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The Riemannian product M1(c1)×M2(c2), where Mi(ci) denotes the 2-dimensional space form of constant sectional curvature ci ∈ R, has two different Spin c structures carrying each a parallel spinor. The restriction of these two parallel spinor fields to a 3-dimensional hypersurface M characterizes the isometric immersion of M into M1(c1) × M2(c2). As an application, we prove that totally umbilical hypersurfaces of M1(c1) × M1(c1) and totally umbilical hypersurfaces of M1(c1) × M2(c2) (c1 = c2) having a local structure product, are of constant mean curvature.

Introduction

Over the past years, the real spinorial (Spin geometry) and the complex spinorial (Spin c geometry) approaches have been used fruitfully to characterize ( [START_REF] Th | On the spinor representation of surfaces in Euclidean 3-space[END_REF][START_REF] Morel | Surfaces in S 3 and H 3 via spinors[END_REF][START_REF] Roth | Spinorial characterization of surfaces into 3-dimensional homogeneous manifolds[END_REF][START_REF] Bayard | Spinorial Representation of submanifolds in Riemannian space forms[END_REF][START_REF] Bayard | Spinorial Representation of submanifolds in metric Lie groups[END_REF][START_REF] Bayard | Spinorial representation of surfaces in fourdimensional Space Forms[END_REF][START_REF] Lawn | Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors[END_REF][START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF][START_REF] Nakad | Complex and Lagrangian surfaces of the complex projective space via Kählerian Killing Spin c spinors[END_REF] and references therein) submanifolds of some special ambient manifolds. These approaches allowed also to study the geometry and topology of submanifolds and solve naturally some extrinsic problems. For instance, elementary proofs of the Alexandrov theorem in the Euclidean space [START_REF] Hijazi | Dirac operator on embedded hypersurfaces[END_REF], in the hyperbolic space [START_REF] Hijazi | Dirac operator on hypersurfaces in negatively curved manifolds[END_REF] and in the Minkowski spacetime [START_REF] Hijazi | Dirac operator on hypersurfaces in negatively curved manifolds[END_REF] were obtained (see also [START_REF] Hijazi | A spinorial characterization of Hyperspheres[END_REF][START_REF] Hijazi | A holographic principle for the existence of parallel spinor fields and an inequality of Shi-Tam type[END_REF]). In 2006, O. Hijazi, S. Montiel and F. Urbano [START_REF] Hijazi | Spin c geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds[END_REF] constructed on Kähler-Einstein manifolds with positive scalar curvature, a Spin c structure carrying Kählerian Killing spinors. The restriction of these spinors to minimal Lagrangian submanifolds provides topological and geometric restrictions on these submanifolds. The authors [START_REF] Nakad | Complex and Lagrangian surfaces of the complex projective space via Kählerian Killing Spin c spinors[END_REF][START_REF] Nakad | The Spin c Dirac operator on hypersurfaces and applications[END_REF][START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF], and by restricting Spin c spinors, gave an elementary Spin c proof for a Lawson type correspondence between constant mean curvature surfaces of 3-dimensional homogeneous manifolds with 4-dimensional isometry group [START_REF] Daniel | Isometric immersions into 3-dimensional homogeneous manifolds[END_REF]. Furthermore, they gave necessary and sufficient geometric conditions to immerse a 3-dimensional Sasaki manifold and a complex/Lagrangian surface into the complex projective space of complex dimension 2.

The main idea behind characterizing hypersurfaces of Spin or Spin c manifolds is the restriction to the hypersurface of a special spinor field (parallel, real Killing, imaginary Killing, Kählerian Killing...). For example, the restriction φ of a parallel spinor field on a Riemannian Spin or Spin c manifold to an oriented hypersurface M is a solution of the generalized Killing equation

∇ X φ = - 1 2 γ(IIX)φ, (1) 
where γ and ∇ are respectively the Clifford multiplication and the Spin or Spin c connection on M , the tensor II is the Weingarten tensor of the immersion and X any vector field on M . Conversely and in the two-dimensional case, the existence of a generalized Killing Spin spinor field allows to immerse M in R 3 [START_REF] Th | On the spinor representation of surfaces in Euclidean 3-space[END_REF]. This characterization has been extended to surfaces of other 3-dimensonal (pseudo-) Riemannian manifolds [START_REF] Morel | Surfaces in S 3 and H 3 via spinors[END_REF][START_REF] Roth | Spinorial characterization of surfaces into 3-dimensional homogeneous manifolds[END_REF][START_REF] Lawn | Spinorial characterization of surfaces in pseudo-Riemannian space forms[END_REF]. Moreover, the existence of a generalized Killing Spin c spinor on a surface M allows to immerse M in the 3-dimensional homogeneous manifolds with 4-dimensional isometry group [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]. All these previous results are the geometrical invariant versions of previous works on the spinorial Weierstrass representation by R. Kusner and N. Schmidt, B. Konoplechenko, I.

Taimanov and many others (see [START_REF] Konopelchenko | Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy[END_REF][START_REF] Kusner | The spinor representation of surfaces in space[END_REF][START_REF] Taimanov | Surfaces of revolution in terms of solitons[END_REF]).

In the three dimensional case, having a generalized Killing Spin or Spin c spinor is not sufficient to characterize the immersion of M in the desired 4-dimensional manifold. The problem is that unlike in the 2-dimensional case, the spinor bundle of a 3-dimensional manifold does not decompose into subbundles of positive and negative half-spinors. In fact, Morel [START_REF] Morel | Surfaces in S 3 and H 3 via spinors[END_REF] proved that the existence of a Codazzi generalized Killing Spin spinor on a 3-dimensional manifold M is equivalent to immerse M in R 4 . But it was proved in [START_REF] Bayard | Spinorial representation of surfaces in fourdimensional Space Forms[END_REF][START_REF] Roth | Spinors and isometric immersions of surfaces into 4-dimensional products[END_REF] that restricting a Spin structure with a spinor field having non-vanishing positive and negative parts is required to get the integrability condition of an immersion in the desired 4-dimensional target space. Hence, Morel's result has been reformulated for hypersurfaces of R 4 [START_REF] Lawn | Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors[END_REF] because R 4 has a Spin structure with positive and negative parallel spinors. The restriction of both spinors to M gives two generalized Killing spinors which, conversely, allow to characterize the immersion of M in R 4 . This result has been extended to other 4-dimensional space forms and product spaces, that is S 4 , H 4 , S 3 × R and H 3 × R [START_REF] Lawn | Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors[END_REF]. In the Spin c setting, the existence of a Codazzi generalized Killing Spin c spinor on a 3-dimensional manifold M is equivalent to immerse M in the 2-dimensional complex space form M 2 (k) of constant holomorphic sectional curvature 4k [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF]. However here, the condition "Codazzi" cannot be dropped as in the Spin case, because M 2 (k) has only two different Spin c structures (the canonical and the anti-canonical Spin c structures) carrying each one parallel spinor lying in the positive half-part of the corresponding Spin c bundles.

The aim of the present article is to use Spin c geometry to characterize hypersurfaces of the Riemannian product M 1 (c 1 ) × M 2 (c 2 ), where M i (c i ) denotes the 2-dimensional space form of constant sectional curvature c i ∈ R. The key starting point is that this product has two different Spin c structures carrying each a non-vanishing parallel spinor. The first structure S 1 is the product of the canonical Spin c structure on M 1 (c 1 ) with the canonical Spin c structure on M 2 (c 2 ) and it has a non-vanishing parallel spinor lying in the positive half-part of the Spin c bundle. The second structure S 2 is the product of the canonical Spin c structure on M 1 (c 1 ) with the anti-canonical Spin c structure on M 2 (c 2 ) and it has a non-vanishing parallel spinor lying in the negative half-part of the Spin c bundle. Having said that one could expect that restricting both structures S 1 and S 2 , and hence both parallel spinors, to a hypersurface M of M 1 (c 1 ) × M 2 (c 2 ) could allow to characterize the immersion.

We denote by ∇ j , γ j and iΩ j respectively the Clifford multiplication, the Spin c connection and the curvature of the auxiliary line bundle on the hypersurface M obtained after restricting the Spin c structure S j on M 1 (c 1 )×M 2 (c 2 ) (here j ∈ {1, 2}). The main theorem of the paper is: Theorem 1. Let M 3 , g = (., .) be a simply connected oriented Riemannian manifold endowed with an almost contact metric structure (X, ξ, η). Let E be a field of symmetric endomorphisms on M , h a function on M and V a vector field on M . Then, the following statements are equivalent: by J = X+η(•)ν, where ν is the unit normal vector of the immersion and the product structure is given by F = f + (V, •)ν for some endomorphism f on M .

