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Testing a Commercial BCI Device for In-Vehicle Interfaces Evaluation: A Simulator and Real-World Driving Study
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This study is assessing the sensitivity of an affordable BCI device in the context of driver distraction in both low-fidelity simulator and real-world driving environments. Twenty-three participants performed a car following task while using a smartphone application involving a range of generic smartphone widgets. On the first hand, the results demonstrated that secondary task completion time is a fairly robust metric as it is sensitive to user-interfaces style while being consistent between the two driving environments. On the second hand, while the BCI attention level metric was not sensitive to the different user-interfaces, we found it to be significantly higher in the real-driving environment than in the simulated one, which reproduces findings obtained with medical-grade sensors.

INTRODUCTION

Multitasking is a commonly observed behavior in everyday life [START_REF] Salvucci | The multitasking mind[END_REF]. In some circumstances, such as driving, executing concurrent tasks (such as interacting with displays), may impair driving safety [START_REF] Cooper | Turning gap acceptance decisionmaking: the impact of driver distraction[END_REF][START_REF] Horrey | Cell Phones and Driving Performance: A Meta Analysis[END_REF][START_REF] Rudin-Brown | Driver distraction in an unusual environment: Effects of text-messaging in tunnels[END_REF]Törnros & Bolling, 2005). Although the use of digital media in cars such as connected apps, navigation systems or music players can be beneficial, they raise issues concerning the design and evaluation of such innovative services.

One major challenge in the domain of in-vehicle infotainment systems concerns evaluation methods [START_REF] Green | Driver Distraction, Telematics Design, and Workload Managers: Safety Issues and Solutions[END_REF]. While a thorough evaluation is required for near-market innovations, early Human-Computer Interaction (HCI) studies need more agile means of evaluating new concepts. In these situations a low-fidelity simulator might be suitable [START_REF] Jamson | The validity of a low-cost simulator for the assessment of the effects of in-vehicle information systems[END_REF]. While driving simulator measurements can demonstrate adverse effect of a secondary task on driving performance, they will provide little insight into covert attentional phenomenon. For instance, estimating driver's covert attentional phenomenon may require very specific and expensive equipment [START_REF] Girouard | From brain signals to adaptive interfaces: using fnirs in hci[END_REF][START_REF] Mehler | Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task an on-road study across three age groups[END_REF][START_REF] Pomplun | Pupil dilation as an indicator of cognitive workload in humancomputer interaction[END_REF].

In this context, commercial Brain-Computer Interfaces (BCI) are particularly relevant (i.e., as opposed to medical-grade sensors). Indeed, they could allow for an affordable and easy-to-use way to assess driver attention while multitasking. However, there is a lack of knowledge concerning the potential added value of such devices in human factor research. This work aims to address the gap in knowledge concerning the use of a commercial BCI device as a reliable measurement tool for user mental workload, notably in different driving environments (i.e., driving simulator and real-driving testing).

For this reason, we tested the sensitivity of a commercial and affordable BCI (MindCap XL1 ) relative to two experimental factors: (i) the driving environment that could be either a low-fidelity simulator or a real-driving environment; and (ii) a range of standard Android user-interface widgets for a smartphone-based secondary task. We expect those experimental factors to have an impact respectively on (i) the mental workload and (ii) the visual-manual distraction. Participants performed the same car following task in both driving environments while they were interacting with the smartphone application. Application usage, driving speed and BCI metric (so-called attention level) were collected and analysed across the different conditions.

RELATED WORK

Comparison of simulated and real driving

The usage of driving simulators raises the question of transferring the results from simulated (whether of a low or a high quality) to real environments. Several studies found differences between those conditions: Indeed, [START_REF] Reymond | Role of lateral acceleration in curve driving: Driver model and experiments on a real vehicle and a driving simulator[END_REF] found that in driving simulator experiments curvilinear speed was underestimated when taking a curve. It has also been demonstrated [START_REF] Boer | Experiencing the same road twice: A driver-centred comparison between simulation and reality[END_REF] that participants braked later and stronger in driving simulator than in a real-driving environment. However, [START_REF] Panerai | Speed and safety distance control in truck driving: comparison of simulation and real-world environment[END_REF] showed that speed control did not vary significantly between the two types of environments. Finally, [START_REF] Engström | Effects of visual and cognitive load in real and simulated motorway driving[END_REF] found the estimated workload higher in real-driving condition than in simulated one.

