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Abstract. Predict the indoor air quality becomes a global 

public health issue. That’s why Airbox lab® company develops a 
smart connected object able to measure different physical 
parameters including concentration of pollutants (volatile 
organic compounds, carbon dioxide and fine particles). This 
smart object must embed prediction capacities in order to avoid 
the exceedance of an air quality threshold. This task is performed 
by neural network models. However, when some events occur 
(change of people’s behaviors, change of place of the smart 
connected object as example), the embedded neural models 
become less accurate. So a relearning step is needed in order to 
refit the models. This relearning must be performed by the smart 
connected object, and therefore, it must use the less computing 
time as possible. To do that, this paper propose to combine a 
control chart in order to limit the frequency of relearning, and to 
compare three learning algorithms (backpropagation, 
Levenberg-Marquardt, neural network with random weights) in 
order to choose the more adapted to this situation.  

Keywords—indoor air quality, neural network, relearning, 
control chart, NNRWs, backpropagation, Levenberg-Marquardt. 

I. INTRODUCTION 

In industrialized countries, the air quality is become a real 
preoccupation of population and governments in the last 
decades. However, in people’s mind, this problem is mainly 
related to the outdoor quality. As example, an opinion survey 
indicates that nine out of ten people consider as good the 
indoor quality of their housing even if they are not able to 
evaluate it [1]. Moreover, the US Environmental Protection 
Agency estimates that the indoor pollutants levels are 2 to 5 
times higher than outdoor ones [2]. The main pollutants are 
biological (bacterium, viruses), chemical (volatile organic 
compounds (VOCs), carbon monoxide (CO)), fine particles, 
radioactive gas, tobacco, humidity. Spengler and Sexton [3] 
have listed the human health impacts of these different 
pollutants. The pollution sources are various, including 
building material, furniture, cleaning products, outdoor air.  

Considering these facts, people need tools to evaluate the 
indoor air quality (IAQ) [1]. That’s why Airbox lab® company 
develops a smart connected object called Foobot® [4]. 
Foobot® can measure five physical quantities every minute: 
temperature, humidity, concentration of VOC, concentration of 
carbon dioxide (CO2), and fine particles (pm). These data are 
stored in the Foobot® itself or may be collected in a distant 
database. Beyond this goal of measure and data storing, Airbox 
lab® want to embed prediction capacities in their Foobot® in 
order to be able to forestall an increasing of pollutant levels. 

Neural models have been proposed in the past to detect the 
current situation (cooking, sleeping as example) [5]. These 
current situations are used as inputs in another neural model 
which can predict the evolution of pollutants levels (30 minutes 
forecast) [6].  

However, the performances of these models may be greatly 
degraded when different events occur (change of people’s 
behaviors, change of place of the Foobot® as example). In this 
case, a relearning step must be performed. However, the 
relearning must be performed by the Foobot® which is a smart 
object including small computing power. So, to reduce the 
computing power need, relearning step must be performed only 
when it is necessary. To do that, a control chart may be used 
[7]. Moreover, the relearning itself must use least possible 
computing time.  

The learning of neural network is mainly performed by 
using gradient based methods including first (backpropagation 
[8]) or second order approach (Levenberg-Marquardt [9, 10]). 
However, since the pioneering works of Schmidt et al. [11] an 
alternative approach is to use neural network with random 
weights (NNRWs) where weights and biases connecting the 
input to the hidden layers are randomly chosen and only the 
parameters connecting the hidden to the output layers are 
updated by the algorithm. This approach has been successively 
applied in many applications [12, 13]. Within this philosophy, 
we propose to adapt only the parameters connecting the hidden 
to the output layers when relearning is needed. 

The main goal of this paper is to evaluate these three 
algorithms in terms of accuracy, but also and above all in terms 
of calculation cost in order to adapt Foobot® embedded neural 
network to new situation. 

