic parameters

The first step of a quantitative simulation with DEM, consists in calibrating microscopic
parameters of the discrete element model. According to Marigo et al. [31], this calibration
step is the major obstacle on the use of DEM in industry and applied engineering sciences.
The purpose of this section is to find analytic relationships between microscopic parameters,
at the discrete element scale (rm,Em,σm), and the macroscopic properties, at the scale of
numerical sample (νM,EM,σM) by considering structural effect such as the coordination
number cn in order to skip trial-and-error and time consuming calibrations.

3.1 Calibration of microscopic elastic parameters

In this section, three relations are studied:

1. According to the parametric study of André et al., macroscopic Poisson’s ratio νM is
independent from microscopic Young’s modulus Em. Therefore, the evolution of the
macroscopic Poisson’s ratio νM versus radius ratio rm is studied : νM = f1(rm)

2. Relation between macroscopic Young’s modulus EM and microscopic Young’s modulus
Em and radius ratio rm : EM = f2(Em,rm)

3. Relation between the macroscopic parameters (EM,νM) and coordination number cn

Series of uniaxial tensile test simulations with different values of microscopic parame-
ters (see Table 2) are carried out. The total number of simulations is 4×5×5×16 = 1,600
for this parametric study. These numerical tensile tests were presented in the section 2.4.
Each set of microscopic and structural parameters (rm,Em, cn) gives a set of macroscopic
parameters (νM,EM). Based on the obtained data of these tests, non-linear least squares
methods [28, 32] are applied in order to find out the fitting functions that best describe the
considered relations.

Table 2 Value of microscopic parameters

Values Tot. number
Sample 1 2 3 4 4

Em (GPa) 500 1000 1500 2000 2500 5
rm (-) 0.2 0.4 0.6 0.8 1.0 5
cn (-) 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12.5 13 16

There are probably many functions which can describes these macro-to-micro relation-
ships. Indeed, the chosen fitting function must satisfy the following criteria:

1. the coefficient of determination must be in range: R2 ∈ [0.98;1],
2. the difference between the fitted curves and the data scatter must be lower than 1%,
3. the evolution of fitting function coefficients versus coordination number must be de-

scribable by a fitting function,
4. if many functions satisfy the three previous criteria, the function that involves the lowest

number of coefficients is chosen.

After examining several fitting functions, one find that the relations νM = f1(rm) and EM =
f2(Em,rm) could be described with the following fitting functions :

νM = f1(rm) = a1 +b1.rm + c1.r2
m +d1.r3

m (17)
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EM = f2(Em,rm) = Em.(a2 +b2.rm + c2.r2
m +d2.r3

m) (18)

In addition, the related fitted curves and surface are shown in Fig. 5(a) and 5(b).

(a) Fitted curve νM = f1(rm) corresponding to all
values of cn

(b) Fitted surface EM = f2(Em,rm), case of cn = 6

Fig. 5 Macroscopic Young’s modulus and Poisson’s ratio fitted curves and surface

In the fitted function related to equations 17 and 18, the coefficients a1,b1,c1,d1 and
a2,b2,c2,d2 depend on coordination number. Again, the fitting functions that describe re-
lationships between these considered coefficients and coordination number cn were found
thanks to non-linear least squares method. The choosen fitted functions are :

coef f 1 = A1 +B1.tanh[C1.(cn−7)+D1] (19)

coef f 2 = A2 +B2.cn+C2.cn2 +D2.cn3 (20)

In these formulas, coef f 1 is related to a1,b1,c1,d1 and coef f 2 represents a2,b2,c2,d2 coeffi-
cients. The related fitted curves and their equations are shown in Fig. 6 and 7.

Fig. 5, 6 and 7 reveal that the fitted curves and fitted surface are in good accordance with
data points. In addition, these regressions curves respect the coefficient of determination
citerion where R2 ≈ 1. These proposed fitting functions will be validated in section 4.

