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Highlights 10 
- Uncertain techno-economic parameters must be included when sizing remote microgrids 11 

- Two approaches are set up to assess these uncertainties 12 

- Propagation of uncertain parameters allows the assessment of design robustness 13 

- Global sensitivity analysis identifies most influential techno-economic parameters  14 

- Robust optimization reduces variance of techno-economic performance indicators 15 

Abstract 16 

This paper presents two different approaches to deal with uncertainties in the design optimization of 17 

renewable hybrid power systems in order to enhance the decision-making. The first one, Sensitivity 18 

Analysis Approach (denoted as SAA), takes the uncertainties into account after the optimization of the 19 

system. It permits first to evaluate the sensitivity on the static performances of the optimized system 20 

through uncertainty propagation. Secondly, it permits to identify the most influential uncertain 21 

parameters through Global Sensitivity Analysis (denoted GSA). The second approach, called Robust 22 

Optimization (RO), integrates a Monte Carlo (MC) simulation into the process of optimization 23 

conducted with a Genetic Algorithm (GA). The two approaches have been set up and applied to a remote 24 

power system or microgrid, under uncertainties on techno-economic parameters. This illustrative case 25 

study is the electrical supply of a stand-alone application located in Nigeria, using photovoltaic 26 

production associated to a hybrid energy storage with a bank of batteries and a complete hydrogen chain 27 

(with an electrolyzer, a gas tank and a Fuel Cell (FC). Classically, the main source of uncertainties of 28 

such a system is associated to the temporal variation of renewable energy sources and load demands. 29 

Instead, this paper focuses on uncertainties of techno-economic parameters to improve the reliability of 30 



2 
 

the optimization process for a stand-alone power system. Moreover, from a precise analysis of the state-1 

of-the-art of such uncertainties, the authors propose to investigate complementarities of Sensitivity 2 

Analysis Approach and Robust Optimization. This study also aims to propose a methodological 3 

framework for any designer. The results show the high interest to take into account such uncertainties 4 

for the decision-making and the ability of RO to limit their impact on system performance indicators. 5 

Keywords 6 

- Hybrid energy system modeling  

- Uncertainty modeling and propagation 

- Global Sensitivity Analysis 

- Robust design optimization 
- Monte Carlo simulation 
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1. Introduction 1 

Nowadays, energy systems are getting more and more complex, and difficult to assess because of (i) the 2 

variability of the renewable power sources and the load demand, (ii) the resultant necessity of storage 3 

systems and hybridization and (iii) the presence of different and new energy vectors such as hydrogen 4 

[1]. Classically, these systems are designed and optimized with simulation software as Odyssey [2–4], 5 

which enables the optimization of the design and the energy management system by minimizing the cost 6 

of energy while maximizing the load satisfaction on a one-year simulation. Odyssey is a simulation-7 

optimization platform developed by the French Alternative Energies and Atomic Energy Commission 8 

(CEA). It permits comprehensive techno-economic assessments of energy systems comprising 9 

renewable energy sources and energy storage units. The precision of the technical model is rather high, 10 

as Odyssey can for instance account for performance degradation in batteries or electrolyzer and fuel 11 

cell stacks, and components replacement during system simulation.  12 

Besides, many parameters of any power system are uncertain, e.g. economic properties [5], static 13 

component performances [6] as well as time series of production and load profiles [7,8]. Their impacts 14 

are often evaluated by performing sensitivity computations on a limited set of key parameter variations 15 

[3,9], using simulation software like Odyssey. As a result, the impact of uncertainties will mostly be 16 

alleviated by oversizing the system to meet the demand. This obviously increases the cost of the final 17 

energy supply. 18 

To improve the techno-economic performance of the system, it is essential to better quantify the impact 19 

of uncertainties [6,10] and make the system as robust as possible with respect to uncertainties [8,11]. 20 

Several methods can be used, depending on the nature of uncertain parameters. They have been applied 21 

in various contexts, but few have been exhaustively applied for techno-economic studies to such energy 22 

power systems as remote microgrid with renewable and hybridization of storage systems.  23 

The classical uncertainty source studied in the literature for this type of system is the variability of the 24 

time series (renewable energy production and load demand). The objective is to implement existing 25 

methods to account for techno-economic uncertain parameters, which has never been done before. The 26 

methods constitute two complementary approaches: Sensitivity Analysis Approach (SAA) and Robust 27 
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Optimization (RO). They highlight that these static uncertain sources have a strong impact on 1 

optimization results. Therefore, the consideration of these uncertain parameters is of high interest for 2 

decision-making. This work demonstrates also that RO can limit their impact on system performance 3 

indicators. 4 

The quantification of sources of uncertainty is a common step of both approaches. In this work, 5 

uncertainty sources are associated to any techno-economic parameter, with a Probability Distribution 6 

Function (denoted PDF). The SAA has two distinct aims: a first propagation quantifies the impact of 7 

uncertainties on the outputs and the GSA quantifies the responsibility of each uncertain parameter in the 8 

variance of the output. The other approach, namely RO, consists in including Monte Carlo (MC) 9 

simulation in a Genetic Algorithm (GA) with an innovative optimization criteria. 10 

These approaches have the ambition to be generic and applicable to any black box energy system 11 

simulation tool involving uncertain input parameters, in order to propose a general framework for 12 

designers. Thus, the contributions of the two approaches and the highlight of their complementarity 13 

bring new elements in the decision-making process of such systems. 14 

A typical remote and hybrid power system is presented in section 2. Then, Section 3 discusses the 15 

methods associated to the two approaches, namely Sensitivity Analysis Approach and Robust 16 

Optimization. Section 4 describes the application of the approaches to this remote power system. On 17 

this basis, section 5 discusses their respective benefits and drawbacks. Lastly, section 6 concludes and 18 

proposes some perspectives for future work. 19 

2. Description of illustrative case study 20 
The case study is a stand-alone power system located in Nigeria, using photovoltaic (PV) as the main 21 

power source. In order to manage the time mismatch between PV production and load requirements, at 22 

least one energy storage system is needed. A similar system was studied by Guinot et al. [3,4] and the 23 

comparison between different system architectures showed the relevance of a hybrid storage including 24 

a bank of lead-acid batteries and a complete hydrogen chain, consisting of an electrolyzer, a gas storage 25 

tank and a Fuel Cell (FC). This article focuses only on electrical power flows. This system is schematized 26 

in the Figure 1. The design of such a hybrid supply chain is particularly interesting as it implies a trade-27 

off between two competing technologies, i.e. the battery bank and the hydrogen storage. Each 28 
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component has specific technical and economic parameters, with associated levels of uncertainty. 1 