In the following section, a short state of the art about the 
prediction of indoor air pollution using computational 
intelligence is presented. Part 3 recalls the notations and 
algorithms used to learn the initial model. In part 4, the control 
chart used to determine when a re-learning is needed, is 
recalled. Section 5 recalls the NNRWs structure and learning 
algorithm used for the re-learning step. Part 6 is devoted to the 
study of the computing cost of the three learning algorithms to 
compare. Section 7 presents the industrial application, and the 
results obtained during the adaptation process before to 
conclude.  
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II. STATE OF THE ART 

The IAQ is an important issue concerning many researches 
in different field during the last years. Organizations, such as 
World Health Organization, list the different pollutants able to 
impact the IAQ and define thresholds not to be exceeded [14-
15]. Pollutants impacting IAQ are generally grouped in three 
main categories [16]:  

 Outdoor air pollutants (CO, benzene, ozone, oxides of 
nitrogen)   

 Pollutants generated by occupants’ activities (C02, 
particle matter (pm))  

 Pollutants generated by building material and furniture 
(volatile organics, microbial contaminants) 

The monitoring of outdoor air quality is performed by 
many agencies as ATMO [17]. Challoner et al. [18] propose to 
exploit this sort of information in order to evaluate the level of 
dioxide of nitrogen and pm in commercial building without 
using additive sensor. They propose to model the link between 
outdoor air quality and IAQ by using artificial neural network. 
Their results show good performance for the dioxide of 
nitrogen level prediction, but the prediction model for pm is 
not efficient. 

Another approach to monitor these pollutants is to develop 
and use sensors adapted to these different pollutants [19]. A 
recent approach is to propose to use a “do it yourself” approach 
based on the use of Arduino® microcontroller [20]. The data 
collected by these sensors have been used with different 
objective. Tijani et al. [21] use the concentration of CO2 to 
simulate occupants’ behaviors in office building. They use a 
dynamic Bayesian network able to use conjointly expert 
knowledge and dataset. Other authors try to use the IAQ to 
predict the sick building syndrome [22]. They develop an 
artificial neural network model (ANN) able to link different 
surveyed pollutants, including CO2, pm, VOC, airborne 
bacteria and fungi, to an occupant symptom metric. Another 
approach is to use the pollutants levels collected by sensors to 
classify the sources influencing IAQ like fragrance presence, 
foods and beverages, human activities as window opening, by 
using ANN classifiers [23-24]. 

Predict the evolution of air quality is another objective that 
can be pursued. Abd Rahman et al. [25] proposed a forecasting 
of outdoor air quality. They compare three time series models 
(Autoregressive integrated moving average, ARIMA, ANN 
and fuzzy time series FST) and concluded that ANN is the 
most suitable model. With the same philosophy, forecasting 
model has been proposed to predict the IAQ. Yu and Lin [26] 
use an ARIMA model and exploit temperature, humidity and 
CO2 concentration data when Thomas et al. [6] use an ANN 
model and exploit temperature, humidity and CO2 
concentration as well, but also VOC and pm. 

III. MULTILAYER PERCEPTRON 

A. Structure 

Multilayer neural network (MLP) is an ANN incorporating 
a single hidden layer (using a sigmoidal activation function). 
Its structure (for single output case) is given by: 

  
1 1 1 1
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h i h hm m m m

h hi i h h h h
h i h h
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where ix  are the mi inputs (
imx  is a constant input equal to 1 in 

order to that 
ihmv  be the bias of the hidden neuron h), hiv  are 

connecting weights between input and hidden layers, g(.) is the 
activation function of the hidden neurons (hyperbolic tangent), 

hw  are connecting weights between hidden and output layers 

(
hmH  is a constant equal to 1 in order to that 

hmw  be the bias of 

the output neuron), and o is the network output. 