2. There exists two Spin c structures on M carrying each one a non-trivial spinor ϕ 1 and ϕ 2 satisfying

∇ 1 X ϕ 1 = - 1 2 γ 1 (EX)ϕ 1 and γ 1 (ξ)ϕ 1 = -iϕ 1 . ∇ 2 X ϕ 2 = 1 2 γ 2 (EX)ϕ 2 and γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 .
The curvature 2-form iΩ j of the connection on the auxiliary bundle associated with each Spin c structure is given by (j ∈ {1, 2})

       Ω j (e 1 , e 2 ) = 1 2 (-1) j-1 c 1 (h -1) -1 2 c 2 (h + 1), Ω j (e 1 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 1 , V ), Ω j (e 2 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 2 , V ),
in the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}.

Again, these two Spin c structures (resp. two generalized Killing Spin c spinors) on M comes from the restriction of the two Spin c structures S 1 and S 2 (resp. the two parallel spinors) on M 1 (c 1 ) × M 2 (c 2 ). Needless to say, when c 1 = c 2 = 0, these two Spin c structures on M coincide and it is in fact the Spin structure coming from the restriction of the unique Spin structure on R 4 having positive and negative parallel spinors. When c 1 = 0 or c 2 = 0, the two structures in M are different because they are the restriction of the two different structures S 1 and S 2 .

As an application of Theorem 1, we prove that totally umbilical hypersurfaces of M 1 (c 1 )× M 1 (c 1 ) and totally umbilical hypersurfaces of M 1 (c 1 ) × M 2 (c 2 ) (c 1 = c 2 ) having a local structure product are of constant mean curvature (see Proposition 5.2 and Proposition 5.3).

Preliminaries

In this section we briefly introduce basic facts about Spin c geometry of hypersurfaces (see [START_REF] Lawson | Spin Geometry[END_REF][START_REF] Montiel | Using spinors to study submanifolds[END_REF][START_REF] Th | Dirac operator's in Riemannian geometry[END_REF][START_REF] Nakad | Lower bounds for the eigenvalues of the Dirac operator on Spin c manifolds[END_REF][START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF]). Then we describe hypersurfaces of the Riemannian product M 1 (c 1 ) × M 2 (c 2 ) [START_REF] Kowalczyk | Isometric immersions into products of space forms[END_REF][START_REF] De Lira | A Bonnet theorem for isometric immersions into products of space forms[END_REF], where M i (c i ) denotes the 2-dimensional space form of constant sectional curvature c i ∈ R.

Hypersurfaces and induced Spin c structures

Spin c structures on manifolds: Let (N n+1 , g) be a Riemannian Spin c manifold of dimension n + 1 ≥ 2 without boundary. On such a manifold, we have a Hermitian complex vector bundle ΣN endowed with a natural scalar product (., .) and with a connection ∇ N which parallelizes the metric. This complex vector bundle, called the Spin c bundle, is endowed with a Clifford multiplication denoted by " • ", • : T N → End C (ΣN ), such that at every point x ∈ N , defines an irreducible representation of the corresponding Clifford algebra. Hence, the complex rank of ΣN is 2

[ n+1 2 ]
. Given a Spin c structure on (N n+1 , g), one can prove that the determinant line bundle det(ΣN ) has a root of index 2 [ n+1 2 ]-1 . We denote by L N this root line bundle over N and call it the auxiliary line bundle associated with the Spin c structure. Locally, a Spin structure always exists. We denote by Σ N the (possibly globally non-existent) spinor bundle. Moreover, the square root of the auxiliary line bundle L N always exists locally. But, ΣN = Σ N ⊗ (L N ) 1 2 exists globally. This essentially means that, while the spinor bundle and (L N ) 1 2 may not exist globally, their tensor product (the Spin c bundle) is defined globally. Thus, the connection ∇ N on ΣN is the twisted connection of the one on the spinor bundle (coming from the Levi-Civita connection, also denoted by ∇ N ) and a fixed connection on L N .

We may now define the Dirac operator D N acting on the space of smooth sections of ΣN by the composition of the metric connection and the Clifford multiplication. In local coordinates this reads as

D N = n+1 j=1 e j • ∇ N ej ,
where {e 1 , . . . , e n+1 } is a local oriented orthonormal tangent frame. It is a first order elliptic operator, formally self-adjoint with respect to the L 2 -scalar product and satisfies, for any spinor field ψ, the Schrödinger-Lichnerowicz formula

(D N ) 2 ψ = (∇ N ) * ∇ N ψ + 1 4 Sψ + i 2 Ω N • ψ, ( 2 
)
where S is the scalar curvature of N , (∇ N ) * is the adjoint of ∇ N with respect to the L 2 scalar product, iΩ N is the curvature of the fixed connection on the auxiliary line bundle L N (Ω N is a real 2-form on N ) and Ω N • is the extension of the Clifford multiplication to differential forms. For any X ∈ Γ(T N ), the Ricci identity is given by

n+1 k=1 e k • R N (e k , X)ψ = 1 2 Ric N (X) • ψ - i 2 (X Ω N ) • ψ, (3) 
where Ric N is the Ricci curvature of (N n+1 , g) and R N is the curvature tensor of the spinorial connection ∇ N . In odd dimension, the volume form ω C := i [ n+2 2 ] e 1 • ... • e n+1 acts on ΣN as the identity, i.e., ω C • ψ = ψ for any spinor ψ ∈ Γ(ΣN ). Besides, in even dimension, we have ω 2 C = 1. We denote by Σ ± N the eigenbundles corresponding to the eigenvalues ±1, hence ΣN = Σ + N ⊕ Σ -N and a spinor field ψ can be written ψ = ψ + + ψ -. The conjugate ψ of ψ is defined by ψ = ψ + -ψ -.

Every Spin manifold has a trivial Spin c structure [START_REF] Th | Dirac operator's in Riemannian geometry[END_REF]. In fact, we choose the trivial line bundle with the trivial connection whose curvature is zero. Also every Kähler manifold (N, J, g) of complex dimension m (n + 1 = 2m) has a canonical Spin c structure coming from the complex structure J. Let be the Kähler form defined by the complex structure J, i.e. (X, Y ) = g(JX, Y ) for all vector fields X, Y ∈ Γ(T N ). The complexified tangent bundle

T C N = T N ⊗ R C decomposes into T C N = T 1,0 N ⊕ T 0,1 N,
where T 1,0 N (resp. T 0,1 N ) is the i-eigenbundle (resp. -i-eigenbundle) of the complex linear extension of the complex structure. Indeed,

T 1,0 N = T 0,1 N = {X -iJX |X ∈ Γ(T N )}.
Thus, the spinor bundle of the canonical Spin c structure is given by

ΣN = Λ 0, * N = m r=0 Λ r (T * 0,1 N ),
where T * 0,1 N is the dual space of T 0,1 N . The auxiliary bundle of this canonical Spin c structure is given by L

N = (K N ) -1 = Λ m (T * 0,1 N ), where K N = Λ m (T * 1,0 N ) is the canonical bundle of N [6]
. This line bundle L N has a canonical holomorphic connection induced from the Levi-Civita connection whose curvature form is given by iΩ N = -iρ, where ρ is the Ricci form given by ρ(X, Y ) = Ric N (JX, Y ) for all X, Y ∈ Γ(T N ).

Hence, this Spin c structure carries parallel spinors (the constant complex functions) lying in the set of complex functions Λ 0,0 N ⊂ Λ 0, * N [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF]. Of course, we can define another Spin c structure for which the spinor bundle is given by Λ * ,0 N = m r=0 Λ r (T * 1,0 N ) and the auxiliary line bundle by K N . This Spin c structure will be called the anti-canonical Spin c structure [START_REF] Th | Dirac operator's in Riemannian geometry[END_REF] and it carries also parallel spinors (the constant complex functions) lying in the set of complex functions Λ 0,0 N ⊂ Λ 0, * N [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF].

For any other Spin c structure on the Kähler manifold N , the spinorial bundle can be written as [START_REF] Th | Dirac operator's in Riemannian geometry[END_REF][START_REF] Hijazi | Spin c geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds[END_REF]:

ΣN = Λ 0, * N ⊗ L,
where L 2 = K N ⊗ L N and L N is the auxiliary bundle associated with this Spin c structure.