3.2 Calibration of microscopic failure citerion

In this section, relationships between macroscopic tensile strength σM and microscopic pa-
rameters is studied. Following the same method, series of tensile test simulations with dif-
ferent values of (Em,rm,σm and cn) (Table 3) were carried out in order to determine analytic
laws. Here, 4×4×5×10×8 = 6,400 simulations were performed.

After initial analyses, as illustrated on Fig. 8(a), one notes that if values of Em,rm,σm
and cn are fixed, σM is proportional to σm :

σM = k×σm (21)
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Fig. 6 Fitted curves for a1, b1, c1 and d1 coefficients of f1 versus coordination number cn

Fig. 7 Fitted curves for a2, b2, c2 and d2 coefficients of f2 versus coordination number cn

In addition, Fig. 8(b) reveals that this k ratio does not depend on value of Em.
Therefore, a fitting function k = f3(rm,cn) is expected. After examining many func-

tions, it was found that the relation k = f3(rm,cn) could be well described by the following
relation:

k = f3(rm,cn) =[(m0 +n0 · cn+ p0 · cn2)+ rm · (m1 +n1 · cn+ p1 · cn2 +q1 · cn3)

+ r2
m · (m2 +n2 · cn+ p2 · cn2)]

(22)

The non-linear least square algorithm gives the following values for the coefficients :
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Table 3 Value of microscopic parameters

Values Tot. number
Sample 1 2 3 4 4

Em (GPa) 500 1000 1500 2000 4
rm (-) 0.2 0.4 0.6 0.8 1.0 5

σm (MPa) 2 4 6 8 50 100 300 500 700 1000 10
cn (-) 6 7 8 9 10 11 12 13 8

0 200 400 600 800 1000
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(a) Evolution of σM versus σm when Em, rm, cn are fixed
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(b) Evoluation of k ratio versus Em (case cn=7)

Fig. 8 Evolution of σM versus microscopic parameters

m0 -0.56467
n0 0.20824
p0 -0.00760
m1 0.67697
n1 0.09328
p1 -0.02298
q1 0.00095
m2 -0.73898
n2 0.08438
p2 -0.00240

Finally, Fig. 9 reveals that the obtained fitted surface is in good accordance with data
points. Nonlinear regression has a good coefficient of determination (R2 ≈ 1), indicating an
acceptable result of fit. The proposed fitting function will be validate in section 4.

After analyzing the numerical data, adequate fitting functions which describe correctly
the relations between microscopic and macroscopic parameters were found. Thanks to these
fitting functions, the value of microscopic parameters could be computed directly from the
desired value of macroscopic parameters. In other word, experimental value of mechanical
properties of the simulated material could be used directly without fastidious trial-and-error
calibration. The proposed calibration method will be validated in the next section through
various numerical tests.
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Fig. 9 Fitting results of function k = f3(rm,cn)

4 Validation of calibration method

To validate the fitting function proposed in section 3, the behaviours of two typical brittle
materials, i.e. soda-lime glass and alumina, are used as reference. The main mechanical
properties of these materials are given in Table 4.

Table 4 Mechanical parameters of reference materials

Properties Glass Alumina
Young’s modulus E (GPa) 72 340
Poisson’s ratio ν 0.23 0.24
Tensile strength σ (MPa) 50 380

4.1 Tensile test simulation

To validate the proposed calibration method, series of tensile test simulations were carried
out. Values of microscopic parameters (rm,Em) were computed for the two reference materi-
als (see Table 4) by using the given proposed fitting functions (see Equations 17, 18, 19, 20).
These values were used as microscopic parameters to perform tensile test simulations. The
macroscopic Young’s modulus and Poisson’s ratio ”measured” by these tests were compared
to the expected values of the reference materials (see Table 4).