Hence, the sizing and the energy management of such a system is very likely to change according to 2 

some uncertainties. 3 

 4 
Figure 1: Case study architecture 5 

A main DC bus connects a PV farm to an electrical load, which is to satisfy either with the PV 6 

production, or with the hybrid storage system also connected to this bus. This hybrid storage system is 7 

described Section 2.1.2. 8 

2.1. Energy system description 9 

The models of components describing the system are used in a black box perspective to remain 10 

independent of the particular tools used. However, the uncertain parameters contributing to the models 11 

have to be identified.  Therefore, the models of components describing the system in Odyssey are listed 12 

in Table 1.  13 

Table 1. Summary of used component models in studied energy system. 14 

Component Model 

PV From PV production profile 

Electrolyser Polynomial I-V Curve model 

H2 tank Pressure model with constant ambient temperature 

FC Polynomial Efficiency model 

Battery bank Efficiency model 

Thanks to the Odyssey simulation software, during a one year simulation, operating rules will try to 15 

satisfy the electrical load at each sampling time. If the PV production is sufficient, the exceeding power 16 

is stored in the battery (priority #1) or converted in hydrogen (priority #2).  If the PV production is not 17 

sufficient to satisfy the electrical load, electrical power is requested from the battery (priority #1) or 18 
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from the hydrogen supply chain (priority #2).  The result of the one year simulation is then extrapolated 1 

to a 20 year operation of the system to perform complete techno-economic analysis including discount 2 

rate of 8% and aging of components. 3 

An external loop of optimization using Genetic Algorithm (GA) allows optimizing several key 4 

parameters as the rated power of electrolyser and fuel cell stacks, the battery capacity or the number of 5 

PV modules. 6 

The time series of PV production, component features and energy management strategy are detailed in 7 

the following sections, along with the optimization process. 8 

2.1.1 Load profile and photovoltaic production 9 

The electrical load and the PV production are described with 5-min sampling time profiles with a 10 

duration of one year. These profiles are the boundary conditions, i.e. fixed inputs of the system and they 11 

will be considered as perfectly well known. The uncertainty relative to these two profiles are then not 12 

considered at this step. 13 

The electrical load profile of the remote power system has been generated by the duplication of a daily 14 

load profile, with the application of a global random variation between -10% and +10%. The PV 15 

production profile has been calculated using global and diffuse radiations and ambient temperature 16 

measurements at Ilorin weather station in Nigeria. 17 

2.1.2 Hybrid storage system 18 

The hybrid storage system includes on one hand a bank of lead-acid batteries and on the other hand a 19 

complete and reversible hydrogen chain, i.e. an electrolyzer, a pressurized tank to store the produced 20 

hydrogen gas and a FC with Proton Exchange Membrane technologies for electrolyzer and FC. 21 

The model of battery takes into account of its ageing through its capacity loss [3]. 22 

The electrolyzer is modeled with its polarization curve. Its ageing model assumes a linear increase of 23 

each cell voltage with the operation time and the replacement occurs at a given amount of operating 24 

hours [12]. 25 

The produced hydrogen is stored in a pressurized tank with a maximum pressure (30 bars) equal to the 26 

output pressure of the electrolyzer; therefore no compressor is required in this application. 27 
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The FC is modeled with a polynomial model of its efficiency. Its ageing model is based on the efficiency 1 

decrease and its replacement occurs at a given amount of operating hours. 2 

It is important to note that the models for component characterization, ageing or replacement conditions 3 

are non-linear models. This has a strong impact on the design methodology and the choice of 4 

optimization tools that can be used to evaluate and optimize the considered system. For instance, 5 

classical Stochastic Programming, that requires linear models, is not exploitable as linearization is not 6 

always obvious or even possible. That is why stochastic methods will often be applied on simplified 7 

models of the system, which do not account for precise ageing and replacement models, or even start-8 

up or shutdown durations. These parameters must not be ignored in the case of stand-alone energy 9 

systems to get as accurate as possible the system design and operation.  10 

2.1.3 Energy management strategy 11 
The energy management strategy consists of classical logical rules based on the on/off switches between 12 

the electrolyzer and the Fuel Cell according to the State Of Charge (SOC) of the batteries bank. It was 13 

originally described by Ulleberg [13] and further investigated by other authors [2,14,15]. 14 

2.2. Optimization criteria and variables 15 

Several performance indicators can be used to assess hybrid energy systems, characterizing them 16 

technically and economically. In this case study, economic performance are levelized on a 20 years-17 

operation and with a discount rate of 8% [3]. Two performance indicators are considered as optimization 18 

criteria. The first one is the Levelized Electricity Cost (denoted LEC, in €/MWh), defined as the ratio of 19 

the total levelized cost of the system divided by the levelized amount of electricity provided to the load. 20 

The second one is a technical indicator representing how the system meets the demand: the Unmet Load 21 

(denoted UL) represents the percentage of energy based amount of unsatisfied load. The objective of 22 

the optimization is to minimize jointly these two criteria. The optimization algorithm used is inspired 23 

by the Genetic Algorithm SPEA 2 (Strength Pareto Evolutionary Algorithm 2) originally developed by 24 

Zitzler et al. [16] and implemented in the Odyssey software. Such a tool of optimization is well adapted 25 

to take into account non linear models of aging and replacement associated to the components of the 26 

case study. 27 

The optimization variables are the different sizes of components. They are presented in Table 2. 28 
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Table 2. Optimization variables (component sizes). 1 

Variable Unit 
Optimization borders 

Minimum Maximum 

Number of PV Modules  - 450 1700 

Number of Battery Units - 110 150 

Number of electrolyzer cells - 5 35 

Fuel Cell Stack Max Power W 2500 100.000 

Volume of pressure tank m3 1 80 

Each PV module has a peak power of 1 kWp, each battery unit has a rated capacity of 10 kWh and each 2 

electrolysis cell has a maximum power of 1.95 W. The simulation software may then integrate 3 

discontinuous variables in order to take into account these rated values. 4 

2.3 Optimization results without uncertainties 5 

Results of the optimization presented in this section, denoted as Non-Robust Optimization (NRO) are 6 

not the main point of this work but the starting point of the Sensitivity Analysis Approach (SAA). The 7 

NRO is namely part of this approach. The NRO results serve also as a comparison reference to evaluate 8 

the Robust Optimization (RO).  9 

Due to the competition between optimization criteria as LEC and UL, the optimization results take the 10 

shape of a Pareto front as seen Figure 2. The Pareto front is, in a multi-objective optimization, the set of 11 

solutions that are Pareto optimal, i.e. the best solution for one of the criteria. In techno-economic 12 

optimization of power systems, the LEC and the UL criteria are in competition because by increasing 13 

the component sizes and consequently the LEC, the UL is reduced and inversely.  14 

On this Pareto front, four different design points are selected corresponding to different indicators values 15 

(LEC and UL). These points, named from their UL value, are distributed on the Pareto front, in order to 16 

study the influence of the uncertainties on the overall Pareto front. The design variables values 17 

corresponding to these four selected configurations (named hereinafter as Case 0, Case 01, Case 05 and 18 

Case 1) are given in Table 3. 19 
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 1 

Figure 2: Pareto front of performance indicators LEC and UL resulting from NRO. 2 

These optimization results highlight a low utilization of the hydrogen chain, i.e. the components of the 3 

hydrogen chain (electrolyzer, gas storage and FC) have small optimized capacities. Indeed, the hydrogen 4 

chain is useful to reach the full autonomy; this is why its components have the biggest sizing in Case 0 5 

in which there is no unmet load. However, this specificity has no impact on the application of the 6 

approaches presented in this paper. 7 

Table 3. Selected optimal designs and their corresponding performance indicators (LEC and UL). 8 