Comparing low-and high-fidelity simulators

Driving simulators exist in a wide range of complexity and fidelity with regard to real-life driving (motion simulation, 3D engine, cockpit etc.) The fidelity of a driving simulator has been shown to have an impact on the way participants react to the virtual traffic events. Indeed, low-cost simulators decrease accuracy in the perception of ego-motion, speeds and distances, which in turn leads to under-estimated inter-vehicular judgements [START_REF] Kemeny | Evaluating perception in driving simulation experiments[END_REF]. The same authors also pointed out that while high-fidelity simulators are required for assessing complex driving situations, low-cost simulators could be used successfully for dashboard ergonomic and simple driving scenarios. Other authors also pointed to low-cost simulator being particularly useful in early prototyping stages of innovative infotainment services [START_REF] Green | Driver Distraction, Telematics Design, and Workload Managers: Safety Issues and Solutions[END_REF]. For instance, in [START_REF] Jamson | The validity of a low-cost simulator for the assessment of the effects of in-vehicle information systems[END_REF] authors found consistent measurements across simulator types at least for metrics concerning speed control and secondary task completion time.

Mobile devices and visual-manual distraction

Studies confirm that the increased use of mobile phones while driving degrades driving performance [START_REF] Cooper | Turning gap acceptance decisionmaking: the impact of driver distraction[END_REF][START_REF] Horrey | Cell Phones and Driving Performance: A Meta Analysis[END_REF][START_REF] Rudin-Brown | Driver distraction in an unusual environment: Effects of text-messaging in tunnels[END_REF]Törnros & Bolling, 2005). The reason being when one shifts their visual attention to a mobile phone, this leads to visual-manual distraction. Visual-manual distraction refers to any secondary activity that involves controlling hand gestures toward a visual interface. Engaging in such activity will lead to longer and more frequent glances off-the-road [START_REF] Burns | The importance of task duration and related measures in assessing the distraction potential of in-vehicle tasks[END_REF]. With a high penetration on mainstream market, touch-screen interactions such as those used on current smartphones are both familiar and easy-to-use due to the imprecise interactions required in finger pointing activity. However many studies showed that the type of widget used for a smartphone application impact differently driver's distraction [START_REF] Kim | Evaluation of the safety and usability of touch gestures in operating in-vehicle information systems with visual occlusion[END_REF][START_REF] Louveton | Driving while using a smartphone-based mobility application: Evaluating the impact of three multi-choice user interfaces on visual-manual distraction[END_REF]. Additionally, it has been shown that text-entry and kinetic scrolling are the two major sources of visual-manual distraction in the car [START_REF] Kujala | Visual-manual in-car tasks decomposed: text entry and kinetic scrolling as the main sources of visual distraction[END_REF].

Estimation of mental workload and BCI devices

Mental workload could be estimated by a variety of psycho-physiological measurements such as heart-rate, skin conductance or pupil dilation [START_REF] Collet | Physiological and behavioural changes associated to the management of secondary tasks while driving[END_REF][START_REF] Healey | Detecting stress during real-world driving tasks using physiological sensors[END_REF][START_REF] Mehler | Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task an on-road study across three age groups[END_REF][START_REF] Pomplun | Pupil dilation as an indicator of cognitive workload in humancomputer interaction[END_REF]2003;[START_REF] Solovey | Classifying driver workload using physiological and driving performance data: Two field studies[END_REF]. Another possibility is to use brain activity as input for estimation [START_REF] Fort | Attentional demand and processing of relevant visual information during simulated driving: A MEG study[END_REF][START_REF] Haufe | Electrophysiology-based detection of emergency braking intention in real-world driving[END_REF][START_REF] Kincses | Measuring drivers mental workload using eeg[END_REF][START_REF] Lei | Influence of task combination on EEG spectrum modulation for driver workload estimation[END_REF][START_REF] Liang | Monitoring driver's alertness based on the driving performance estimation and the eeg power spectrum analysis[END_REF]. However, those measurements can be expensive and difficult to setup or to analyze. With the evolution of several commercial and affordable BCI devices, understanding the signals of the brain on the move has become much easier, faster and cost effective. In this respect, several studies demonstrated successful use of simple BCI devices in the context of interactive applications and workload estimation [START_REF] Afergan | Dynamic difficulty using brain metrics of workload[END_REF][START_REF] Girouard | From brain signals to adaptive interfaces: using fnirs in hci[END_REF][START_REF] Herff | Mental workload during n-back taskquantified in the prefrontal cortex using fnirs[END_REF].