B. Learning algorithm 

The adaptation of the weights of the MLP is performed by 
using a local search of the minimum of the classical quadratic 
criterion: 
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where  groups together all the network weights, N is the size 
of the learning dataset and  is the prediction error: 

 ( , ) ( ) ( , )k t k o k     

where t(k) is the target value of the pattern k and ( , )o k   is 
the predicted one by the network. 

The 2nd order Taylor series expansion of the criterion to 
minimize (2) leads to the classical Gauss-Newton algorithm: 

 1 1 'ˆ ˆ ˆ ˆ( ( )) ( )i i i iHe V       

where ˆi  is the estimation of  at iteration i, ' ˆ( )iV   is the 
gradient of the criterion: 
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where ( , )k   is the gradient of ( , )o k   with respect to : 

ˆ( )iHe   is the Hessian matrix. The Levenberg-Marquardt 
update rule allows to estimate it: 
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where I is the identity matrix and  a small non negative scalar 
which must be adapted during the learning process. A robust 
version of this algorithm has been proposed by Thomas et al. 
[27].  

When the Taylor series expansion of the criterion to 
minimize (2) is performed to the 1st order, this leads to the 
classical backpropagation algorithm: 

 1 'ˆ ˆ ˆ. ( )i i iV       

where  is the learning rate.  

IV. RELEARNING NEED ASSESSMENT PROCESS 

When batch learning approach is used, the obtained model 
is frozen when the learning is completed. However, in many 
cases, the system which is modelled continues to live and 
evolve. This is the case, when the system is worn (tool of a 
milling machine as example) or if the system is modified (part 
replacement for reparation or enhancement as example) or if 
the environment is modified (system relocation as example). In 
this case, a drift occurs between the frozen model and the 
living system. With the time, the model becomes less accurate 
and the model must be refitting by using relearning approach.  

However, relearning is time consuming and must be 
performed only if needed. Noyel et al. [7] have proposed to use 
a control chart [28] in order to determine when relearning is 
needed.   

A. Control chart 

Control chart is one of the seven basic tools for quality 
control. Its main goal is to determine if a production process 
remains under control. From a statistical point of view, when 
the production process is under control, the risk of a point 
exceeding a 3 control limit (Pareto) is of 0.27%. This control 
chart may be used to determine if a drift occurs between the 
model and the system behaviors. During the design of the 
initial neural model, the database has been divided into 
learning and validation dataset. The learned model has been 
tested on the validation dataset and the error performed is 
characterized by its distribution (supposed gaussian) its mean 
(expected zero to avoid systematic error) and its standard 
deviation .  

When the model is used to monitor the system, new data 
are collected, and an error is performed, principally 
characterized by its standard deviation n. The main goal of 
control chart is to determine if n remains near  or not. To do 
those, two bounds must be determined. These bound are called 
the Upper Center Line (UCL) to determine if n is too great to 
be considered as statistically equivalent to  and Lower Center 
Line (LCL) to determine if n is too small to be considered as 
statistically equivalent to  In our case, the fact that n is 
lower than LCL is not a problem and so, only UCL is 

considered. The determination of n is performed on a time 
window of size n. So, each point in the control chart represents 
the variance of the error obtained on a dataset of size n.  

B. Control bounds 

As explained part 2.1., Only the UCL is of interest in the 
considered case. This limit is calculated to represent 99.8% of 
data [26]: 
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where n is the size of the sample corresponding to the 
considered time window.  

CL is an unbiased estimated standard deviation of the error 
performed on the validation dataset during the learning step: 

 4 .CL c   

The monitored characteristic which must be compared to 
UCL is standard deviation of the error performed by the 
network on the sample corresponding to the time window of 
size n: 
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where k  is the error performed on data k and   is the 
mean of the error performed on the sample of size n.  

If the value of s is lower to UCL for a sample, no relearning 
is needed. If it is upper to this limit, the neural model must be 
adapted by performing a relearning.  