Case 0 01 05 1 

Number of Modules PV 735 735 660 600 

Number of Battery Units 146 145 135 138 

Number of electrolyze cells 8 5 5 5 

Fuel Cell Stack Max Power (W) 43500 10500 5000 5000 

Volume of pressure tank (m3) 31 16 3.5 3.5 

Unsatisfied load (%) 0 0.1 0.5 1 

LEC (€/MWh) 404.9 336.1 295.5 280.2 

Such results are very typical in Non-Robust Optimization (NRO) processes. However, they do not 9 

consider the uncertainty level associated to the input parameters. For that, two different approaches, 10 

namely Sensitivity Analysis Approach and Robust Optimization, are presented in the next sections. 11 

3. Description of methods for uncertainty analysis 12 

The most widespread method to assess the influence of uncertain parameters on optimization results is 13 

the parametric sensitivity analysis [9,17,18]. This approach is suitable for problems with few uncertain 14 

parameters, where various possible combinations of deterministic inputs values can be tested. This 15 

parametric sensitivity analysis can be easily applied, but brings limited information as it does not 16 

quantify the global uncertainty of the model outputs. Moreover, this approach does not quantify the 17 

responsibility of the uncertain parameters in the variability of the model output. This is exactly what the 18 

global sensitivity analysis (GSA) is intended and dedicated for [19]. The results of the GSA will be 19 
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useful for instance to determine which uncertainties should be reduced or better quantified to improve 1 

the system performance or robustness. It does not directly act on the system sizing. 2 

In order to integrate the uncertainties with the sizing of the system, the use of so-called Robust 3 

Optimization is needed. 4 

For both approaches applied to the sizing of renewable power energy systems, the whole set of uncertain 5 

parameters is often not taken into account and the analysis of uncertainty is classically reduced to the 6 

assessment of  time series [20,21]. In addition, models of uncertainties are often very basic [6,10]. 7 

This section presents the chosen methods to address these weaknesses. 8 

3.1. Uncertainty characterization methodology 9 
Previous efforts to assess the influence of uncertain parameters on optimization results of renewable 10 

energy systems often do not consider the whole set of uncertain parameters. However, it is crucial to 11 

take into account all parameters in the analysis, especially the techno-economic ones [22]. Thus, as the 12 

uncertainty characterization is a common step of the two approaches studied in this article (SAA and 13 

RO), the methodology to characterize the uncertainty associated to parameters is detailed in this section. 14 

The uncertainty is represented by a Probability Density Function (PDF) associated to the static uncertain 15 

input parameter value. Uncertainties associated to the time series are not considered in this paper. 16 

The characterization method is described by the following steps: 17 

1. First, a literature research is conducted to identify existing, validated or accepted uncertainty 18 

probabilistic models for the different parameters of the considered energy system. 19 

2. If no PDF was found in the literature, a uniform law is attributed to the parameter value 20 

with minimal and maximal values deduced from the literature. The uniform law is chosen 21 

to represent the equiprobability between the parameter values. 22 

3. The parameters for which only a rated value has been found out, i.e. the parameters for 23 

which neither a probability density function nor minimal/maximal values have been found 24 

out, are separated in two categories as suggested by Moret [22]:  25 

a. Parameters associated to the ageing of the component. For them, the PDF is a uniform 26 

density function, centered on the rated value, with an amplitude of 50%. 27 
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b. Parameters not associated to any ageing, for which uncertainties are modeled with a 1 

uniform density function, centered on the nominal value, with an amplitude of 5%.  2 

This characterization methodology permits systematic attribution of PDF to any static uncertain 3 

parameter required for SSA and RO. It is applied to the illustrative case study in section 4.1. 4 

3.2. Sensitivity Analysis Approach methodology 5 
The Sensitivity Analysis Approach (SSA) has two aims. The first one is to quantify the impact of 6 

parameter uncertainties on the model outputs, which is realized through uncertainty propagation. The 7 

second one is to identify the most influential uncertain parameters and to quantify the influence of one 8 

uncertain parameter on the output variance, which is realized through GSA. 9 

3.2.1 Uncertainty propagation 10 
Once each uncertain parameter is characterized, the propagation of uncertainties allows the analysis of 11 

the change in performance indicators with respect to these uncertainties. From the probability 12 

distribution associated to each uncertain parameter, the methodology consists of a Monte Carlo (MC) 13 

propagation, i.e. the sampling of the uncertain parameters (considered as independent) and the 14 

evaluation of the corresponding design performances, calculated with the Odyssey simulation software. 15 

In this work, the MC launcher provided by the Uranie software [23] is coupled to Odyssey executable. 16 

The “Uncertainty and Sensitivity” platform Uranie developed by the CEA aims to capitalize all methods 17 

and algorithms about uncertainty and sensitivity in the same framework. Uranie is based on the data 18 

analysis framework ROOT (http://root.cern.ch), an object-oriented computing system developed at 19 

CERN. 20 

The performance sampling sets that are obtained permit the calculation of statistical values on 21 

performances to better understand and assess the impacts of uncertainties on the outputs of the system. 22 

The statistical quantities (mean, variance, confidence interval…) or the representation of the 23 

performance distributions (with scatter plots or histograms) contribute to facilitate the decision-making 24 

process for designers and improve the confidence in the results. Some of these elements resulting from 25 

this coupling for the illustrative case study are investigated in section 4.2.1. 26 

3.2.2. Global Sensitivity Analysis 27 
The aim of the sensitivity analysis is to identify the most influential uncertain parameters and to quantify 28 

the influence of one uncertain parameter on the output variance. In particular, the GSA considers the 29 
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variability of the uncertain inputs on their whole variation domain simultaneously. GSA methods are 1 

mature, frequently improved [24] and are used in various domains as life cycle assessment [25] or 2 

Building Performance Simulation [26]. In the field of power system design, Moret et al. [22] and 3 

Mavromatidis et al.  [21] have used two-stage GSA to deal with a large number of uncertain parameters, 4 

for respectively national or local (i.e. at neighborhood scale) energy planning. This two-stage GSA was 5 

first proposed by Campolongo et al. [27]. 6 

First stage: factor fixing 7 
The stage of factor fixing aims to identify non-influential parameters, i.e. uncertain input parameters 8 

that have a negligible effect on the system performance output. For that, the Morris method [28] is a 9 

relevant screening and qualitative method allowing classifying the uncertain parameters in three 10 

categories: 11 

- parameters with negligible effect, 12 

- parameters with linear effect and without interaction, 13 

- parameters with nonlinear effect and/or interactions (without distinction of these two effect 14 

types).The fact that there is no distinction between the parameters with nonlinear effects and/or 15 

interactions has no consequence because the aim of this stage is only to determine the 16 

parameters with a negligible effect, in order to further focus the study on parameters with a 17 

significant effect. 18 

The Morris method generalizes One-factor-At-a-Time (OAT) protocols and lies between local and 19 

global methods [22]. The method consists in repeating 𝑟 times the OAT principle choosing randomly 20 

the starting point, building so 𝑟 trajectories and calculating for each trajectory the elementary effect (𝐸𝐸) 21 

for each uncertain entry parameter. 22 

Considering the following mathematical framework: 23 

𝑓 ∶ ℝ& → ℝ	 Equation 1 

𝑋 ↦ 𝑌 = 𝑓(𝑋)  