In this case, the 2-form can be considered as an endomorphism of ΣN via Clifford multiplication and it acts on a spinor field ψ locally by [START_REF] Kirchberg | An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature[END_REF][START_REF] Th | Dirac operator's in Riemannian geometry[END_REF]:

• ψ = 1 2 m j=1 e j • Je j • ψ.
Hence, we have the well-known orthogonal splitting

ΣN = m r=0 Σ r N, (4) 
where Σ r N denotes the eigensubbundle corresponding to the eigenvalue i(m -2r) of , with complex rank m k . The bundle Σ r N corresponds to Λ 0,r N ⊗ L. Moreover,

Σ + N = r even Σ r N and Σ -N = r odd Σ r N.
For the canonical (resp. the anti-canonical) Spin c structure, the subbundle

Σ 0 N (resp. Σ m N ) is trivial, i.e., Σ 0 N = Λ 0,0 N ⊂ Σ + N (resp. Σ m N = Λ 0,0 N which is in Σ + N if m is even and in Σ -N if m is odd).
The product N 1 × N 2 of two Kähler Spin c manifolds is again a Spin c manifold. We denote by m 1 (resp. m 2 ) the complex dimension of N 1 (resp. N 2 ). The spinor bundle is identified by

Σ(N 1 × N 2 ) ΣN 1 ⊗ ΣN 2 ,
via the Clifford multiplication denoted also by "•":

(X 1 + X 2 ) • (ψ 1 ⊗ ψ 2 ) = X 1 • ψ 1 ⊗ ψ 2 + ψ 1 ⊗ X 2 • ψ 2 ,
where

X 1 ∈ Γ(T M 1 ), X 1 ∈ Γ(T M 2 ), ψ 1 ∈ Γ(ΣM 1
) and ψ 2 ∈ Γ(ΣM 2 ). We consider the decomposition (4) of ΣN 1 and ΣN 2 with respect to their Kähler forms N1 and N2 . Then, the corresponding decomposition of

Σ(N 1 × N 2 ) into eigenbundles of N1×N2 = N1 + N2 is: Σ(N 1 × N 2 ) m1+m2 k=0 Σ r (N 1 × N 2 ), with Σ r (N 1 × N 2 ) r k=0 Σ k N 1 ⊗ Σ r-k N 2 ,
since the Kähler form N1×N2 acts on a section of

Σ k N 1 ⊗ Σ r-k N 2 as N1×N2 (ψ 1 ⊗ ψ 2 ) = N1 • ψ 1 ⊗ ψ 2 + ψ 1 ⊗ N2 • ψ 2 = i(m 1 + m 2 -2r)ψ 1 ⊗ ψ 2 .
Spin c hypersurfaces and the Gauss formula: Let N be an oriented (n+1)-dimensional Riemannian Spin c manifold and M ⊂ N be an oriented hypersurface. The manifold M inherits a Spin c structure induced from the one on N , and we have [START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF] ΣM

   ΣN | M if n is even, Σ + N | M or Σ -N | M if n is odd.
Moreover the Clifford multiplication by a vector field X, tangent to M , is denoted by γ and given by

γ(X)φ = (X • ν • ψ) | M , (5) 
where

ψ ∈ Γ(ΣN ) (or ψ ∈ Γ(Σ + N ) if n is odd), φ is the restriction of ψ to M , "•" is the Clifford multiplication on N , γ that on M and ν is the unit inner normal vector. If ψ ∈ Γ(Σ -N ) when n is odd, then we have γ(X)φ = -(X • ν • ψ) | M . (6) 
The curvature 2-form iΩ on the auxiliary line bundle

L = L N | M defining the Spin c structure on M is given by iΩ = iΩ N | M . For every ψ ∈ Γ(ΣN ) (ψ ∈ Γ(Σ + N ) if n is odd)
, the real 2-forms Ω and Ω N are related by [START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF]:

(Ω N • ψ) | M = γ(Ω)φ -γ(ν Ω N )φ. (7) 
When ψ ∈ Γ(Σ -N ) if n is odd, we have

(Ω N • ψ) | M = γ(Ω)φ + γ(ν Ω N )φ. (8) 
We denote by ∇ the spinorial Levi-Civita connection on ΣM . For all X ∈ Γ(T M ) and ψ ∈ Γ(Σ + N ), we have the Spin c Gauss formula [START_REF] Nakad | The Energy-Momentum tensor on Spin c manifolds[END_REF]:

(∇ ΣN X ψ) | M = ∇ X φ + 1 2 γ(IIX)φ, (9) 
where II denotes the Weingarten map of the hypersurface. If ψ ∈ Γ(Σ -N ), we have

(∇ ΣN X ψ) | M = ∇ X φ - 1 2 γ(IIX)φ, (10) 
for all X ∈ Γ(T M ).

Basic facts about

M 1 (c 1 ) × M 2 (c 2 )
and their real hypersurfaces

Let (M 1 (c 1 )×M 2 (c 2 ), g) be the Riemannian product of M 1 (c 1 ) and M 2 (c 2 )
, where M i (c i ) denotes the space form of constant sectional curvature c i and g denotes the product metric. Consider M 3 , g = (., .) an oriented real hypersurface of M 1 (c 1 )×M 2 (c 2 ) endowed with the metric g := (•, •) induced by g. The product structure of

P := M 1 (c 1 ) × M 2 (c 2 ) is
given by the map F : T P → T P defined, for

X 1 ∈ Γ(T M 1 (c 1 )) and X 2 ∈ Γ(TM 2 (c 2 )), by F (X 1 + X 2 ) = X 1 -X 2 . ( 11 
)
The map F satisfies F 2 = Id T P , F = Id T P , where Id T P denotes the identity map on T P. Denoting the Levi-Civita connection on P by ∇ P , we have ∇ P F = 0 and for any X, Y ∈ Γ(T P), we have g(F X, Y ) = g(X, F Y ). The product structure F induces the existence on M of a vector V ∈ Γ(T M ), a function h : M → R and an endomorphism f : T M → T M such that, for all X ∈ Γ(T M ),

F X = f X + (V, X)ν and F ν = V + hν, ( 12 
)
where ν is the unit normal vector of the immersion.

Lemma 2.1. The function f is symmetric. Moreover, for any X ∈ Γ(T M ), we have

f 2 X + (V, X)V = X, (13) 
f V = -hV, (14) 
h 2 + V 2 = 1. (15) 
Proof. First of all, for any X, Y ∈ Γ(T M ), we have

(f X, Y ) = g(f X, Y ) = g F X -(V, X)ν, Y = g(F X, Y ) = g(X, F Y ) = g(X, f Y + (V, Y )ν) = (X, f Y ).
Hence f is symmetric. For any X ∈ Γ(T M ), F 2 X = X. This means that

(f + (V, X)ν) 2 (X) = X,
and hence

f 2 X + (V, X)V = X, (V, f X) + h(V, X) = 0,
which are Equation ( 13) and Equation ( 14). We also have F 2 ν = ν. Thus,

V + (V, V )ν + hV + h 2 ν = ν.
This gives V 2 + h 2 = 1 which is Equation [START_REF] Konopelchenko | Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy[END_REF].

Moreover, the complex structure J = J 1 + J 2 on P (where J i denotes the complex structure on M i (c i )) induces on M an almost contact metric structure X, ξ, η, g = (., .) , where X is the (1, 1)-tensor defined, for all X, Y ∈ Γ(T M ) by

(XX, Y ) = g(JX, Y ).
The tangent vector field ξ and the 1-form η associated with ξ satisfy ξ = -Jν and η(X) = (ξ, X), for all X ∈ Γ(T M ). Then, we can easily see that, for all X ∈ Γ(T M ), the following holds:

JX = XX + η(X)ν, (16) 
X 2 X = -X + η(X)ξ, g(ξ, ξ) = 1, and Xξ = 0.