V. RELEARNING ALGORITHMS 

The initial model is a single output multilayer perceptron 
(MLP) learned on an initial dataset as explain part III and its 
structure is given by (1). The matrix writing of equation (1) is: 

 O=W.H 

All the weights of this MLP has been learned by using a 
classical learning algorithm (here a robust version of the 
Levenberg-Marquardt algorithm [24]).  
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When the control chart described at part IV indicates that a 
relearning is needed, these weights must be updated. This task 
may be performed by using again the same Levenberg-
Marquardt algorithm [9, 10], or it can be replaced by a simplest 
gradient algorithm [8]. Another approach may be to retrain 
only the weights connecting the hidden to the output layers, 
within the same philosophy than the algorithm NNRWs 
proposed by Schmidt et al. [11], the main idea here is to fix the 
weights connecting the input to the hidden layer and to adapt 
only the weights matrix W connecting the hidden layer to the 
output neuron by: 

 .W H T j  

where T is the vector of the target (desired output) for the 
relearning dataset and H j  is the Moore-Penrose generalized 
inverse matrix of H [30, 31, 32]. H is calculated by using the 
fixed weights connecting the input to the hidden layers and the 
inputs of the relearning dataset.  

VI. EVALUATION OF THE COMPUTING COST 

The relearning algorithm must be embedded in a smart 
object. The computing cost is so an important issue for the 
choice of the relearning algorithm to use. To select it, the 
number of basic operations must be evaluated.  

A. Basic operations for MLP output evaluation 

The output of the MLP is given by (1) where g(.) stands for 
the hyperbolic tangent which must be evaluated:  

 ( ) tanh( )
z z

z z

e e
g z z

e e






 


 

Knowing that 1z ze e  , the calculation of this hyperbolic 
tangent needs 1 subtraction, 1 addition, 3 divisions and the 
evaluation of one exponential:  
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Which must be evaluated by using an iterative approach where 
each loop uses 4 basic operations (2 additions, 1 multiplication, 
1 division). The number of loops depends of the required 
precision. As example, to obtain a relative error lesser than 

1510  to calculate 1e , 18 iterations are needed. However, to 
calculate 100e , we need 189 iterations to obtain the same 
precision. For the sequel, we choose to use a mean of 100 
iterations to evaluate the different exponentials. The number of 
basic operators to evaluate an exponential is so estimated to 
400, leading to the fact that the evaluation of an hyperbolic 
tangent uses on average 405 basic operators.  

The evaluation of the hidden neuron output Hh for one 
hidden neuron and one pattern needs to use im  multiplications, 

1im   additions and one hyperbolic tangent leading to the use 

of 2. 404im   basic operators. So, the evaluation of the hidden 
neuron outputs for all hidden neurons and all patterns of the 
learning dataset needs    1 . . 2. 404h im N m   basic 

operators.  

The evaluation of the outputs of the MLP o given by (1) for 
the complete dataset needs  . 1hN m   additions, . hN m  

multiplications and the evaluation of the  1hm   hidden 

outputs Hh. So the number of basic operations needed to 
evaluate the MLP output is: 

  . 2. 406MLP h iOp N m m N    

B. Basic operations for the backpropagation algorithm 

The backpropagation algorithm is given by (7). It is an 
iterative algorithm which evaluates the gradient of the criterion 
to minimize given by (5).  

To evaluate the gradient, we need to determine the gradient 
of ( , )o k   with respect to  ( , )k  . ( , )k   is a vector of 
length corresponding to the number of MLP parameters:  

  1 .h i hm m m m     

The elements of ( , )k   corresponding to the weights 
connecting the hidden to the output layers are obtained 
directly. Those correponding to the .h im m  weights connecting 
the input to the hidden layers need, for each pattern, to perform 
2 multiplications and 1 subtraction. So, the evaluation of 

( , )k   needs   3. 1 .h im m  basic operations.  