Results are summarized in Tables 5 and 6. One observes that the maximal difference
is lower than 2%, which is an acceptable result. Consequently, the proposed relations be-
tween macroscopic parameters and microscopic parameters related to elastic behaviour are
validated.
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Table 5 Validation results for glass

cn rm
computed

Em
computed

(GPa)

νM
obtained

(-)

Difference
(%)

EM
obtained

(GPa)

Difference
(%)

6 0.506 613.94 0.231 0.533 72.26 0.365
7 0.461 613.52 0.230 0.103 72.06 0.085
8 0.417 636.18 0.230 0.125 71.61 0.538
9 0.380 655.58 0.230 0.030 72.44 0.616
10 0.348 677.94 0.230 0.167 71.74 0.364
11 0.320 705.07 0.230 0.191 71.36 0.884
12 0.298 723.72 0.230 0.112 71.00 1.378
13 0.283 725.14 0.230 0.163 71.22 1.077

Table 6 Validation results for alumina

cn rm
computed

Em
computed

(GPa)

νM
obtained (-)

Difference
(%)

EM
obtained

(GPa)

Difference
(%)

6 0.478 3378.29 0.241 0.490 341.37 0.404
7 0.431 3439.53 0.240 0.000 340.29 0.085
8 0.384 3695.23 0.240 0.000 337.98 0.593
9 0.338 4058.51 0.240 0.000 341.88 0.554
10 0.294 4646.18 0.241 0.324 337.70 0.677
11 0.251 5576.21 0.241 0.353 335.66 1.276
12 0.215 6820.35 0.240 0.000 336.62 0.995
13 0.189 8187.01 0.239 0.404 345.80 1.705

4.2 Validation through hydrostatic compressive test

In this section, the sensitivity of the proposed calibration method is examined by changing
sample shape, sample size and boundary conditions. Series of hydrostatic compression tests
were performed. Hydrostatic compression test are commonly involved to determine bulk
modulus of materials. To perform simulation, a uniform pressure is imposed on the surface
of spherical samples as shown on Fig. 10. Spherical samples have 10 mm of diameter and
contains around 15,000 discrete elements.

The bulk elastic properties of a material determines how much it will compress under a
given pressure. The ratio of the imposed pressure to the fractional volume compression is
called the bulk modulus K of the material (Equation 23).

K =− P
∆V
V

(23)

where V is the related sample volume, ∆V the volume change and P is the imposed pressure.
In the discrete element framework, pressure does not exist. Indeed, the imposed pressure

can be computed as:

P =
1
S

N

∑
j=1

fj =
1

4ΠR2

N

∑
j=1

fj (24)

where j is an element that belongs to the sample surface, fj is the imposed force on element
j, S is the total surface and R is sample radius. According to the material strength theory, the
bulk modulus can be computed through Young’s modulus and Poisson’s ratio as:

K =
E

3(1−2ν)
(25)
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Fig. 10 Configuration of hydrostatic compression test simulation

By using Equation 25 and mechanical properties of glass and alumina (see Table 4), theoreti-
cal bulk modulus values of glass and alumina are 44.4 GPa and 218 GPa respectively. Values
of measured macroscopic bulk modulus KM , using Equations 23 and 24, are compared to
these theoretical values.

A typical behaviour resulting from hydrostatic compression test simulations is reported
in Fig. 11. The macroscopic bulk modulus KM converges quickly towards a stable value. This
stable value is taken as reference for the given hydrostatic test. Results are shown in Table 7
and 8. These results show that difference between numerical and theoretical values of bulk
modulus are lower than 2% for the two reference materials. Consequently, the proposed
relations between macroscopic parameters and microscopic parameters related to elastic
behaviour can be validated again through hydrostatic compression test. In other words, the
proposed calibration method remains accurate for different type of numerical experiment
and for different shape and sizes of sample (dimension and number of discrete elements).
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Fig. 11 Evolution of macroscopic bulk modulus KM during a hydrostatic compression test simulation for
alumina, case of cn = 10
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Table 7 Validation results through hydrostatic compression test for glass

cn rm
(-)