𝑌 is the scalar output of the model, built with 𝑑 uncertain parameters gathered in the 𝑋 vector. So,  24 
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𝑋 = 0

𝑋1
𝑋2
⋮
𝑋&

4. 1 

Denoting ∆6 the chosen variation in the trajectory of parameter𝑋6, the 𝐸𝐸 is calculating as follows: 2 

𝐸𝐸6 = 	
𝑓(𝑋1, … , 𝑋6 + ∆6, … , 𝑋&	) − 𝑓(𝑋1,… , 𝑋6,… , 𝑋&	)

∆6
 Equation 2 

The major advantage of this method is its low computational requirements. In fact, the Morris method 3 

requires 𝑁 = 𝑟 ∗ (𝑑 + 1)  code computations, with 𝑟  the number of trajectories, 𝑟 ∈ ⟦4; 10⟧	[19]. The 4 

approximation made by fixing non-influential factor can be calculated with a methodology presented by 5 

Sobol et al. [29]. 6 

Second stage: factor prioritization 7 
Factor prioritization aims to rank the most influential parameters on the output variance. A quantitative 8 

appreciation of their influence can be obtained by using variance-based methods. Sobol [30] showed 9 

that variance decomposition can be obtained, if the 𝑑 uncertain parameters 	𝑋6 are aleatory and mutually 10 

independent and is expressed as:  11 

	𝑉𝑎𝑟[𝑌] =I𝑉6(𝑌)
&

6J1

+I𝑉6K(𝑌)
6LK

+ I 𝑉6KM(𝑌)
6LKLM

+⋯+ 𝑉12…&(𝑌) Equation 3 

Where 12 

𝑉6(𝑌) = 𝑉𝑎𝑟[𝔼(𝑌|𝑋6)] 𝑉6K(𝑌) = 𝑉𝑎𝑟Q𝔼(𝑌|𝑋6𝑋K)R − 𝑉6(𝑌) − 𝑉K(𝑌) Equation 4 

The sensitivity indices are: 13 

𝑆6 =
𝑉𝑎𝑟[𝔼(𝑌|𝑋6)]
𝑉𝑎𝑟(𝑌)

=
𝑉6(𝑌)
𝑉𝑎𝑟(𝑌)

								𝑆6K =
𝑉6K(𝑌)
𝑉𝑎𝑟(𝑌)

								𝑆6KM =
𝑉6KM(𝑌)
𝑉𝑎𝑟(𝑌)

 Equation 5 

The total sensitivity indices [31] transcribe all the effects of an uncertain input on the output: 14 

𝑆TU = 𝑆6 +I𝑆6K
KV6

+ I 𝑆6KM
KV6,	MV6,KLM

+⋯ Equation 6 

These sensitivity indices, denoted as “measures of importance”, are ranged from 0 to 1 and are easily 15 

interpretable, what makes them very relevant among designers. They directly represent the part of the 16 

output variance that could be avoided if the parameter 𝑋6 could be fixed, i.e. if the parameter 𝑋6would 17 

be known with certainty. 18 
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The estimation method that is used for this study is the one proposed by Saltelli [32], where the number 1 

of model evaluations is	𝑁 = 𝑛X ∗ (𝑑 + 2), with 𝑛X the Monte Carlo sampling size. 2 

The application of the Morris method followed by the calculation of the total sensitivity indices gives 3 

to the user the absolute and relative influence of each uncertain input parameter on the variance of the 4 

outputs. As far as hybrid energy system design is concerned, it is of strong interest as it gives a better 5 

knowledge about inherently very uncertain systems. More precisely it allows to quantify information on 6 

(i) the design risks and (ii) the uncertain input parameters playing on this risk, e.g. parameters linked to 7 

non-fully mature components. The application of the GSA results are presented section 4.2.2. 8 

In this work, the presented SAA methods are applied to the static techno-economic parameters in a 9 

hybrid stand-alone power system, which has never been referenced up to now. 10 

3.3. Robust Optimization methodology 11 
While SAA evaluates the robustness of the optimal solution a posteriori, Robust Optimization takes into 12 

account the probability distributions of uncertain parameters during the optimization process itself. It 13 

permits integrating the uncertainty of a system in its design process. 14 

A lot of techniques exist to perform this. For instance, Zakariazadeh et al. [33], Pazouki and Haghifan 15 

[34] and Mavromatidis et al. [35] investigate a two-stage Stochastic Programming, by representing the 16 

uncertainties on time series with the use of scenarios. To surpass the need to provide the probability 17 

distribution functions of the underlying stochastic parameters, a robust approach has been proposed 18 

where the random parameters belong to uncertainty sets in Bertsimas and Sim [36]. In the energy field, 19 

Moret et al. [37] adapted and used it in Strategic Energy Planning. Recently, Maggioni et al. [38] 20 

compared these approaches with Stochastic Programming. However, this approach uses a different 21 

modeling of the uncertainty than the GSA methods cited before. This paper proposes then a comparison 22 

between two methodologies, taking into account that the modeling of the uncertainties should be the 23 

same in the two approaches. Another constraint of the Stochastic Programming is the necessity to 24 

formulate a linear model which cannot be applied in our black box simulation perspective. Moreover, 25 

this approach is not suitable for multi-objective optimization. 26 

To deal with multi-criteria optimization using nonlinear models, metaheuristic algorithms can be used. 27 

Besides this advantage, the metaheuristic algorithms like Genetic Algorithm (GA) or Particle Swarm 28 
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Optimization (PSO) are based on the exploration of the problem variables space including randomness 1 

during the search for optimality, limiting so the number of model evaluations. By combining these 2 

methodologies with the Monte Carlo (MC) simulation, the definition domains of uncertain parameters 3 

can be explored, performing so a Robust Optimization (RO). For instance, Maleki et al. [39] uses MC 4 

simulation and PSO algorithm to optimize an off-grid hybrid renewable system taking into account the 5 

resource and load uncertainties. The combination of the GA and the MC simulation, which is compatible 6 

with a multi-criteria optimization, offers a techno-economic optimization framework in this study. It 7 

was first proposed by Cantoni et al. [40] and further investigated by Marseguerra et al. [41]. Recently, 8 

Roberts et al. [20] used it to optimize a renewable based hybrid power system considering as uncertain 9 

the time series (renewable productions and load) and the components availability. In [20], the 10 

optimization criteria are based on the worst performance indicator (worst case observed in one sample), 11 

while in our paper one of the optimization criteria measures the variability of one performance indicator 12 

during the optimization itself. 13 

The added value of this method, in comparison to the classical genetic algorithm, is the improvement of 14 

the calculation of the optimization criteria. Instead of being direct outputs of the model, these criteria 15 

are calculated as statistical values. Figure 3 illustrates how the proposed RO works, i.e. a GA including 16 

a MC simulation (doted arrows) in comparison to a classical genetic algorithm. 17 