Here, we recall that given an almost contact metric structure (X, ξ, η, g) one can define a 2-form Θ by Θ(X, Y ) = g(X, XY ) for all X, Y ∈ Γ(T M ). Now, (X, ξ, η, g) is said to satisfy the contact condition if -2Θ = dη and if it is the case, (X, ξ, η, g) is called a contact metric structure on M . A contact metric structure (X, ξ, η, g) is called a Sasakian structure (and M a Sasaki manifold) if ξ is a Killing vector field (or equivalently, X = ∇ξ) and

(∇ X X)Y = η(Y )X -g(X, Y )ξ, for all X, Y ∈ Γ(T M ).
For P, one can choose a local orthonormal frame {e 1 , e 

(ii) J • F = F • J (iii) (V, XX) + η(X)h = η(f X) (iv) f XX + η(X)V = Xf X -(V, X)ξ (v) η(V ) = 0 (vi) f ξ = hξ -XV (vii) η(f V ) = 0 (viii) (f e 1 , e 2 ) = 0 and (f e 1 , e 1 ) = (f e 2 , e 2 ) = -h (ix) JV = XV (x) F ξ = f ξ Proof. For any X, Y ∈ Γ(T M ), wer have (XX, XY ) = (X, Y ) -η(X)η(Y ). Thus, (Xe 1 , e 2 ) = (X 2 e 1 , Xe 2 ) = -(e 1 , Xe 2 ).
It is evident that Xξ = 0. This proves (i). Now, for any X 1 + X 2 ∈ Γ(T P), we have

J • F (X 1 + X 2 ) = J(X 1 -X 2 ) = J 1 X 1 -J 2 X 2 = F (J 1 X 1 + J 2 X 2 ) = F • J(X 1 + X 2 ).
This proves (ii). From J • F = F • J, and using that f is symmetric and ( 17), we have for any

X ∈ Γ(T M ), f XX + η(X)V = Xf X -(V, X)ξ, (V, XX) + hη(X) = η(f X).
This proves (iii) and (iv). We also have J(F ν) = F (Jν). Thus,

XV + η(V )ν -hξ = -f ξ -(V, ξ)ν.
This implies

f ξ = hξ -XV, η(V ) = -(V, ξ) = 0.
This proves (v) and (vi). From (V, XX) + hη(X) = η(f X) and for X = V , we get

η(f V ) = hη(V ) + (V, XV ) =0 = 0,
which is (vii). We calculate

(f e 1 , e 2 ) = -(f Xe 2 , e 2 ) = (-Xf e 2 + (V, e 2 )ξ, e 2 ) = -(Xf e 2 , e 2 ) = (f e 2 , Xe 2 ) = -(f e 2 , e 1 ).
Since f symmetric, it implies that (f e 1 , e 2 ) = 0. Moreover, we have Thus, (f e 1 , e 1 ) = (f e 2 , e 2 ) = -h. This proves (viii). Since (V, ξ) = 0, it is clear that F ξ = f ξ and from J = X + η(•)ν, we have JV = XV . This proves (ix) and (x).

For all X, Y, Z ∈ Γ(T M ), the Gauss equation for the hypersurface M of P can be written as

R(X, Y )Z = c 1 4 (X + f X) ∧ (Y + f Y ) + c 2 4 (X -f X) ∧ (Y -f Y ) +g(IIY, Z)IIX -g(IIX, Z)IIY, (18) 
where R denotes the Riemann curvature tensor. The Codazzi equation is

d ∇ II(X, Y ) = c 1 4 g(f Y, Z)g(V, X) -g(f X, Z)g(V, Y ) +g(Y, Z)g(V, X) -g(X, Z)g(V, Y ) - c 2 4 g(Y, Z)g(V, X) -g(Y, f Z)g(V, X) -g(X, Z)g(Y, V ) + g(X, f Z)g(V, Y ) (19) 
Now, we ask if the Gauss equation ( 18) and the Codazzi equation ( 19) are sufficient to get an isometric immersion of (M, g)

into P = M 1 (c 1 ) × M 2 (c 2 ).
Definition 2.3 (Compatibility equations). Let (M 3 , g) be a simply connected oriented Riemannian manifold endowed with an almost contact metric structure (X, ξ, η) and E be a field of symmetric endomorphisms on M . We say that (M, g, E) satisfies the compatibility equations for

M 1 (c 1 ) × M 2 (c 2 ) if and only if for any X, Y, Z ∈ Γ(T M ), we have R(X, Y )Z = c 1 4 (X + f X) ∧ (Y + f Y ) + c 2 4 (X -f X) ∧ (Y -f Y ) +g(EY, Z)EX -g(EX, Z)EY, (20) 
d ∇ E(X, Y ) = c 1 4 g(f Y, Z)g(V, X) -g(f X, Z)g(V, Y ) +g(Y, Z)g(V, X) -g(X, Z)g(V, Y ) - c 2 4 g(Y, Z)g(V, X) -g(Y, f Z)g(V, X) -g(X, Z)g(Y, V ) + g(X, f Z)g(V, Y ) , (21) 
(∇ X f )Y = g(Y, V )EX + g(EX, Y )V, (22) 
∇ X V = -f (EX) + hEX, ( 23 
) ∇f = -2EV. (24) 
In [START_REF] Kowalczyk | Isometric immersions into products of space forms[END_REF][START_REF] De Lira | A Bonnet theorem for isometric immersions into products of space forms[END_REF], Kowalczyk and De Lira-Tojeiro-Vitório proved independently that that the Gauss equation [START_REF] Lawson | Spin Geometry[END_REF] and the Codazzi equation [START_REF] Montiel | Using spinors to study submanifolds[END_REF] together with ( 13), ( 14), ( 15), ( 22), [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF], [START_REF] Nakad | Complex and Lagrangian surfaces of the complex projective space via Kählerian Killing Spin c spinors[END_REF] and if F ±Id 2 are of rank 2, where F is given by F = f V V h , are necessary and sufficient for the existence of an isometric immersion from M into M 1 (c 1 ) × M 2 (c 2 ) such that the complex structure of M 1 (c 1 ) × M 2 (c 2 ) over M is given by J = X + η(•)ν , E as second fundamental form and such that the product structure coincides with F over M . This immersion is global if M is simply connected. Note that this was previously proven in a more abstract way by Piccione and Tausk [START_REF] Piccione | An existence theorem for G-strcture preserving affine immersions[END_REF].

3 Isometric immersions into M 1 (c 1 ) × M 2 (c 2 ) via spinors

In this section, we consider two different Spin c structures on P = M 1 (c 1 ) × M 2 (c 2 ) carrying parallel spinor fields. For the first structure, the parallel spinor ψ is lying in Σ + P and for the second Spin c structure the parallel spinor field Ψ is lying in Σ -P. The restriction of these two Spin c structures to any hypersurface M 3 defines two Spin c structures on M , each one with a generalized Killing spinor field. These spinor fields will characterize the isometric immersion of

M into P = M 1 (c 1 ) × M 2 (c 2 ).
We denote by π i (X) the projection of a vector X on T M i (c i ). We have

                                     π 1 (V ) = (1-h)V + V 2 ν 2 π 2 (V ) = (h+1)V -V 2 ν 2 π 1 (ξ) = -π 1 (Jν) = -J(π 1 (ν)) π 2 (ξ) = -π 2 (Jν) = -J(π 2 (ν)) π 1 (ν) = (h+1)ν+V 2 π 2 (ν) = (1-h)ν-V 2 (25) 3.1 A first Spin c structure on M 1 (c 1 ) × M 2 (c 2 )

and its restriction to hypersurfaces

Assume that there exists an isometric immersion of (M 3 , g) into M 1 (c 1 ) × M 2 (c 2 ) with shape operator II. By Section 2.2, we know that M has an almost contact metric structure (X, ξ, η) such that XX = JX -η(X)ν for every X ∈ Γ(T M ) and the product structure F on M 1 (c 1 ) × M 2 (c 2 ) will be restricted via f, V and h. Consider the product of the canonical Spin c structure on M 1 (c 1 ) with the canonical one on M 2 (c 2 ) . It has a parallel

spinor ψ = ψ + 1 ⊗ ψ + 2 lying in Σ 0 (M 1 (c 1 ) × M 2 (c 2 )) = Σ 0 (M 1 (c 1 )) ⊗ Σ 0 (M 2 (c 2 )) ⊂ Σ + (M 1 (c 1 ) × M 2 (c 2 )
). First of all, using (4), we have for any X ∈ Γ(T M ),

J(π 2 (X)) • π 2 (X) • ψ + 2 = i|π 2 (X)| 2 ψ + 2 and J(π 1 (X)) • π 1 (X) • ψ + 1 = i|π 1 (X)| 2 ψ + 1 .
Lemma 3.1. We have