The evaluation of the gradient ' ˆ( )iV   for one pattern k 

needs the evaluation of ( , )k   and m multiplications. This 
work must be performed N times and the results must be 
summed up leading to the use of  . 1m N   additions and 1 

division. So the number of basic operations needed to evaluate 

the gradient ' ˆ( )iV   for one iteration is: 

      ' 3. 1 . . 1 . 1V h iOp m m m N N m        

To evaluate the backpropagation algorithm for one 
iteration, we need to evaluate the output of the MLP o, the 

gradient ' ˆ( )iV   and to perform m  additions and m  
multiplications. So the number of basic operations needed to 
perform the backpropagation algorithm is: 

  '. 2.BP MLP VOp It Op Op m    
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where It is the number of iterations performed. From this sum, 
we have excluded the number of operations needed to update 
the parameter . 

C. Basic operations for the LM algorithm 

The LM algorithm is given by (4). It is an iterative 
algorithm which evaluates the gradient of the criterion and the 
hessian matrix which must be inverted. The computational cost 
for the gradient is given by (18).  

The Levenberg-Marquardt approximation of the Hessian is 
given by (6). It needs  . .N m m   multiplications and 

   . .N m m   additions and one division: 

 22. . 1HOp N m   

This matrix Hessian is a square matrix of dimension 
 ,m m   and must be inverted.  

Different algorithms may be used for the inversion of an 
invertible matrix of dimension (d, d). The one considered here 
is the use of the Gaussian elimination which need the building 
of a matrix of dimension (d, 2d) by adjunction of an identity 
matrix. In the worst of the cases, this inversion procedure uses 
 1d   lines permutations which corresponds to  2. . 1d d   

elements permutations which can be considered as basic 
operations too. Globally, the matrix inversion procedure uses: 

  24. . 1invOp d d   

For the Hessian matrix, this corresponds to: 

  24. . 1invHOp m m    

So the number of basic operations needed to perform the 
backpropagation algorithm is: 

  2
'.LM MLP V H invHOp It Op Op Op Op m m        

where It is the number of iterations performed. From this sum, 
we have excluded the number of operations needed to update 
the parameter . 

D. Basic operations for the NNRWs algorithm 

The NNRWs algorithm is given by (13). It implies to use 
the Moore-Penrose inverse given by:  

   1
. .T TH H H H


j  

The product of the matrices . TH H  needs 2(2. 1).hm N  
basic operations and produce a matrix of dimension (N, N). 

This matrix must be inverted and (21) implies that 
24. .( 1)N N   basic operations must be used. The Moore-

Penrose inverse needs MPOp  basic operations: 

 2 2(2. 1). 4. .( 1) (2. 1). .MP h hOp m N N N N N m       

So, the number of basic operations needed to perform the 
NNRWs algorithm is: 

  2. 1 .NNRWs MLP MPOp Op Op N m     

In comparison with the two other algorithms, this algorithm 
is not iterated, and don’t need the tuning of a parameter. 

VII. INDUSTRIAL APPLICATION 

A. Description of the case study 

An inhabited private house has been instrumented by 5 
Foobot® located in different rooms of the house. Figure 1 
presents the implementation plan of the 5 Foobot®. 

 
ROOM 1

ROOM 2

ROOM 3
ROOM 4

LIVING ROOM

GARAGE

KITCHEN

BATHROOM
LAUNDRY

 

Fig. 1. Implantation plan of the Foobot®. 

For one month the inhabitants of the house have indicated 
their occupations (cooking, sleeping, house cleaning as 
example). In a first step, classification models have been 
designed in order to predict these occupations. The outputs of 
these models are used as inputs of a regression neural network 
model which predicts the evolution of pollutants levels (30 
minutes forecast) (figure 2). These models use also as inputs 
the past values of the five collected physical quantities: 
temperature (T°), humidity (Hu), concentration of VOC 
(VOC), concentration of CO2, formaldehyde and fine particles 
(pm). A first work [6] have allowed to design these prediction 
neural network models by using Foobot® 1 (Kitchen) dataset. 
The optimal structure of the models is obtained by using 
pruning step [33].  
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Results from
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Fig. 2. Principe of pollutants level prediction. 