 18 

Figure 3: Principle of the GA including MC simulation. 19 

MC simulation is conventionally used to estimate the expected values of the model output with 20 

uncertainties in the renewable sources and load. However, any statistically calculable value can be used 21 

as an optimization criterion, depending on the objective of the user. The new optimization criteria used 22 

for this work combines the mean and the variability of each performance indicator: 23 
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𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = µ + α ∗ σ Equation 7 

where µ denotes the mean of the output indicator, σ, the standard deviation and α, a non-strictly positive 1 

factor. By varying the value of α, the user can express the weighting function that the user requires 2 

between the performance and their dispersion. If the dispersion is not a critical point at all, α can be null. 3 

The more important the dispersion is, the highest should be the value of α. 4 

With this construction of criteria, the presented RO method is suited for proposing a robust design to 5 

the uncertainties. This method gives users the opportunity to design a system considering the 6 

uncertainties while choosing the nature of their impact on the resulting performance indicators. This 7 

makes robust optimization a powerful tool as it is not always possible to reduce the uncertainty of input 8 

parameters in the field of hybrid energy system. 9 

It seems that application of RO method to a stand-alone hybrid energy system has never been referenced 10 

up to now. In this work, we have adapted this approach and applied it on the case study (see section 4.3). 11 

4. Application to the illustrative case study 12 
Neither the Sensitivity Analysis Approach nor the Robust Optimization have been applied to a stand-13 

alone hybrid power system in order to account for the static techno-economic parameter used in its 14 

modeling. In this section, the described methods are then applied to the case study presented in section 15 

2. 16 

4.1. Uncertainty characterization  17 
For most of studies on hybrid power systems, time series are the only uncertainty considered. In the 18 

present paper, we have chosen to focus on a fairly rare case study where the uncertainty sources are all 19 

the techno-economic parameters. In our case study, 24 static input techno-economic have then been 20 

identified as uncertain parameters The uncertainty characterization method presented previously in 21 

paragraph 3.1 is applied and Table 4 summarizes the uncertain parameters of the system components 22 

considered in the study, with their associated PDF. 23 

Due to the variety of the state-of-the art and the non-maturity of several system components as the 24 

hydrogen chain, the attribution of PDF is a complex exercise. However, this is an unavoidable step for 25 

the accuracy of the presented approaches [22]. 26 
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Table 4. Uncertain parameters and associated probability distributions (with Uniform (U), Beta (β) or Weibull (W) laws) for 1 
our case study. 2 

Component Parameter Unit PDF Reference 

PV 

CAPEX €/Wp β [α = 1.8; β = 6; Min = 0.374; Max = 3.165] [42] 

OPEX % CAPEX U [2; 10] CEA data* 

Replacement cost % CAPEX U [16.5; 22.5] [42] 

Replacement time h W [α = 5.3759; β = 30; Min = 0] [43] 

Electrolyser 

CAPEX €/W U [6.5; 13.1] CEA data* 

OPEX % CAPEX U [2; 10] CEA data* 

Replacement cost % CAPEX U [9; 37] [12] 

Degradation µV/Operating h U [0.4; 15] [12] 

Replacement time Operating h U [30000; 90000] [12] 

Cell voltage** - U [1.39; 1.54] CEA data* 

H2 tank 
CAPEX** €/m3 U [18,055; 28,239] CEA data* 

OPEX % CAPEX U [2; 10] CEA data* 

FC 

CAPEX €/W U [2.2; 8] CEA data* 

OPEX % CAPEX U [2; 10] CEA data* 

Replacement cost % CAPEX U [30; 36] [2] 

Efficiency** - U [0.30; 0.34] CEA data* 

Degradation %/h U [0.45; 1.35] [44] 

Replacement time Operating h U [10000; 20000] [45] 

Battery bank 

CAPEX €/Wh β [α = 1.31; β = 3.5; Min = 0.102; Max = 0.354] [46] 

OPEX % CAPEX U [2; 10] CEA data* 

Charge efficiency - β [α = 1; β = 4; Min = 0.8; Max = 0.9] [32] 

Discharge efficiency - β [α = 1; β = 4; Min = 0.8; Max = 0.9] [32] 

Self-discharge W  U[3.75E-5; 1.4E-4]  [47] 

Capacity loss Wh/h U [1.4E-5; 4.2E-5] [48] 

* CEA expert interviews 
CEA: French Alternative Energies and Atomic Energy Commission 
CAPEX: CAPital EXpenditure 
OPEX: OPerating EXpenditure 

 3 
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4.2. Application of Sensitivity Analysis Approach  1 
The SAA evaluates the robustness of the optimal solution a posteriori. Thus, the different designs 2 

investigated with this approach (Case 0, Case 01, Case 05 and Case 1) arise from the NRO. In the case 3 

study, the output performance indicators are the LEC and the UL. Uncertainty propagation then 4 

evaluates their robustness and GSA identifies the most influential uncertain parameters on their variance. 5 

4.2.1 Uncertainty propagation 6 
For each design (Case 0, Case 01, Case 05 and Case 1) described in section 2, the simulation is iterated 7 

for a 300 Monte Carlo history. 8 

 9 

Figure 4: Performance indicators LEC and UL for the four selected design configurations with propagation of uncertainties. 10 

Figure 4 shows the resulting performance indicators LEC and UL with the Pareto front resulting from 11 

the NRO. The scatterplots show that considered uncertain parameters have a strong impact on the 12 

performance indicators. Several realizations have better performances (i.e. lower LEC and UL) but a lot 13 

of configurations have lower performances (i.e. higher LEC and UL) than expected. Depending on the 14 

considered design, the scatter plots do not have the same shape, as well as the histograms of the Figure 15 

5. 16 
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(a) (b) 

Figure 5: Distribution after uncertainty propagation of the performance indicators UL in % (a) and LEC in €/MWh (b). 1 

The histograms of the performance indicators UL and LEC show the repartitions of the values which 2 

differ between the cases 0 and 05. (The designs of the cases 01 and 1 have similar shapes than 3 

respectively 0 and 05). The reference intervals of the LEC and the UL values are identified in Figure 5 4 

with a red star. The reference value is not necessary situated in the interval with the maximal probability 5 

to be represented (e.g. in Case 0 for UL). It shows that taking a decision with only the reference value 6 

is a very risky choice. 7 

For an optimal analysis of the results, it is interesting to highlight the confidence interval1. The 90% 8 

confidence interval for the UL is four times narrower for the cases 0 (and 01) than for the cases 05 (and 9 

1). It means that case 0 will be four times more robust to uncertainties than other cases. This can be 10 

explained by the fact that these designs include oversized components for rated conditions. In cases 11 

where the uncertainties reduce the performances of the system, the oversizing limits the created 12 

unsatisfied load. 13 

By contrast, the width of the 90% confidence interval for the LEC is smaller with the augmentation of 14 

the associated UL, i.e. the case 0 has the biggest confidence interval for the LEC and the case 1 the 15 

smallest one. This means that the design of the case 0 is the most robust to uncertainties, compared with 16 

the other designs. This can be explained with the fact that in this study, the LEC is principally linked to 17 

the investment cost of the system, which is bigger for oversized designs (cases 0 and 01) than for the 18 