-π 1 (ν) • ψ + 1 ⊗ π 2 (ξ) • ψ + 2 + π 1 (ξ) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 = 0 Proof. Using that iπ 2 (ν) • ψ + 2 = J(π 2 (ν)) • ψ + 2 and iπ 1 (ν) • ψ + 2 = J(π 1 (ν)) • ψ + 2 , we have -π 1 (ν) • ψ + 1 ⊗ π 2 (ξ) • ψ + 2 + π 1 (ξ) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 = iπ 1 (ν) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 -iπ 1 (ν) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 = 0.
Lemma 3.2. The restriction ϕ 1 of the parallel spinor ψ on M 1 (c 1 ) × M 2 (c 2 ) is a solution of the generalized Killing equation

∇ 1 X ϕ 1 + 1 2 γ 1 (IIX)ϕ 1 = 0, (26) 
where ∇ 1 (resp. γ 1 ) denotes the Spin c Levi-Civita connection (resp. the Clifford multiplication) on the induced Spin c bundle. Moreover, ϕ 1 satisfies γ 1 (ξ)ϕ 1 = -iϕ 1 . The curvature 2-form iΩ 1 of the auxiliary line bundle associated with the induced Spin c structure is given in the basis {e 1 , e 2 = Xe 1 , ξ} by

Ω 1 (e 1 , e 2 ) = c 1 2 (h -1) - c 2 2 (h + 1), Ω 1 (e 1 , ξ) = c 1 -c 2 2 (e 1 , V ), Ω 1 (e 2 , ξ) = c 1 -c 2 2 (e 2 , V ).
Proof. By the Gauss formula ( 9), the restriction ϕ 1 of the parallel spinor ψ on P satisfies

∇ 1 X ϕ 1 = - 1 2 γ 1 (II)ϕ 1 .
Now, for any X, Y ∈ Γ(T M ), we have

Ω 1 (X, Y ) = Ω M1(c1)×M2(c2) (X, Y ) = -Ric M1(c1) (Jπ 1 X, π 1 Y ) -Ric M2(c2) (Jπ 2 X, π 2 Y ) = - c 1 4 g XX + η(X)ν + Xf X + η(f X)ν -(V, X)ξ, Y + f Y + (V, Y )ν - c 2 4 g XX + η(X)ν -Xf X -η(f X)ν + (V, X)ξ, Y -f Y -(V, Y )ν .
Using Lemma 2.2, we have

Ω 1 (e 1 , e 2 ) = c 1 2 (h -1) - c 2 2 (h + 1), Ω 1 (e 1 , ξ) = c 1 -c 2 2 (V, e 1 )
,

Ω 1 (e 2 , ξ) = c 1 -c 2 2 (V, e 2 ).
Now, we have

γ 1 (ξ)(ϕ 1 ) = ξ • ν • (ψ + 1 ⊗ ψ + 2 ) | M = [π 1 (ξ) • π 1 (ν) • ψ + 1 ⊗ ψ + 2 -π 1 (ν) • ψ + 1 ⊗ π 2 (ξ) • ψ + 2 ] | M +[π 1 (ξ) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 + ψ + 1 ⊗ π 2 (ξ) • π 2 (ν) • ψ + 2 ] | M Thus, γ 1 (ξ)(ϕ 1 ) = ξ • ν • (ψ + 1 ⊗ ψ + 2 ) | M = [-i|π 1 (ν)| 2 -i|π 2 (ν)| 2 ]ϕ 1 -[π 1 (ν) • ψ + 1 ⊗ π 2 (ξ) • ψ + 2 + π 1 (ξ) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 ] | M = -iϕ 1 + [-π 1 (ν) • ψ + 1 ⊗ π 2 (ξ) • ψ + 2 + π 1 (ξ) • ψ + 1 ⊗ π 2 (ν) • ψ + 2 ] | M =0 by Lemma 3.1 = -iϕ 1 .
3.2 A second Spin c structure on M 1 (c 1 ) × M 2 (c 2 ) and its restriction to hypersurfaces

One can also endow M 1 (c 1 ) × M 2 (c 2 ) with another Spin c structure. Mainly, the one coming from the product of the anticanonical Spin c on M 1 (c 1 ) with the canonical Spin c structure on M 2 (c 2 ) which carries also a parallel spinor

Ψ = ψ - 1 ⊗ ψ + 2 . The parallel spinor Ψ lies in Σ 1 (M 1 (c 1 )) ⊗ Σ 0 (M 2 (c 2 )) ⊂ Σ -(M 1 (c 1 ) × M 2 (c 2 )). Using (4), we have for any X ∈ Γ(T M ) J(π 2 (X)) • π 2 (X) • ψ + 2 = i|π 2 (X)| 2 ψ + 2 and J(π 1 (X)) • π 1 (X) • ψ - 1 = -|π 1 (X)| 2 iψ - 1 .
Taking the scalar product of the last identity with ϕ 2 , then the real part of the scalar product with γ 2 (e 1 )ϕ 2 , then with γ 2 (e 2 )ϕ 2 , we get ( 28), ( 29), ( 30) and [START_REF] Roth | Spinorial characterization of surfaces into 3-dimensional homogeneous manifolds[END_REF].

4 Generalized Killing Spin c spinors and isometric immersions Lemma 4.1. [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF] Let E be a field of symmetric endomorphisms on a Spin c manifold M 3 of dimension 3, then

γ(E(e i ))γ(E(e j )) -γ(E(e j ))γ(E(e i )) = 2(a j3 a i2 -a j2 a i3 )e 1 +2(a i3 a j1 -a i1 a j3 )e 2 +2(a i1 a j2 -a i2 a j1 )e 3 , (32) 
where (a ij ) i,j is the matrix of E written in any local orthonormal frame of T M .

Proposition 4.2. Let (M 3 , g) be a Riemannian Spin c manifold endowed with an almost contact metric structure (X, ξ, η). Assume that there exists a vector V and a function h and a Spin c structure with non-trivial spinor ϕ 1 satisfying

∇ 1 X ϕ 1 = - 1 2 γ 1 (EX)ϕ 1 and γ 1 (ξ)ϕ 1 = -iϕ 1 ,
where E is a field of symmetric endomorphisms on M . Moreover, we suppose that the curvature 2-form of the connection on the auxiliary line bundle associated with the Spin c structure is given by

Ω 1 (e 1 , e 2 ) = c 1 2 (h -1) - c 2 2 (h + 1), Ω 1 (e 1 , ξ) = c 1 -c 2 2 (V, e 1 )
, Proof. We compute the spinorial curvature R 1 on ϕ 1 , we get

Ω 1 (e 2 , ξ) = c 1 -c 2 2 (V, e 2 ),
R 1 X,Y ϕ 1 = - 1 2 γ 1 (d ∇ E(X, Y ))ϕ 1 + 1 4 γ 1 (EY )γ 1 (EX) -γ 1 (EX)γ 1 (EY ) ϕ 1 .
In the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}, the Ricci identity (3) gives that

1 2 γ 1 (Ric(X))ϕ 1 - i 2 γ 1 (X Ω 1 )ϕ 1 = 1 4 3 k=1 γ 1 (e k ) γ 1 (EX)γ 1 (Ee k ) -γ 1 (Ee k )γ 1 (EX) ϕ 1 - 1 2 3 k=1 γ 1 (e k )γ 1 (d ∇ E(e k , X))ϕ 1 .
By Lemma 4.1 and for X = e 1 , the last identity becomes

(R 1221 + R 1331 -a 11 a 33 -a 11 a 22 + a 2 13 + a 2 12 + c 1 2 (h -1) - c 2 2 (h + 1))γ 1 (e 1 )ϕ 1 +(R 1332 -a 12 a 33 + a 32 a 13 )γ 1 (e 2 )ϕ 1 +(R 1223 -a 22 a 13 + a 32 a 12 )γ 1 (e 3 )ϕ 1 - c 1 -c 2 2 (V, e 1 )ϕ 1 (33) = -γ 1 (e 2 )γ 1 (d ∇ E(e 2 , e 1 ))ϕ 1 -γ 1 (e 3 )γ 1 (d ∇ E(e 3 , e 1 ))ϕ 1 .
Since |ϕ| is constant (|ϕ| = 1), the set {ϕ 1 , γ 1 (e 1 )ϕ 1 , γ 1 (e 2 )ϕ 1 , γ 1 (e 3 )ϕ 1 } is an orthonormal frame of ΣM with respect to the real scalar product e(., . The last twelve equations will be called System 1 and it is clear that the Gauss equation for

- (c 1 -c 2 ) 2 (V, e 2 ) = g(d ∇ E(e 1 , e 2 ), e 1 ) + g(d ∇ E(e 3 , e 2 ), e 3 ) R 3221 -(a 13 a 22 -a 23 a 21 ) - (c 1 -c 2 ) 2 (V, e 2 ) = -g(d ∇ E(e 2 , e 3 ), e 3 ) R 3112 -(a 32 a 11 -a 31 a 12 ) + (c 1 -c 2 ) 2 (V, e 1 ) = g(d ∇ E(e 1 , e 3 ), e 3 ) 
M 1 (c 1 ) × M 2 (c 2 ) is satisfied if and only if the Codazzi equation for M 1 (c 1 ) × M 2 (c 2 ) is satisfied.
Lemma 4.3. Under the same condition as Proposition 4.2, we have ∇ X ξ = XEX.