METHODOLOGY Participants

In total 23 participants took part in this study, including 15 for the simulator set-up and 8 for the real driving condition. The driving simulator sample was composed of 12 males and three females with a mean age of 28 years (sd = 4.08) and they had held their driving license for an average of 8.91 years (sd = 4.7). The real driving set-up was composed of seven males and one female with a mean age of 29 years (sd = 5.18) and they had held their driving license for an average of 7.13 years (sd = 2.8).

The population has been drawn from University staff members and students. Each of the drivers participated in the event had a valid European Union driving license (for at least four years) and a normal or corrected-to-normal vision. All participants agreed and signed an informed consent form before taking part.

Car following task

Participants were to perform a car following task on a test track (see the schema of the track in Figure 1, located in Colmar-Berg, Luxembourg2 ), either in the real-world test-track or in its 3D driving simulator version. The track was a closed course with no other traffic vehicles than those of the experiment. The task was the same for both environment. All the participants were instructed on the task they needed to perform prior to the experiment starting. Traffic was limited to one lead (i.e., preceding) vehicle going in the same direction driving at a constant speed. The participants were asked to follow the car in front of them at all times and never to overtake it and to maintain a reasonable gap and speed. The initial starting distance between the two cars was mentioned to each of the participants to be 30 meters. They were requested to keep a safe speed of 50 km/h (the lead car was driving within a range of 50 to 60 km/h). While driving behind the lead vehicle, they had to use the mobile phone attached inside the cockpit and interact with it depending on the activity that popped-up on the screen. 

Driving environments set-up

For the simulator environment, we used OpenDS (version 2.5)3 as 3D engine and the DriveLab platform [START_REF] Louveton | Assessing in-vehicle information systems application in the car: a versatile tool and unified testing platform[END_REF][START_REF] Avanesov | Towards a Simple City Driving Simulator Based on Speed Dreams and OSM[END_REF] for triggering events and synchronising data. The test track used in the virtual environment was developed to mimic the geometry of the real test track, that has been used for the real driving condition.

For achieving this we have followed the procedure described in [START_REF] Avanesov | Towards a Simple City Driving Simulator Based on Speed Dreams and OSM[END_REF]: the real track geometry has been extracted from OpenStreetMap using OSM2World4 and Blender (version 2.49b)5 in order to make it a 3D model for OpenDS. We used a low-cost simulation setup: the display was handled by a video-projector, and controls by a Logitech gaming set including a steering wheel and pedals. The simulated car had an automatic transmission.

For the real-world environment, participants were to drive a Renault Twizy (electric quad-cycle, no gear change). Telemetry was accessed through a additional smartphone application making use of the On Board Diagnostic (OBD) port of the Renault Twizy and with the help of an OBD2 Bluetooth device.

Secondary task

The secondary task was displayed on a smartphone located on the right side of the driver (i.e., steering wheel assumed to be on the left-side of the cockpit). The smartphone used was a Galaxy S III mini running Android 4.1 with a 4 inches display size. The secondary task is implemented using generic Android widgets as they represent a realistic source of visual-manual distraction while driving.

The task displayed by the smartphone was a simple mental calculus challenge (i.e., of the type 5×2+3=?), then the user had to input the correct answer from a list of alternatives. This task was presented using five different types of interfaces: (i) Touch Button, (ii) Circular Dial, (iii) Input Data, (iv) Drop Down Menu, and (v) Radio Button (see Figure 2). Each trial was preceded by a visual and auditory notification then the secondary task was presented to the participant. 

Brain-Computer Interface

The BCI device used to measure the brain signals was a MindCap XL headband equipped with a NeuroSky sensor6 . This device measures brain activity from sensors placed on the forehead and the proprietary algorithm automatically outputs the so-called attention level metric. Because the sensors are located on the forehead of the user, the attention level metric is supposed to be associated to focused attention and mental workload [START_REF] Norman | Working memory and mental workload[END_REF].

Experimental procedure

Participants were asked to drive on the test track for seven laps (lasting approximately 20-25 minutes). Prior to setting off the participants were instructed about the driving tasks. Each participant was given a chance to familiarise her/himself with the track by driving around it prior to starting the study, no data was recorded during the familiarisation phase.