                                                   
1 The 90% confidence interval of a variable represents the interval in which the value of a variable has 90% of 
chance to be situated. 
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other designs. So, the uncertainties on economic parameters are mostly influential on the more expensive 1 

designs, i.e. the designs of the cases 0 and 01. 2 

The graphical representation and statistical quantities that can be calculated thanks to uncertainty 3 

propagation are then relevant and useful tools for the decision-maker.  4 

4.2.2 Global Sensitivity Analysis  5 
To go further in the analysis of the optimal configuration obtained with NRO, the GSA is also a powerful 6 

tool, applied in this paper to the design cases denoted 0, 01, 05 and 1. It quantifies (qualitatively and 7 

quantitatively) the responsibility of the uncertainty of one uncertain inputs in the variability of the 8 

performances indicators. This indicator is very useful in order to drive further investigation to gather 9 

information on the most uncertain input parameters and to make effort to reduce their dispersions. 10 

First stage: factor fixing 11 
The Morris method, applied to each design case, allows to select among the uncertain parameters the 12 

one with a non-negligible influence on the output performance indicators (UL and LEC). In Table 5 the 13 

notation “+” means that the uncertain parameter has a non-negligible influence on the output, based on 14 

the Morris method, realizing the first stage (i.e. factor fixing) of the Global Sensitivity Analysis (GSA). 15 

Therefore, this uncertain parameter is kept for the rest of the second stage of the GSA (i.e. factor 16 

prioritization). On the contrary, the notation “-” means that the uncertain parameter has a negligible 17 

influence on the output. Therefore, this uncertain parameter is not kept for the rest of the second stage 18 

of the GSA. 19 

We can observe that the eliminated parameters are not the same for LEC and UL indicators. In this work, 20 

the UL is uncorrelated from the economic parameters, so the Morris method naturally eliminates the 21 

uncertain economic parameters for the calculation of the sensitivity indices for the UL. On the contrary, 22 

the LEC is not influenced only by economic parameters, since it depends also on the electricity 23 

production. For the sensitivity indices calculation related to the LEC, the most influential uncertain 24 

technical parameters are not eliminated by the Morris method. 25 

  26 
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Table 5. Morris method results on the case study. 1 

Component Parameter LEC UL 

PV 

CAPEX + - 

OPEX + - 

Replacement cost - - 

Replacement time - - 

Electrolyzer 

CAPEX + - 

OPEX + - 

Replacement cost - - 

Degradation - + 

Replacement time + - 

Cell voltage - + 

H2 tank 
CAPEX + - 

OPEX + - 

Component Parameter LEC UL 

FC 

CAPEX + - 

OPEX + - 

Replacement cost - - 

Efficiency - + 

Degradation - + 

Replacement time - - 

Battery bank 

CAPEX + - 

OPEX + - 

Charge efficiency + + 

Discharge efficiency + + 

Self-discharge - + 

Capacity loss + + 

2 
Second stage: factor prioritization 3 
The normalized total sensitivity indices shown in Figure 6 indicate the ratio of the output variance that 4 

is explained by an uncertain parameter and its interaction effects with other uncertain parameters. 5 

Analysis of Unmet load 6 

Considering the unmet load variance, the sensitivity indices represented in Figure 6 indicate that the 7 

most influential uncertain parameter, whatever the case, is the capacity loss of the battery, followed by 8 

its discharge efficiency. The importance of these two parameters, both related to the battery bank, shows 9 

the major role played by this component in the load satisfaction. 10 

The discharge efficiency is much more influential than the charge efficiency because, whatever the 11 

considered case, the PV farm is oversized and therefore the solar production is in excess, limiting the 12 

role of the charge efficiency. This last parameter takes a bigger importance only in cases 05 and 1, 13 

(responsibility of respectively 3 and 5% of the unmet load variance), where the PV sizing is smaller 14 

(Table 3). 15 
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  1 

(a)       (b) 2 

Figure 6: Normalized Sobol indices (total order) calculated for the four selected designs,  3 
related to the UL (a) and to the LEC (b). 4 

The obvious ascendancy of the battery on the hydrogen chain is due to their respective sizing and 5 

associated strategy of energy management. Table 6 illustrates that the hydrogen chain (i.e. the FC) 6 

supplies a negligible electric power, even in the case 0, in which the FC has the biggest sizing (Table 7 

3), i.e. for which the hydrogen chain is the most favorable. 8 

Table 6. Levelized total powers supplied by the hydrogen chain and the battery bank for optimal selected designs. 9 

 Electrical Storage Bank DISCHARGE Power (MWh) Fuel Cell Stack Power (MWh) 

Case 0 213.92 (98%)2 4.09 (2%) 

Case 01 210.97 (99%) 1.84 (1%) 

Case 05 210.78 (99%) 1.45 (1%) 

Case 1 210.89 (99%) 1.33 (1%) 

 10 

This identification helps reconsider the hybrid energy system, recognise potential weaknesses that could 11 

have been neglected (e.g. battery capacity loss) or differentiate parameter with a priori similar use (e.g. 12 

charge and discharge efficiency).  13 

                                                   
2 The percentages correspond to share of supplied power provided by the hydrogen chain and the battery bank to 
satisfy the load. 
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Analysis of Levelized Electricity Cost 1 
The Sobol sensitivity indices indicate that whatever the case, the most influential uncertain parameter 2 

on the LEC variance is the PV CAPEX, far ahead of the PV OPEX parameter and to a lower degree the 3 

CAPEX of the battery bank. This information is crucial because it helps understanding and managing 4 

the LEC variance, which a central decision-tool. 5 

The hydrogen chain plays a significant role in the LEC variance only in the case 0, i.e. with its largest 6 

design. Indeed, 26% of the total cost corresponds to the chain and especially 19% for the FC (Figure 7). 7 

 8 

Figure 7: Cost distributions for the four selected designs. 9 

Moreover, if the Sobol index of a given parameter is linked to the cost weight of the corresponding 10 

component (studied in section 2), there is no direct proportional link because of the influence of the 11 

probability distribution of the input parameters values. For instance, the battery bank that plays an 12 

important role in the system cost (between 19% and 26%) has a relatively small impact (inferior than 13 

8%) on the LEC variance. 14 

4.3. Robust Optimization application 15 
The application of the RO to the case study aims to minimize the LEC and the UL, but also the variability 16 

of the UL. In other words, the goal is to get a more reliable value for UL, with the risk of getting a bigger 17 

value of this indicator but also a bigger and eventually more volatile LEC value. This illustrates the 18 

potential choice for the user when designing the system, to get more or less reliability for a bigger or 19 

smaller risk of unsatisfying load. 20 

RO has the same optimization variables and optimization borders than NRO i.e. the component sizes 21 

and their optimization borders are summarized in Table 2. 22 
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RO optimization criteria to minimize are µfgh  (α = 0) and µif + α ∗ σif (α = 2.92), calculated thanks 1 

to MC simulation. The α value of 2.92 has been calculated so that the mean value and the standard 2 

deviation have the same weight (see Equation 8). For that, the mean values (𝜇6) and the standard 3 

deviations (σ6) of the UL have been calculated for each selected design point (cases 0, 01, 05 and 1) 4 

after the uncertainty propagation (NRO).The coefficient α is then adapted in order to balance the 5 