Proof. In fact, we simply compute the derivative of γ

1 (ξ)ϕ 1 = -iϕ 1 in the direction of X ∈ Γ(T M ) to get γ 1 (∇ X ξ)ϕ = i 2 γ 1 (EX)ϕ 1 + 1 2 γ 1 (ξ)γ 1 (EX)ϕ 1
Using that -iγ 1 (e 2 )ϕ 1 = γ 1 (e 1 )ϕ 1 , the last equation reduces to

γ 1 (∇ X ξ)ϕ 1 -g(EX, e 1 )γ 1 (e 2 )ϕ 1 + g(EX, e 2 )γ 1 (e 1 )ϕ 1 = 0.
Finally ∇ X ξ = XEX.

Proposition 4.4. Let (M 3 , g) be a Riemannian Spin c manifold endowed with an almost contact metric structure (X, ξ, η). Assume that there exist a nonzero vector field V and a function h such that there exists a Spin c structure with non-trivial spinor ϕ satisfying

∇ 2 X ϕ = 1 2 γ 2 (EX)ϕ and γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 ,
where E is a field of symmetric endomorphisms on M . Moreover, we suppose that the curvature 2-form of the connection on the auxiliary line bundle associated with the Spin c structure is given by

Ω 2 (e 1 , e 2 ) = - c 1 2 (h -1) - c 2 2 (h + 1) Ω 2 (e 1 , ξ) = - (c 1 + c 2 ) 2 (e 1 , V ) Ω 2 (e 2 , ξ) = - (c 1 + c 2 ) 2 (e 2 , V )
in the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}. The Gauss equation for

M 1 (c 1 ) × M 2 (c 2 ) is satisfied if and only if the Codazzi equation for M 1 (c 1 ) × M 2 (c 2 ) is satisfied. Proof. First, from γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 ,
we have that ( 28), ( 29), ( 30) and ( 31) are satisfied. We compute the spinorial curvature R 2 on ϕ 2 , we get

R 2 X,Y ϕ 2 = 1 2 γ 2 (d ∇ E(X, Y ))ϕ 2 + 1 4 γ 2 (EY )γ 2 (EX) -γ 2 (EX)γ 2 (EY ) ϕ 2 .
In the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}, the Ricci identity (3) gives that

1 2 γ 2 (Ric(X))ϕ 2 - i 2 γ 2 (X Ω 2 )ϕ 2 = 1 4 3 k=1 γ 2 (e k ) γ 2 (EX)γ 2 (Ee k ) -γ 2 (Ee k )γ 2 (EX) ϕ 2 + 1 2 3 k=1 γ 2 (e k )γ 2 (d ∇ E(e k , X))ϕ 2 .
By Lemma 4.1 and for X = e 1 , the last identity becomes (R 1221 + R 1331 -a 11 a 33 -a 11 a 22 + a 2 13 + a 2 12 )γ 2 (e 1 )ϕ 2 (34)

+ i 2 (c 1 + c 2 )(V, e 1 )γ 2 (ξ)ϕ 2 + i 2 [c 1 (h -1) + c 2 (h + 1)]γ 2 (e 2 )ϕ 2 +(R 1332 -a 12 a 33 + a 32 a 13 )γ 2 (e 2 )ϕ 2 +(R 1223 -a 22 a 13 + a 32 a 12 )γ 2 (e 3 )ϕ 2 = γ 2 (e 2 )γ 2 (d ∇ E(e 2 , e 1 ))ϕ 2 + γ 2 (e 3 )γ 2 (d ∇ E(e 3 , e 1 ))ϕ 2 .
Since |ϕ| is constant (|ϕ| = 1), the set {ϕ 2 , γ 2 (e 1 )ϕ 2 , γ 2 (e 2 )ϕ 2 , γ 2 (e 3 )ϕ 2 } is an orthonormal frame of ΣM with respect to the real scalar product e(., .). Hence, from Equation (35) we deduce

R 1221 + R 1331 -(a 11 a 33 + a 11 a 22 -a 2 13 -a 2 12 ) - 1 2 (c 1 + c 2 )(V, e 1 ) 2 - 1 2 h c 1 (h -1) + c 2 (h + 1) = g(d ∇ E(e 2 , e 1 ), e 3 ) -g(d ∇ E(e 3 , e 1 ), e 2 ) R 1332 -(a 12 a 33 -a 32 a 13 ) - 1 2 (c 1 + c 2 )(V, e 1 )(V, e 2 ) = -g(d ∇ E(e 1 , e 3 ), e 1 ) R 1223 -(a 22 a 13 -a 32 a 12 ) + 1 2 c 1 (h -1) + c 2 (h + 1) (V, e 2 ) = -g(d ∇ E(e 2 , e 1 ), e 1 ) 1 2 (c 1 + c 2 )h(V, e 1 ) - 1 2 c 1 (h -1) + c 2 (h + 1) (V, e 1 ) = -g(d ∇ E(e 2 , e 1 ), e 2 )
-g(d ∇ E(e 3 , e 1 ), e 3 )

The same computation holds for the unit vector fields e 2 and e 3 and we get )

R 2331 -(a 12 a 33 -a 13 a 23 ) - 1 2 (c 1 + c 2 )(V, e 2 )(V, e 1 ) = g(d ∇ E(e 2 , e 3 ), e 2 ) R 2332 + R 2112 -(a 22 a 33 + a 22 a 11 -a 2 13 -a 2 12 ) - 1 2 (c 1 + c 2 )(e 2 , V ) 2 - 1 2 h c 1 (h -1) + c 2 (h + 1) = -g(d ∇ E(e 2 , e 3 ), e 1 ) -g(d ∇ E(e 1 , e 2 ), e 3 ) R 2113 -(a 23 a 11 -a 12 a 13 ) - 1 2 c 1 (h -1) + c 2 (h + 1) (V, e 1 ) = g(d ∇ E(e 1 , e 2 ), e 2 ) - 1 2 c 1 (h -1) + c 2 (h + 1) (V, e 2 ) + 1 2 (c 1 + c 2 )h(V, e 2 ) = -g(d ∇ E(
- 1 2 (c 1 + c 2 )(e 1 , V ) 2 - 1 2 (c 1 + c 2 )(V, e 2 ) 2
= -g(d ∇ E(e 2 , e 3 ), e 1 ) + g(d ∇ E(e 1 , e 3 ), e 2 )

- i 2 (e 1 , V )(γ 2 (e 1 )ϕ 2 , ϕ 2 ) - i 2 (V, e 2 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) (γ2(V )ϕ2,ϕ2)=0
= -g(d ∇ E(e 2 , e 3 ), e 2 ) -g(d ∇ E(e 1 , e 3 ), e 1 )

The last twelve equations will be called System 2 and it is clear that the Gauss equation for M 1 (c 1 ) × M 2 (c 2 ) is satisfied if and only if the Codazzi equation for M 1 (c 1 ) × M 2 (c 2 ) is satisfied.

Spinorial characterization of hypersurfaces of

M 1 (c 1 ) × M 2 (c 2 )
The main goal of this section is to prove Theorem 1.