Em
(GPa)

KM
mesured

(GPa)

Difference
(%)

6 0.506 613.94 44.319 -0.282
7 0.461 613.52 44.555 0.249
8 0.417 636.18 44.428 -0.036
9 0.380 655.58 44.564 0.269
10 0.348 677.94 44.566 0.274
11 0.320 705.07 44.320 -0.280
12 0.298 723.72 44.201 -0.548
13 0.283 725.14 44.307 -0.310

Table 8 Validation results through hydrostatic compression test for alumina

cn rm
(-)

Em
(GPa)

KM
mesured

(GPa)

Difference
(%)

6 0.478 3378.29 215.312 -1.210
7 0.431 3439.53 216.325 -0.745
8 0.384 3695.23 215.526 -1.112
9 0.338 4058.51 216.146 -0.827
10 0.294 4646.18 216.054 -0.869
11 0.251 5576.21 214.793 -1.448
12 0.215 6820.35 215.718 -1.024
13 0.189 8187.01 221.124 1.457

4.3 Validation through Brazilian test

To validate the proposed relation between macroscopic tensile strength σM and microscopic
parameters, series of Brazilian test simulations were carried out. Brazilian tests are com-
monly used for characterization of brittle materials such as ceramic, concrete, refractory.
Brazilian tests are performed by applying a vertical compressive load across the diameter of
a disk sample. In the rupture phase, a crack appears along the vertical diameter of the disk,
due to tensile stresses induced horizontally by the geometry of sample [5].

Again, validation process is given for glass and alumina materials. For each value of
coordination number, the corresponding value of rm obtained in the previous section (Table
5 and 6) was used to compute microscopic fracture threshold σm value by using the Equation
22. This value of σm was used to perform Brazilian test simulations. The virtual disk samples
have 50 mm, 10 mm of thickness and contain around 20,000 discrete elements. According
to experimental and numerical studies in literature, crack initiation at the center of the disk
sample is considered to be crucial for the test validity [9,11,48]. C. Fairhurst, in [11], stated
that “ failure may occur away from the center of the disk for small angles of loading contact
area with material of low compression tension ratios. In such cases, the tensile strength
as usually calculated from test results, is lower than the true value”. Conforming to this
observation, opposite vertical displacements are imposed on two circular arcs of 2α=24◦ in
this study as shown on Figure 12.

Vertical forces at upper and lower loading contact area, Pup and Pdown respectively, re-
sulting from the imposed displacement are measured during simulations. The applied force
P is computed as:

P =
|Pup|+ |Pdown|

2
(26)
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Fig. 12 Configuration of the virtual Brazilian test

According to literature [48], the tensile strength can be computed as:

σM =
2 ·Pc

π · t ·D
(27)

where Pc is the critical load (it is also the maximum applied load during the test), t and D
are the disk thickness and the disk diameter respectively.

The typical behaviours resulting from the Brazilian test simulation are reported in Fig.
13, 14, and 15. In Fig. 13, a sudden decreasing of the average force P indicates the failure of
the virtual sample. The corresponding value of P is considered as the critical load in order
to compute the macroscopic tensile strength σM of the sample by using Equation 27. Fig.
14 shows that the crack is initiated near the center of the disk and propagate along vertical
diameter, as expected. In conclusion, the crack initiation and propagation are relevant with
theoretical predictions and experimental observations [9].