Equation 8: 6 

I𝜇6

k

1

= α ∗Iσ6

k

1

 Equation 8 

The technical characteristics of the performed robust optimization are given in the Figure 8. This 7 

optimization has been performed on 34 threads on an Intel(R) Core(TM) i7-7700 CPU processor. 8 

 9 
Figure 8: Application of the robust optimization principle to the case study. 10 

The RO results take the shape of a Pareto front whose points correspond to pairs of optimization criteria 11 

µfgh  (Equation 7 with α = 0) and µif + α ∗ σif (Equation 7 with α = 2.92) for optimized design of the 12 

system. For each of these designs, the system is re-evaluated with the set of nominal values for the 13 

uncertain parameters, in order to obtain the performance indicators UL and LEC for the robust-14 

optimized designs. The nominal values of the uncertain parameters are values used in the NRO of the 15 

classical approach. Figure 9 shows the resulting UL and LEC pairs (RO optimal designs), on the same 16 

chart than the Pareto front resulting from the NRO. It also shows that the performances are comparable 17 

but the associated designs obtained with the NRO and with the RO change, in other words that different 18 
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designs lead to the same performance indicators, but not necessary with the same level of robustness. 1 

The LEC indicators arisen from RO are higher than LEC from NRO for high autonomous manner, i.e. 2 

when UL is close to 0. 3 

 4 

Figure 9: Performance indicators (LEC and UL) for optimal designs resulting from RO and NRO. 5 

To compare the results, the designs resulting from RO with similar UL performance than the NRO 6 

reference cases are selected (triangles and squares in Figure 9). The designs corresponding to the UL 7 

0%, 0.1%, 0.5% and 1% are detailed in Table 7. 8 

Table 7. Selected optimal designs and their performance indicators LEC and UL for RO and NRO. 9 

UL (selection performance indicator) 0% 0,1% 0,5% 1% 

Optimization NRO RO NRO RO NRO RO NRO RO 

Number of Modules PV 735 1081 735 726 660 637 600 586 

Number of Battery Units 146 150 145 150 135 150 138 150 

Number of electrolyze cells 8 5 5 5 5 6 5 5 

Fuel Cell Stack Max Power (W) 43500 42306 10500 9866 5000 2779 5000 2618 

Volume of pressure tank (m3) 31 25 16 19 3.5 3 3.5 8 

Resulting LEC (€/MWh) 404.9  504.2 336.1 337.1 295.5 296.6 280.2 281.8 

The main differences are related to the sizes of the PV farm and the battery bank. In fact, to achieve the 10 

same UL, except for the case 0, the robust optimization proposes designs with a smaller number of PV 11 

modules than those resulting from the NRO. The RO always maximizes the number of battery units, 12 

reaching the upper limit defined at the beginning of the optimization, which is never the case of the 13 

NRO. The sizing of each component of the hydrogen chain resulting from the RO, does not have a clear 14 

different conclusion with the NRO. This means that for a better reliability of the UL, the best trade-off 15 
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consists in increasing the battery size and not the hydrogen chain or the PV farm. The oversizing to limit 1 

the impact of uncertainties is therefore well quantified for the designer. 2 

To evaluate if the proposed designs are more robust than the ones arising from the classical optimization, 3 

a new uncertainty propagation is performed. The mean values and the standard deviations of the LEC 4 

and UL indicators are then calculated and compared (see Table 8) with the corresponding ones resulting 5 

from the NRO as: 6 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛	(%) =
𝜎op − 𝜎qop

𝜎qop
 7 

Table 8. Comparison of the performance indicators (mean values and standard deviations) between RO and NRO. 8 

  UL LEC 

Mean 

Case 0 -95% +22% 

Case 01 -10% NE 

Case 05 -14% NE 

Case 1 -4% NE 

Standard deviation 

Case 0 -95% +39% 

Case 01 -38% -1% 

Case 05 -56% -4% 

Case 1 -31% -2% 

NE: Negligible Evolution, i.e. < 1% 9 

This table confirms that robust optimization reduces the mean and the variance of the output indicators, 10 

without changing the probability distribution of the uncertain input parameters. In Table 8, the UL 11 

variance is reduced for any considered UL level (cases 0, 01, 05 and 1), as expected because it was part 12 

of its objective functions. 13 

Additionally, this reduction has consequences on the other statistical values, as for the case 0. In fact, 14 

the increase of robustness of the UL has a strong impact on the LEC whose mean value and standard 15 

deviation increase. Indeed, to increase the robustness of the UL and reach the autonomy, the sizes of the 16 

components (PV installation and battery bank) are increased. As a first consequence, the LEC increases 17 

– which can be observed by the growth of its mean value. As a second consequence the LEC variance 18 

increases, because each variation on economic parameters has a stronger impact. However, this 19 

evolution is specific to the design obtained to provide a complete satisfaction of the load. For any other 20 



27 
 

design, the performances of the robust design have similar mean value and a lower variability. Focusing 1 

to the case 1, illustrated on Figure 10, with a small increase of the LEC, the load satisfaction and its 2 

robustness can be improved as µUL and σUL decrease. 3 

 4 

Figure 10 : Comparison for the case 1 of mean value and standard deviation of UL and LEC  5 
between the robust and the non-robust designs. 6 

As illustrated on Figure 10, RO succeeds in designing a system taking into account the uncertainties, 7 

while limiting their impact on the system performance indicators (UL and LEC).  8 

RO application to the case study permits also to propose targeted oversizing (mainly about the battery 9 

size), leading to more robust design.  10 

5. Discussion: Respective contributions of the two approaches 11 
Finally, SAA and RO both include the modeling of the system and rely on the uncertainty quantification, 12 

which cannot be avoided. These approaches bring results of heterogeneous nature: namely SAA 13 

proposes statistical values on output results and responsibility shares of uncertain input parameters in 14 

their variability, while RO furnish set of optimization variables. They provide complementary 15 

information for decision-making for robust design of remote microgrid. 16 

However, SAA has no feedback on the optimization process. It mainly brings information on the 17 

following points of interest: (i) what is the impact of the uncertain parameters on the performance 18 

indicators of one system? (ii) which of these uncertain parameters are the most relevant to be better 19 

known to reduce this impact?  20 
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First, the uncertainty propagation step of the SAA allows the user to estimate the variability of the 1 

performance indicators with their ranges and distributions. In comparison, the classical approach, i.e. 2 

the consideration of the parameters uncertainty only taking into account their range of variations (i.e. 3 

without proper uncertainty quantification step) can provide only the variation ranges of the performance 4 

indicators. 5 

Secondly, GSA allows identification of the most influential uncertain parameters on the performance 6 

indicators of the system. In our case study, it turns out that that they are the battery capacity loss for the 7 