Proof of Theorem 1. It is clear from the previous section that Assesrtion 1 implies Assertion 2. Now, Assume that Assertion 2 holds. We have to establish the compatibility equation ( 20), ( 21), ( 13), ( 14), ( 15), ( 22), ( 23) and [START_REF] Nakad | Complex and Lagrangian surfaces of the complex projective space via Kählerian Killing Spin c spinors[END_REF]. First we define f : T M → T M by (f e 1 , e 1 ) = (f e 2 , e 2 ) = -h, (f e 1 , e 2 ) = 0 and (f ξ, e 1 ) = (V, e 2 ), (f ξ, e 2 ) = -(V, e 1 ).

Since γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 . It is clear that                h 2 + V 2 = 1 (V, e 1 ) = -i(γ 2 (e 2 )ϕ 2 , ϕ 2 ) (V, e 2 ) = i(γ 2 (e 1 )ϕ 2 , ϕ 2 ) (V, ξ) = 0 f V = -hV f 2 = Id -(V, •)V
So Equations ( 13), ( 14), [START_REF] Konopelchenko | Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy[END_REF] are satisfied. Moreover, by Lemma 4.3, we have By a similar computation, we get that Equation ( 23) is satisfied. Now, Equation ( 24) is also satisfied because

(∇ e1 V, ξ) = (V,
X(h) = (iγ 2 ( ∇ X ξ =XEX )ϕ 2 , ϕ 2 ) + i 2 (γ 2 (ξ)γ 2 (EX)ϕ 2 , ϕ 2 ) - i 2 (γ 2 (EX)γ 2 (ξ)ϕ 2 , ϕ 2 ) = iE(X, e 1 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) -iE(X, e 2 )(γ 2 (e 1 )ϕ 2 , ϕ 2 ) i 2 E(X, e 2 )(γ 2 (ξ)γ 2 (e 1 )ϕ 2 , ϕ 2 ) - i 2 E(X, e 1 )(γ 2 (e 1 )γ 2 (ξ)ϕ 2 , ϕ 2 ) + i 2 E(X, e 2 )(γ 2 (ξ)γ 2 (e 2 )ϕ 2 , ϕ 2 ) - i 2 E(X, e 2 )(γ 2 (e 2 )γ 2 (ξ)ϕ 2 , ϕ 2 ) - i 2 E(X, ξ)|ϕ 2 | 2 + i 2 E(X, ξ)|ϕ 2 | 2 = -(V, e 1 )E(X, e 1 ) -E(X, e 2 )(V, e 2 ) i 2 E(X, e 1 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) + i 2 E(X, e 1 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) - i 2 E(X, e 2 )(γ 2 (e 1 )ϕ 2 , ϕ 2 ) - i 2 E(X, e 2 )(γ 2 (e 1 )ϕ 2 , ϕ 2 ) = -2E(X, e 2 )(V, e 2 ) -2E(X, e 1 )(V, e 1 )
= -2(EV, X). Thus, ((∇ e1 f )e 1 , e 1 ) = 2E 11 (e 1 , V ). By a similar computation, one can get [START_REF] Morel | Surfaces in S 3 and H 3 via spinors[END_REF]. Solving System 1 and System 2 simultaneously gives the Gauss and the Codazzi equations. Finally, we have to check that F +Id 2 and F -Id 2 are of rank 2. In fact, in the basis {e 1 , e 2 = Xe 1 , ξ, ν}, the matrix F +Id 2 can be written as

1 2     -h + 1 0 (V, e 2 ) (V, e 1 ) 0 -h + 1 (V, e 1 ) (V, e 2 ) (V, e 2 ) -(V, e 1 ) h + 1 0 (V, e 1 ) (V, e 2 ) 0 h + 1    
Using that h 2 + V 2 = 1, one can check that it is of rank 2. Same holds for F -Id 2 . Remark 1. Before giving some applications, we want to mention that both equivalent assertions of Theorem 1 are also equivalent to a third one described in terms of the Dirac operators D 1 and D 2 , and the energy-momentum tensors associated to ϕ 1 and ϕ 2 . We recall that the energy-momentum tensors Q ϕj , j = 1, 2, associated to the spinors field ϕ j are the (2, 0)-tensors respectively defined by

Q ϕj (X, Y ) = 1 2 e(γ j (X) • ∇ j Y ϕ + γ j (Y ) • ∇ j X ϕ, ϕ |ϕ| 2 ).
This third assertion can be written as: 3. There exists 2 Spin c structures on M carrying each one a non-trivial spinor ϕ 1 and ϕ 2 of constant norms and satisfying

D 1 ϕ 1 = 3 2 Hϕ 1 and γ 1 (ξ)ϕ 1 = -iϕ 1 , D 2 ϕ 2 = - 3 2 Hϕ 2 and γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 ,
so that their energy-momentum tensors Q ϕ1 and Q ϕ2 are the same. Moreover, the curvature 2-form of the connection on the auxiliary bundle associated with these two Spin c structure are given by (j ∈ {1, 2})

       Ω j (e 1 , e 2 ) = 1 2 (-1) j-1 c 1 (h -1) -1 2 c 2 (h + 1), Ω j (e 1 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 1 , V ), Ω j (e 2 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 2 , V ),
in the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}.

Indeed, clearly, the second assertion of Theorem 1 implies assertion 3.. Reciprocally, as proven in [START_REF] Lawn | Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors[END_REF],

D 1 ϕ 1 = 3 2 Hϕ 1 with ϕ 1 of constant norm implies that ∇ 1 X ϕ 1 = -1 2 γ 1 (E 1 X)ϕ 1 with E 1 = Q ϕ1 . Similarly, we also get ∇ 2 X ϕ 2 = 1 2 γ 1 (E 2 X)ϕ 2 with E 2 = Q ϕ2 . Now, since Q ϕ1 = Q ϕ2 ,
this gives assertion 2 of Theorem 1.

Totally geodesic and totally umbilical hypersurfaces of

M 1 (c 1 ) × M 2 (c 2 )
In this section, we use our main result, Theorem 1, to give some geometric results on totally geodesic and umbilical hypersurfaces of M 1 (c 1 ) × M 2 (c 2 ).

Lemma 5.1. Let M 3 , g = (., .) be a totally umbilical hypersurface of M 1 (c 1 ) × M 2 (c 2 ). Then,

V |c 1 -c 2 | = 4 dH (35) 
Proof. From Theorem 1, we know that there exists 2 Spin c structures on M carrying each one a non-trivial spinor ϕ 1 and ϕ 2 satisfying

∇ 1 X ϕ 1 = - 1 2 γ 1 (EX)ϕ 1 = - H 2 γ 1 (X)ϕ 1 and γ 1 (ξ)ϕ 1 = -iϕ 1 . ∇ 2 X ϕ 2 = 1 2 γ 2 (EX)ϕ 2 = H 2 γ 2 (X)ϕ 2 and γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 .
The curvature 2-form of the connection on the auxiliary bundle associated with these two Spin c structure are given by (j ∈ {1, 2})

Ω j (e 1 , e 2 ) = 1 2 (-1) j-1 c 1 (h -1) - 1 2 c 2 (h + 1), (36) 
Ω i (e 1 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 1 , V ), (37) 
Ω j (e 2 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 2 , V ), (38) 
in the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}.

For the second Spin c structure: The Ricci identity for M can be written as

1 2 γ 2 (Ric M (X))ϕ 2 - i 2 γ 2 (X Ω 2 )ϕ 2 = 1 2 γ 2 (dH)γ 2 (X)ϕ 2 + 3 2 dH(X)ϕ 2 + H 2 γ 2 (X)ϕ 2 .
For X = ξ, the of the scalar product of the previous identity with ϕ 2 gives

- i 2 Ω 2 (ξ, e 1 )(γ 2 (e 1 )ϕ 2 , ϕ 2 ) - i 2 Ω 2 (ξ, e 2 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) = 1 2 e(γ 2 (dH)γ 2 (ξ)ϕ 2 , ϕ 2 ) + 3 2 dH(ξ)
Using that -γ 2 (e 1 )γ 2 (e 2 )γ 2 (ξ)ϕ 2 = ϕ 2 , we get

- i 2 Ω 2 (ξ, e 1 )(γ 2 (e 1 )ϕ 2 , ϕ 2 ) - i 2 Ω 2 (ξ, e 2 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) = dH(ξ)
Finally, using ( 29), ( 30), ( 37) and (38), we obtain dH(ξ) = 0. In a similar way, for X = e 1 the real part of the scalar product with ϕ 2 of the Ricci identity gives