In order to highlight the interest of the virial stress computation, as described in section
2.2, the evolution of stress along the diameter is monitored. Fig. 15 shows both the theo-
retical horizontal stress evolution and the numerical one. This comparison was performed
before the failure of sample, when the applied force P≈ 36.48 kN (Fig. 13). The theoretical
stress distribution on the loading diameter is given by the following relationship [18] [38]:

σ =
2p
π

{
sin2α

1−2ρ2 cos2α +ρ4

[
1−ρ

2]− arctan
[

ρ2 sin2α

1−ρ2 cos2α

]
−α

}
(28)

where :

• σ is the horizontal normal stress,
• p is the load per unit area,
• t is the disk thickness,
• R is the disk radius of the disk,
• r is distance from a point in disk to the center,
• ρ is equal to r/R and
• α is the half central angle of the applied distributed load.
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Note that, in Fig. 15, the numerical blue curve is given thanks to the Gaussian Kernel
interpolation method available in the Paraview2 software. This figure reveals a good quanti-
tative accordance between theoretical curve (continuous dotted curve) and numerical curve,
although there are discrepancies towards the loading areas. The possible reason for these
discrepancies may come from the edge effect that influence on the virial stress computation
at the boundaries. In fact, at the boundaries of domain, discrete elements are cut by domain
boundaries, then their coordination numbers are one half of the coordination numbers of the
internal elements. This could raise errors in the computation.

Comparison point P = 36.48 kN

Fig. 13 Force - displacement curve during Brazilian test, case cn =10, glass

Fig. 14 Crack propagation of Brazilian test

The macroscopic tensile strength σM obtained by Brazilian tests were compared to the
expected theoritical values of the tensile strength of glass and alumina (50 MPa and 380
MPa, respectively, see Table 4). Synthesis of the virtual Brazil test with the proposed fracture
criterion (see section 2.2) is shown in the Table 9 and 10. Quantitatively, differences are
quite acceptable for the two reference materials. In addition, crack initiation and propagation
and stress distribution obtained by DEM simulation are compatible with material strength
theory and experimental observations. Consequently, the proposed relation between σM and
microscopic parameters of DEM could be validated. Furthermore, the proposed fracture

2 see www.paraview.org
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Fig. 15 Horizontal stress distribution along vertical diameter of sample, case cn = 10, glass, when applied
force P = 36.48 kN (see Fig. 13)

Table 9 Validation of brittle behaviour calibration for glass

cn rm σm (MPa) σM (MPa) Difference (%)
6 0.506 78.08 50.94 1.88
7 0.461 70.58 49.59 1.80
8 0.417 65.79 49.13 1.74
9 0.380 62.43 49.74 2.20
10 0.348 60.08 50.27 2.05
11 0.320 58.44 52.08 4.16
12 0.298 57.37 53.08 6.15
13 0.283 56.80 53.49 6.99

Table 10 Validation of brittle behaviour calibration for alumina

cn rm σm (MPa) σM (MPa) Difference (%)
6 0.478 601.22 377.30 0.97
7 0.431 543.05 363.01 4.47
8 0.384 505.90 359.54 5.38
9 0.338 480.10 369.24 2.83
10 0.294 461.84 368.16 3.12
11 0.251 448.82 385.09 2.00
12 0.215 439.89 396.17 4.26
13 0.189 435.00 406.88 7.08

criterion and the virial stress computation seem to be able to simulate fracture phenomena
of brittle materials under complex loadings. Indeed, this validation involves only (indirect)
tensile test.

4.4 Brittle behaviour through brittle torsion test

In this section, the proposed calibration method is applied for brittle torsion test simulation.
Fig. 16 presents the geometric model used to simulate the quasi-static torsion test. These
virtual cylindrical samples have diameter of 4 mm, length of 100mm and contain around
10,000 discrete elements. The samples are subjected to progressive rotations φx and −φx
about the X axis on the xMin and xMax opposite faces. The coordination number is arbitrary
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radius

xMax

xMin

Fig. 16 Discrete domain for torsion tests

set at 10 and the corresponding values of microscopic parameters (rm,Em and σm) are used
to perform simulations of both reference materials.