UL and the PV CAPEX for the LEC. Therefore, if we propose to reduce by 50% the uncertainty of these 8 

two parameters, the variance of the UL and the LEC should be consequently reduced after a new 9 

uncertainty propagation on the same system designs. 10 

The theoretical uncertainty reduction is the division of the probability law support intervals by two but 11 

keeping the same shape of distribution and the same mean value. The resulting new PDF are expressed 12 

in Table 9. 13 

Table 9. Changes of PDF of the most influential parameters identified by the sensitivity analysis. 14 

Uncertain parameter Initial PDF New PDF 

Battery capacity loss U [1.4E-5; 4.2E-5] U [2.1E-5; 3.5E-5] 

PV CAPEX β [α = 1.8; β = 6; Min = 0.374; Max = 3.165] β [α = 1.8; β = 6; Min = 0.687; Max = 2.0825] 

 15 

To evaluate the impact of the PDF modification, a new uncertainty propagation is performed. The 16 

standard deviations are calculated and compared (see Table 10) with the corresponding ones resulting 17 

from the initial uncertainty propagation with the same formula than in Table 8. 18 

Table 10. Comparison of standard deviations of performance indicators (LEC and UL) changing the laws of two parameters 19 
identified by the sensitivity analysis. 20 

  UL LEC 

Standard deviation 

Case 0 -67.2% -38.9% 

Case 01 -67.8% -38.4% 

Case 05 -54.6% -37.6% 

Case 1 -41.3% -39.6% 

 21 
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For UL and LEC, the variability is much reduced playing on only the PDF of two uncertain parameters. 1 

For the UL, the reduction of the standard deviation evolves like the Sobol sensitivity index representative 2 

for the battery capacity loss: the impact of the PDF change is the biggest for the design where the Sobol 3 

index value is the biggest (case 01). 4 

This uncertainty propagation shows that the sensitivity analysis helped identifying the key parameters 5 

that the user has to know more accurately in order to reduce the variability of the output. In the case 6 

study, the standard deviations of performance indicator are reduced from nearly 40% for the LEC and 7 

around a half for the UL, by reducing the uncertainty on only two uncertain parameters. In practice, such 8 

an information can be very profitable in order to drive further investigation to gather information on the 9 

most uncertain input parameters and to make effort to reduce their dispersions. 10 

RO is not suited for the same use: the SAA indicates to the user on which uncertain parameters the focus 11 

would be the most interesting, whereas the RO has a practical feedback on the design optimization 12 

process. This second approach duly notes that the knowing level cannot always be improved and favor 13 

more reliable component. As illustrated in section 4.3, RO permits to limit the uncertainty on a targeted 14 

model output. 15 

Due to their different natures, the two approaches meet different difficulties and limitations. 16 

SAA brings a better knowledge on the uncertainty impact and allows us to identify the key parameters, 17 

but it has no practical impact on the system optimization results. The most practical development of this 18 

method is then to improve the uncertainty quantification. This improvement is not always possible, in 19 

particular when dealing with non-fully mature components, as it is often the case in modern hybrid 20 

energy systems with new sustainable technologies. 21 

The main limitation of RO is that it requires significant computational resources and/or time. In fact 34 22 

CPU-threads has allowed us to perform the 618,000 model evaluations needed in RO in 33 hours in this 23 

case study. This important number of model evaluations is due to GA parametrization and convergence 24 

speed. GA parametrization population is settled by the population size of the GA and the sampling size 25 

of the MC simulation. Convergence speed is fixed by the number of generations needed to converge, 26 

which is not decided by the user but imposed by the algorithm. For the same optimization problem, this 27 
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number of generations is much more important for RO than for NRO. So, as Roberts et al. [20] remarked, 1 

when the computational resources or time are limited, other approaches can be better adapted. 2 

Another limitation of RO is that it does not necessary reduce the impact of the uncertainty on all the 3 

performance indicators of the system but it orients the kind of impact of the uncertainty on the targeted 4 

ones. In this work, the variability of UL is reduced, at the price to increase slightly the LEC. It means 5 

that the user must accept to let other outputs be deteriorated in order to improve the robustness of some 6 

particular ones. This is why in this kind of approach, uncertainty propagation is still required, not only 7 

to measure the improvements of the design, but also to estimate potential losses created by RO. 8 

6. Conclusion and perspectives 9 
This work shows how techno-economic uncertain parameters can be taken into account for designing 10 

remote power systems using two approaches: Sensitivity Analysis Approach and Robust Optimization. 11 

To take into account these uncertainties in a decision-making process, these complementary approaches 12 

are implemented and applied, considering economic and technical parameters of the model as sources 13 

of uncertainty. 14 

 Both approaches start with the inventory of all the techno-economic uncertain parameters of the system. 15 

The next shared step to the two approaches is the uncertainty quantification which consists of the 16 

attribution of a probability distribution function to each uncertain parameter value. Both also include the 17 

modeling of the system, which has been considered here as available thanks to the Odyssey software. 18 

The sensitivity analysis approach then uses the result of the non-robust optimization; from the selected 19 

designs picked out from the Pareto front. The uncertainties are propagated and a two-stage GSA is 20 

performed. Both these steps are implemented through the coupling between Odyssey and Uranie 21 

software. This approach brings information on the impact of the uncertainties on the output of the system 22 

results and identifies the most influential uncertain parameters in the output dispersion. As for RO, 23 

performed thanks to the combination of a GA and MC simulations, this second approach permits to 24 

orient the kind of impact of the uncertainty to improve the robustness of chosen performance indicators. 25 

The difference of nature of these two approaches constitute their complementary. In fact, they bring 26 

different type of results for different needs of the user: the sensitivity analysis approach performed after 27 

the optimization gives key information on system parameters that can be used in RO. 28 
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The applicability of these existing methods is demonstrated on our case study. The two compared 1 

approaches are illustrated on the design optimization of the electrical feeding of a stand-alone 2 

application located in Nigeria, using PV as the main power source. The GSA teaches us that the most 3 

influential uncertain parameter in the UL dispersion is the battery capacity loss and the most influential 4 

uncertain parameter in the LEC dispersion is the PV CAPEX. The robust optimization is carried out 5 

with the objectives to reduce LEC and UL globally and the dispersion of UL. The obtained 6 

configurations are evaluated through uncertainty propagation: it reveals the ability of RO to find 7 

optimized configurations responding to targeted robustness criteria. The presented approaches can be 8 

applied to any other energy system design, in order to improve the decision-making regarding to the 9 

uncertainty impact on it.  10 

Regarding future work, several perspectives are considered. First, the GSA and RO could be used 11 

including uncertainties on the renewable production resource or energy demand patterns. Next, the 12 

contribution of SAA is very useful to reduce the security margins implied by RO, which are expensive. 13 

It would be an interesting further work to quantify the avoided over-design of capacities thanks to GSA-14 

targeted uncertainty-source reduction. Finally, the optimization of the operation of the system, 15 

complementary to the optimization of its design is also a considered improvement of this work.  16 
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