The participants were instructed to keep an eye on the mobile phone attached to the cockpit and interact with it while continuing to drive. The secondary task and each of the interface options were explained to them. At the beginning of the experiment, the BCI device was attached to the forehead of the participant before initialising the smartphone application and the driving simulator environment.

The secondary task application was triggered on three fixed points located on the test track (cf. Figure 1). Thus, each participant had to perform 21 trials (three triggers on seven laps). The three points were located on a straight stretch of the track. Geo-fencing has been used with GPS coordinates in order to trigger trials in the real-world experiment while those coordinate have been translated in in the simulated environment. Participants had until the prompt for the next task to answer the current one.

Figure 3. Schema of the experimental design under the driving simulator perspective (left) and real-driving one with the Twizy (right). In the first case driving simulator position is triggering

secondary task on the smartphone while in the second case GPS coordinates are used. In all conditions the BCI headband is placed on the forehead of the participant.

Experimental design and data analysis

We used a mixed factorial design with Environment (simulator or real driving) as a betweensubject factor and user-interface styles, so-called UI as a within-subjects one. For each secondary task trial, the type of user-interface and the question/answer pair were selected at random.

For both simulated and real driving environments, the current speed of the car was collected. The secondary task usage was measured in terms of task completion time and success rate. Finally, we collected from the BCI device a metric called attention level. This metric is computed by the BCI using real-time measurements and a proprietary algorithm. The attention level metric was output every one second and was ranging from 0 to 100. All the different types of data were synchronised and averaged across experimental conditions. We did not include a baseline condition in statistical analysis: Indeed, because of the test-track characteristics it seemed arbitrary to compare drivingonly data samples with dual-task ones.

Parametric tests were used whenever the validity conditions were met, otherwise, non-parametric tests were used. Post-hoc tests were performed using pair-wise two-sample tests with a Bonferronni correction.

RESULTS

Success and completion time

Overall, results show that participants were successful in achieving the secondary task, both in simulated (86%) and real environment (90%). The highest success rate was achieved with the RadioButton (99%) and DropDown Menu (97%), followed by the Slider (87%), Text Insertion (80%) and Button (76%). Those results indicate that participants performed reasonably well with all the user-interfaces proposed.

We performed a two-way mixed-design ANOVA on the completion time measurement. This analysis did not reveal an effect of the Environment factor (p=.17) or of the Environment×UI interaction (p=.86). However, the analysis revealed an effect resulting from the UI factor (F(4,91)=30; p<.001). On average the duration required for completing the tasks was higher for the real driving environment (16.3, sd = 17.9) than in for the simulated one (12.4, sd = 12.9). The most important variations were due to the type of interface (see also Figure 3): the post-hoc analysis revealed significant differences (ps<.05) when comparing Button condition (8.2, sd=7.6) to DropDown (14.1, sd=14.6), InsertData (17.1,sd=18.6),and Slider (17.8,sd=14.3) conditions. Finally, we found that Button and RadioButton (11.8, sd=15.7) conditions did not differ significantly and were the interfaces which allowed for the fastest completion time.

Driving speed

The analysis evidenced an effect of the Environment factor (F(1,15)=626.16;p<.001) and of the UI one (F(4,89)=2.97; p<.05). We did not find an effect of Environment×UI interaction (p=.17). While interacting with the smartphone, participants clearly drove at slower speed when immersed in a real driving environment (26km/h, sd=5.8) compared to when they were in a simulated one (54.6km/h, sd=9.9). The interface conditions also impacted the driving speed (cf. Figure 4): speed was the highest in the Button condition (48.3km/h, sd=17.5) followed by RadioButton (46.8km/h, sd=14.9), Slider (45km/h, sd=15.9), InsertData (43.9km/h, sd=15.3), and DropDown (42.8km/h, sd=13.9) conditions. However, the post-hoc analysis with corrected p-values failed to find significant differences between these conditions.

Attention metric

The analysis revealed an effect of the Environment factor (F(1,15)=28.7; p<.001) and an effect of the Environment×UI interaction (F(4,91)=2.6; p<.05). We found no effect of the UI factor (p=.23).

Figure 6. Attention metric (represented with standard deviation) was much higher in the real environment condition than in the simulated one. The variability of this metric was also higher between the different user-interfaces in the real compared to the simulated environment.