To compute the macroscopic fracture stress, the forces Fp and torques Mp applied on
opposite faces are monitored. The macroscopic torsion torque MMx can be obtained from
these quantities as follows:

MxMin
Mx =

NxMin

∑
p=1

(Mp +O1Gp∧Fp) .X (29)

MxMax
Mx =

NxMax

∑
p=1

(Mp +O2Gp∧Fp) .X (30)

where the points O1 and O2 are the centers of xMin and xMax faces and GP is the center
of a discrete element p. Then, the macroscopic torsion torque MMx is taken as the mean of
MxMin

Mx and MxMax
Mx . Based on the material strength theory, the maximal macroscopic shear

stress can be obtained as:
τMmax =

MMx

Io
RM (31)

where RM is the radius of the discrete domain and Io is the polar moment of inertia which is
defined as:

Io =
π R4

M
2

(32)

Using the Rankine criterion, the macroscopic tensile strength which is the maximal macro-
scopic principal stress can be expressed as:

σM = (τMmax) f racture (33)

where (τMmax) f racture is the maximal macroscopic shear stress measured at the fracture of
the numerical sample. The values of macroscopic tensile strength obtained by torsion test
are compared with targeted values of tensile strength for reference materials. A typical be-
haviour resulting from torsion test is reported in Fig. 17. In addition, Table 11 summarizes
the simulation results. The difference between obtained values of σM and targeted values
are quite acceptable of two materials. Moreover, at the structure scale, the crack geometry
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Fig. 17 Shear stress curve during torsion test for glass

Table 11 Torsion simulation results

rm σm (MPa) σM (MPa) σ (MPa) Difference (%)
Glass 0.348 -60.8 53.04 53.04 6

Alumina 0.294 -461.4 394.23 394.23 3.69

seems in agreement with the brittle fracture theory (fig. 18) that predicts an helical crack sur-
face oriented at 45◦ to the main axis of the numerical sample. Consequently, the proposed
relation between σM and microscopic parameter of DEM could be validated when brittle
failure occurs in shear experiments.

Fig. 18 View of crack path in a torsional test; the discrete elements in which the fracture criterion is fulfilled
are highlighted (View showing all discrete elements and view showing only critical discrete elements)

4.5 Brittle behaviour through compression test

In this section, the proposed calibration method is applied for compressive tests. These tests
are quite similar to tensile tests previously described in section 2.4. Again, silica glass and
alumina are used as reference materials. Here, the difference consists in adding a negative
failure criterion in compression arbitrary fixed to ten times higher than the tensile strength,
i.e, σ=-500 MPa for silica glass and σ=-3,800 MPa for alumina. Table 12 shows that dif-
ferences between targeted results and numerical results are less than 2%. These tests are
very preliminary and further investigations are planned for validating these results through
experimental observations. Indeed, these preliminary results highlights the potentialities of
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Table 12 Compressive simulation results

rm σm (MPa) σM (MPa) σ (MPa) Difference (%)
Glass 0.348 -600.8 -501.0 -500 0.2

Alumina 0.294 -4618.4 -3,843.1 -3,800 1.1

this method. Using 3D quantitative stress tensors enables the development of sophisticated
failure criterion such as asymmetric failure strength or Mohr-Coulomb criterion widely used
in mechanics of quasi-brittle material such rocks, concretes or refractories.

5 Conclusion

The present paper deals with the development of an analytic laws to describe the relation-
ships between microscopic and macroscopic parameters for cohesive beam model in DEM.
The proposed analytic laws allow a direct computation of microscopic parameters from
desired values of macroscopic parameters, i.e, material parameters. For future DEM simu-
lations, experimental values of mechanical properties of simulated material could be used
directly to perform DEM simulation without fastidious trial-and-error calibration which is
extremely time consuming.