The resulting models are accurate and allow to predict the 
evolution of pollutants level with 30 minutes forecasting. 

B. Refitting of prediction neural models 

The preceding neural model has been built with the dataset 
collected by the Foobot® 1 located in the kitchen of the 
considered house. This model is suitable to predict the 
evolution of pollutant levels by using surveyed data collected 
by Foobot® 1. However, when this model is used with the 
dataset collected by Foobot® 2 located in the bedroom, the 
results are no longer relevant. So, Foobot® must embed neural 
model refitting capability to adapt the model to the local 
condition. This refitting capability includes the capabilities to 
detect that a relearning step is needed, and the relearning itself.  

Figure 3 presents the control chart that allows to determine 
when relearning is needed. The LCL is not represented because 
it is not used here. The control chart obtained with the 
Levenberg-Marquardt learning algorithm (LM) is given by red 
circles. The control chart obtained with the back propagation 
(BP) algorithm is given by black stars. The control chart 
obtained with the NNRWs algorithm is given by blue crosses.  

The center line (CL) which corresponds to the standard 
deviation of the error obtained during the validation is 
indicated in green. The upper center line (UCL) given by 
equation (1) is indicated in red. Blue crosses (respectively red 
circles and black stars) represent the standard deviation of the 
error performed on the considered sample when NNRWs 
(respectively LM and BP) relearning algorithm is used. The 
size n of the samples is fixed to 120 data that corresponds to a 
time window of 2 hours.  

The initial model is those built with Foobot® 1 dataset to 
predict the CO2 concentration level. When this model is used 
with the first sample of dataset given by Foobot® 2, the 
standard deviation of the error is outside the acceptable limits 
(upper to the UCL) and so, a relearning is needed. This fact 
shows that the model built with Foobot® 1 dataset is not 
suitable for the dataset collected by Foobot® 2. However, the 
relearning step for the three algorithms allows to refit the 
model, and samples 2 and 3 are under the UCL. It can be 
noticed that this relearning after sample 1 is not enough 
because standard deviation of the error obtained on samples 4, 
5, 8, 9, ,12, 13, 14, 15, 16 are outside the acceptable limits 
(upper to UCL). So, after each of these samples, a relearning is 
performed. After the sample 16, only one sample (36) is 
outside the acceptable limit. So, we can consider that the 
relearning performed after samples 4 to 16 are enough to refit 
the model. These samples correspond to a period of 32 hours, 
less than 2 days.  

Moreover, it can be noticed that the number of relearning 
needed to refit the model is the same (11) for the three learning 
algorithms. Moreover, the standard deviation of the error 
obtained for the three learning algorithms are close together for 
most of the samples. Only for samples 9, 14 and 15 the values 
obtained with the NNRWs learning algorithm are significantly 
different from the values obtained with the two others. This 
fact shows that the use of NNRWs algorithm in order to refit 
only the weights connecting the hidden layer to the output 
neuron is relevant.  

All the algorithms were implemented in MATLAB® 2017 
and executed on a PC with intel i7 2.90 GHz processor, 32GB 
of RAM, running the Windows® 10 pro operating system. 

Table 1 presents the computing time used to refit the model 
with the three algorithms. This work has been performed 10 
times and the mean and standard deviation of the computing 
time are presented. This table shows that the use of NNRWs 
algorithm allows to save many computing times. On average, 
the computing time used to refit the model with NNRWs 
algorithms is 14 times shorter than using BP algorithm and 28 
times shorter than using LM algorithm. This fact is crucial 
when this step must be performed by smart object that embed 
small computing power.  
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Fig. 3.  Control chart for neural model monitoring – blue cross: NNRWs algorithm – red circle: LM algorithm – black star: BP algorithm. 