Results showed (see also Figure 5) that attention metric level was higher in the real driving environment (47, sd=17.7) than in the simulated one (34, sd=12). Also, the attention metric varied more across interface styles in the real environment (ranging from 42.6 to 51.6) than in the simulated one (ranging from 33.9 to 34.9).

Using a post-hoc analysis, more specific differences between user-interface styles have been found when comparing real and simulated driving environments. For instance, the DropDown interface in the real environment was associated (p<.001) with higher attention level (52.9, sd=15.9) than Button (35.3,sd=10.2), DropDown (35.5, sd=8.7), InsertData (35.5, sd=8.9), RadioButton (33.9, sd=8.7) and Slider (33.2, sd=8.9) interfaces in the simulated one.

We also found (p<.05) that the RadioButton interface in the real driving environment was associated with higher attention level (55.5, sd=16) than the DropDown (35.5, sd=8.7), InsertData (35.5, sd=8.9) and RadioButton (33.9, sd=8.7) interfaces in the simulated one.

DISCUSSION

While commercial BCI devices could be useful for HCI research, little knowledge has been found in this context. In this work we assessed how sensitive and reliable a commercial, affordable and easy-to-use BCI device is when assessing driver mental workload. Using such a BCI we assessed the impact on driver distraction different interface styles for a smartphone application in both a low-fidelity and real-driving environments.

Our results point to estimated workload being significantly higher in the real-driving environment than in the simulator one. These results actually confirm former findings (Engström, Johansson, & Östlund, 2005), although we used a much simpler physiological estimation of workload. Indeed, these authors used skin conductance and electrocardiogram which are highly specialised measurement devices. Because the BCI device we used implements a proprietary algorithm it is difficult to know to which cognitive process the so-called attention level metric actually refers to. However, taken together with Engström et al. (2005) our results are compatible with a correlation between the attention level metric obtained from the MindCapXL and the increase of mental workload induced by the real-driving environment.

As expected by [START_REF] Jamson | The validity of a low-cost simulator for the assessment of the effects of in-vehicle information systems[END_REF] completion time of the secondary task was consistent across driving environment while it was sensitive to the different user-interface styles. Those results suggest that this metric is a good indicator of secondary task difficulty independently of the environment. Contrary to [START_REF] Panerai | Speed and safety distance control in truck driving: comparison of simulation and real-world environment[END_REF], we did not find speed control metric to be stable across the two environments: Instead, driving speed was significantly lower in the real-driving condition.

Finally, completion time indicated that the two worst interfaces were the text-entry and slider widget which is congruent with earlier findings [START_REF] Kujala | Visual-manual in-car tasks decomposed: text entry and kinetic scrolling as the main sources of visual distraction[END_REF][START_REF] Louveton | Driving while using a smartphone-based mobility application: Evaluating the impact of three multi-choice user interfaces on visual-manual distraction[END_REF]. Speed control and attention level were not sensitive to the different widgets.

Although, the attention level metric was shown as more variable in the real-driving condition indicating a possible interaction between the two factors. As said above, the BCI metric used is difficult to match with a specific cognitive process. One possible explanation is that the secondary task proposed was inducing visual-manual distraction more than cognitive distraction. Considering this and the location of the BCI sensors we can assume that the BCI device we used would have been more sensitive with cognitively more demanding tasks.

CONCLUSION

In this work, we assessed the sensitiveness of a commercial BCI device as an easy and affordable tool for estimating driver's mental workload. We used two driving environments (simulated and real) and a range of mainstream smartphone widgets as a test-bed for our measurements. We conclude that a commercial BCI device could be useful when assessing mental workload associated with large variations of task difficulty in terms of quantity of information to be processed. Other methods should be preferred in order to analyse specific distraction sources (e.g., visual-manual distraction, conversation etc.)

Figure 1 .

 1 Figure 1. Schema of the test track used in both driving environment conditions. The three triggers for secondary events are indicated (yellow crosses) as well as the path of circulation (arrows).

Figure 2 .

 2 Figure 2. The five graphical user-interfaces used in the study. We used generic Android widgets as they represent realistic sources of distraction.

Figure 4 .

 4 Figure 4. Completion time (represented with standard deviation) was relatively stable across environment conditions, although it varied noticeably for the different user-interfaces.

Figure 5 .

 5 Figure 5. When dual-tasking, participants drove at a much slower speed in the real environment than in the simulated one. Practically no differences are found between the different userinterfaces. Speed is represented with standard deviation.
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