The proposed analytic laws were validated with different shapes/size of discrete do-
main, various boundary conditions and numerical experiments. The values of macroscopic
parameters obtained by the validation tests are in good accordance with targeted values of
materials. Therefore, both accuracy and sensitivity of proposed analytical laws are validated.
In addition, the validation by Brazilian test reveals capability of virial stress computation to
simulate precisely fracture phenomena of brittle material under complex loading. The crack
initiation and propagation simulated by DEM are compatible with theoretical prediction and
experimental observations. The proposed fracture criterion may be applied to a large class
of brittle materials: geo-materials, civil engineering materials and ceramics.
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34. T. Pöschel and T. Schwager. Computational granular dynamics. Springer, 2005.
35. D.O. Potyondy and P. A. Cundall. A bonded-particle model for rock. International Journal of Rock Me-

chanics and Mining Sciences, 41(8):1329–1364, 2004. Rock Mechanics Results from the Underground
Research Laboratory, Canada.

36. Jerzy Rojek, Eugenio Onate, Carlos Labra, and Hubert Kargl. Discrete element simulation of rock
cutting. International Journal of Rock Mechanics and Mining Sciences, 48(6):996–1010, 2011.

37. E. Rougier, A. Munjiza, and N. W. M. John. Numerical comparison of some explicit time integration
schemes used in dem, fem/dem and molecular dynamics. International Journal for Numerical Methods
in Engineering, 61(6):856–879, 2004.

38. E Sarris, Z Agioutantis, K Kaklis, and SK Kourkoulis. Numerical simulation of the cracked brazilian
disc under diametral compression. In Bifurcations, Instabilities, Degradation in Geomechanics, pages
403–430. Springer, 2007.

39. E. Schlangen and E. J. Garboczi. New method for simulating fracture using an elastically uniform
random geometry lattice. International Journal of Engineering Science, 34(10):1131–1144, 1996.

40. E. Schlangen and J. G. M. van Mier. Experimental and numerical analysis of micromechanisms of
fracture of cement-based composites. Cement and Concrete Composites, 14(2):105–118, 1992. Special
Issue on Micromechanics of Failure in Cementitious Composites.

41. E. Schlangen and J. G. M. van Mier. Simple lattice model for numerical simulation of fracture of concrete
materials and structures. Materials and Structures, 25(9):534–542, 1992.

42. Wenjie Shiu, Frederic Victor Donze, and Laurent Daudeville. Discrete element modelling of missile
impacts on a reinforced concrete target. International Journal of Computer Applications in Technology,
34(1):33–41, 2009.

43. Gilbert Strang. Linear algebra and its applications. Harcourt, Brace, Jovanovich, Publishers, 3rd ed
edition, 1988.

44. F. A. Tavarez and M. E. Plesha. Discrete element method for modelling solid and particulate materials.
International Journal for Numerical Methods in Engineering, 70:379–404, 2007.

45. I. Terreros, I. Iordanoff, and J.L. Charles. Simulation of continuum heat conduction using dem domains.
Computational Materials Science, 69(0):46 – 52, 2013.

46. S. P. Timoshenko. History of strength of materials: with a brief account of the history of theory of
elasticity and theory of structures. Dover, New York, NY.

47. Min Wang and Ping Cao. Calibrating the micromechanical parameters of the pfc2d (3d) models using
the improved simulated annealing algorithm. Mathematical Problems in Engineering, 2017, 2017.

48. QZ Wang, XM Jia, SQ Kou, ZX Zhang, and P-A Lindqvist. The flattened brazilian disc specimen
used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and
numerical results. International Journal of Rock Mechanics and Mining Sciences, 41(2):245–253, 2004.

49. Budong Yang, Yue Jiao, and Shuting Lei. A study on the effects of microparameters on macroproperties
for specimens created by bonded particles. Engineering Computations, 23(6):607–631, 2006.

50. Gao-Feng Zhao, Qiuyue Yin, Adrian R. Russell, Yingchun Li, Wei Wu, and Qin Li. On the linear elastic
responses of the 2d bonded discrete element model. International Journal for Numerical and Analytical
Methods in Geomechanics, 0(0).

51. Min Zhou. A new look at the atomic level virial stress: on continuum-molecular system equivalence.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
459(2037):2347–2392, September 2003.