TABLE I.  COMPUTING TIME FOR THE RELEARNING STEP. 

  LM 
algorithm 

BP 
algorithm 

NNRWs 
algorithm 

Computing 
time (s) 

Mean 0.2712 0.1399 0.0097 

 StD 0.0218 0.0079 0.0007 

However, this comparison of computing time is not enough 
because CPUs like i7 implements a state-of-the-art 
mathematical instruction set that can boost the performance of 
algorithms that suit this instruction set.  

In part VI, the computing cost of the different algorithms 
used have been studied. These costs depend on the number of 
parameters (inputs number, hidden neurons number), of the 
size of the learning dataset, and of the number of iterations 
performed for the BP and LM algorithms. In the considered 
case, there are 10 inputs (plus the one for the biases) 3 hidden 
neurons (plus the one for the biases). The relearning dataset is 
fixed to 240 and the maximal iteration number is fixed to 200 
for BP and to 50 for LM. It can be noticed that supplementary 
stop criteria are used in order to stop the learning if the 
improvement of the parameters is too small between two 
iterations.  

These values lead to a computing cost of 33 919 600 basic 
operations for BP algorithm, 35 097 750 basic operations for 
LM algorithm and 7 231 883 basic operations for NNRWs 
algorithm. These values show that NNRWs algorithm uses 
approximately 4.5 times fewer basic operations than the two 
others for one relearning step. There exists an important 
difference with these values and the computing time in table 1 
where NNRWs is 14 (respectively 28) times speeder than BP 
(respectively LM). This fact can be explained by: 

 The use of an i7 processor as explained previously,  

 The approximation performed for the exponential (15), 

 The approximation performed for the matrix inversion 
(21), 

 The other stop criteria used for BP and LM, 

 The adaptation of parameters  (resp. ) in LM (resp. 
BP) not considered. 

So, in the considered application, the use of NNRWs 
algorithm is justified. 

However, this choice depends of different parameters. 
Figure 4 shows the evolution of the computing cost for these 
three algorithms when the number of iterations performed by 
BP and LM algorithm evolves between 1 and 200. This figure 
shows that each iteration of BP algorithm needs less basic 
operations than LM, but it needs more iterations than LM to 
converge.  

Figure 5 shows the evolution of the same computing cost 
for the three algorithms when the size of the relearning dataset 
evolves from 100 to 300 patterns.  
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Fig. 4. Evolution of the computing cost in function of iterations number – 
blue continue: NNRWs algorithm – red dotted: LM algorithm – black dashed: 
BP algorithm. 
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Fig. 5. Evolution of the computing cost in function of the samples size – blue 
continue: NNRWs algorithm – red dotted: LM algorithm – black dashed: BP 
algorithm. 

This figure shows that the evolution of the computing cost 
for NNRWs algorithm is exponential when it is linear for the 
two other algorithms. This fact implies that the use of NNRWs 
algorithm is pertinent when the relearning dataset is small, but 
its computing cost explodes when the size of the dataset grows. 
This is due to the Moore-Penrose inverse algorithm which 
needs to produce and invert a matrix of dimension (N, N).  

VIII. CONCLUSION  

This paper considers the problem of adaptation of neural 
network models to change. To adapt model to new conditions, 
a relearning step must be performed. However, relearning step 
is time consuming. In case of model embedded in smart 
connected products which include small computing problem, 
this relearning may be problematic, and its computing time 

must be reduced. To do that, a combination of a control chart 
and a particular learning algorithm is investigated. The control 
chart allows to trigger the relearning only when needed. The 
learning algorithm used focuses on the adaptation of weights 
connecting the hidden layer to the output neurons, the other 
parameters remaining unchanged. Such approach allows to 
maintain the accuracy of the model while reducing computing 
time. Now, the relearning step is performed by using all data 
available since the last relearning. To reduce the computing 
time, future work may focus on the determination of the size of 
the optimal relearning dataset.   
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