- i 2 Ω 2 (e 1 , e 2 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) - i 2 Ω 2 (e 1 , ξ)(γ 2 (ξ)ϕ 2 , ϕ 2 ) = 1 2 e(γ 2 (dH)γ 2 (e 1 )ϕ 2 , ϕ 2 ) + 3 2 dH(e 1 ).
Using that -γ 2 (e 1 )γ 2 (e 2 )γ 2 (ξ)ϕ 2 = ϕ 2 and dH(ξ) = 0, we get

- i 2 Ω 2 (e 1 , e 2 )(γ 2 (e 2 )ϕ 2 , ϕ 2 ) - i 2 Ω 2 (e 1 , ξ)(γ 2 (ξ)ϕ 2 , ϕ 2 ) = dH(e 1 ).
Finally, using ( 29), ( 30), (37) and (36), we obtain dH(e 1 ) = c1-c2 4 g(V, e 1 ). In a similar way we can get dH(e 2 ) = c1-c2 4 g(V, e 2 ). Hence, we have dH 2 = (c1-c2) 2
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V 2 . For consistency, one can also take the first Spin c structure and check that a similar identity can be obtained. Proposition 5.2. Let M be a totally umbilical hypersurface of in M 1 (c 1 ) × M 1 (c 1 ). Then M is totally geodesic or an extrinsic hypersphere. Moreover, if c 1 = 0, the universal cover of M is a Non-Einstein Sasaki manifold or a product of a Kähler manifold (of complex dimension 1) with R. If c 1 = 0, then M is a Spin manifold with a parallel or Killing spin spinor.

Proof. Let M be a totally umbilical hypersurface of M 1 (c 1 ) × M 1 (c 1 ). We have from (35) that dH = 0, so H is constant. Assume that c 1 = 0. If this constant H is 0, M has a parallel Spin c spinor and if H = 0, then M has a Killing Spin c spinor. Form the classification of parallel and Killing Spin c spinors [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF], we get the desired result. If c 1 = 0, then the curvature of the auxiliary line bundle defining the Spin c structure is zero and hence M is a Spin manifold with parallel or Killing spin spinor. Proposition 5.3. Let M be a totally umbilical hypersurface of in M 1 (c 1 ) × M 2 (c 2 ) (c 1 = c 2 ) having a local product structure. Then M is totally geodesic or an extrinsic hypersphere. If c 1 = c 2 = 0. the universal cover of M is a non-Einstein Sasaki manifold or a product of a Kähler manifold (of complex dimension 1) with R Proof. Let M be a totally umbilical hypersurface of M 1 (c 1 ) × M 2 (c 2 ). Since V = 0, we have from (35) that dH = 0, so H is constant. If this constant is 0, M has a parallel Spin c spinor and if H = 0, then M has a Killing Spin c spinor. From the classification of parallel and Killing Spin c spinors [START_REF] Moroianu | Parallel and Killing spinors on Spin c manifolds[END_REF], we get the desired result.

Using also Theorem 1, one can also prove the following: Proposition 5.4. Simply connected 3-dimensional homogeneous manifolds E(κ, τ ) (τ = 0), with 4-dimensional isometry group cannot be immersed in M 1 (c 1 ) × M 1 (c 1 ) as totally umbilical hypersurfaces.

Proof. For c 1 = 0, this has been proved by Lawn and Roth [START_REF] Lawn | Isometric immersions of hypersurfaces into 4-dimensional manifolds via spinors[END_REF], even without assuming the umbilicity. Assume that c 1 = 0 and E(κ, τ ) can be immersed in a totally umbilical way in M 1 (c 1 ) × M 1 (c 1 ). By Proposition 5.2, we have that H is constant and by Theorm 1, E(κ, τ ) has two Spin c structures carrying each one a non-trivial spinor ϕ 1 and ϕ 2 satisfying

∇ 1 X ϕ 1 = - H 2 γ 1 (X)ϕ 1 and γ 1 (ξ)ϕ 1 = -iϕ 1 . ∇ 2 X ϕ 2 = H 2 γ 2 (X)ϕ 2 and γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 .
The curvature 2-form of the connection on the auxiliary bundle associated with these two Spin c structure are given by (j ∈ {1, 2})

Ω j (e 1 , e 2 ) = 1 2 (-1) j-1 c 1 (h -1) -1 2 c 2 (h + 1), Ω i (e 1 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 1 , V ), Ω j (e 2 , ξ) = 1 2 (-1) j-1 c 1 -c 2 (e 2 , V ), in the basis {e 1 , e 2 = Xe 1 , e 3 = ξ}. We will call the first one Spin c structure t 1 and the second one t 2 . Since H is constant, these two spinors are in fact real Killing spinors. But, it is known [START_REF] Nakad | Hypersurfaces of Spin c manifolds and Lawson type correspondence[END_REF] that the manifold E(κ, τ ) has only two Spin c structures carrying Killing spinors. The first one (call it t 3 ) carries a Killing spinor ϕ with Killing constant τ 2 and for which γ 3 (ξ)ϕ = -iϕ, Ω 3 (e 1 , e 2 ) = -(κ -4τ 2 ) and ξ Ω 3 = 0, where we denote by γ 3 and iΩ 3 the Clifford multiplication and the curvature 2-form of the auxiliary line bundle associated to the structure t 3 . The second one (let's call it t 4 ) also carries a Killing spinor ϕ with Killing constant τ 2 for which γ 4 (ξ)ϕ = iϕ, Ω 4 (e 1 , e 2 ) = (κ -4τ 2 ) and ξ Ω 4 = 0, where we denote by γ 4 and iΩ 4 the Clifford multiplication and the curvature 2-form of the auxiliary line bundle associated to the structure t 4 . By comparison, we must have that t 1 = t 3 and t 2 = t 4 . Thus we get γ 2 (V )ϕ 2 = -iγ 2 (ξ)ϕ 2 + hϕ 2 = (h + 1)ϕ 2 .

Hence V = 0. This means that E(κ, τ ) has a local product, which is a contradiction.

(f e 1

 1 , e 1 ) = -(f Xe 2 , e 1 ) = (-Xf e 2 + (V, e 2 )ξ, e 1 ) = -(Xf e 2 , e 1 ) = (f e 2 , Xe 1 ) = (f e 2 , e 2 ). We know that tr(F ) = 0. Thus, 0 = (F e 1 , e 1 ) + (F e 2 , e 2 ) + (F ξ, ξ) + (F ν, ν) = (f e 1 , e 1 ) + (f e 2 , e 2 ) + (f ξ, ξ) =h + (V + hν, ν) h+0=h = (f e 1 , e 1 ) + (f e 2 , e 2 ).

in the basis {e 1 , e 2 =

 12 Xe 1 , e 3 = ξ}. Hence, the Gauss equation is satisfied for M 1 (c 1 ) × M 2 (c 2 ) if and only if the Codazzi equation for M 1 (c 1 ) × M 2 (c 2 ) is satisfied.

R

  3113 + R 3223 -(a 22 a 33 -a 11 a 33 + a 2 13 + a 2 23 ) = g(d ∇ E(e 2 , e 3 ), e 1 ) -g(d ∇ E(e 1 , e 3 ), e 2 ) g(d ∇ E(e 2 , e 3 ), e 2 ) = -g(d ∇ E(e 1 , e 3 ), e 1 )

  e 1 )(∇ e1 e 1 , ξ) + (V, e 2 )(∇ e1 e 2 , ξ) = -(V, e 1 )(e 1 XEe 1 ) -(V, e 2 )(e 2 , XEe 1 ) = (V, e 1 )E 12 -(V, e 2 )E 11 + E 11 (V, e 1 ) -E 12 (V, e 2 ).

Now, we have (∇ e1 f e 1 12 =

 112 , e 1 ) = e 1 (f e 1 , e 1 ) + (f e 1 , ξ)(∇ e1 ξ, e 1 ) = e 1 (-h) + (V, e 2 )(XEe 1 , e 1 ) = 2(EV, e 1 ) -(V, e 2 )E 2E 11 (e 1 , V ) -(e 2 , V )E 12 , and (f (∇ e1 e 1 ), e 1 ) = (∇ e1 e 1 , f e 1 ) = (f e 1 , e 2 )(∇ e1 e 1 , e 2 ) + (f e 1 , ξ)(∇ e1 e 1 , ξ) = -(∇ e1 ξ, e 1 )(V, e 2 ) = -(XEe 1 , e 1 )(V, e 2 ) = E 12 (V, e 2 )

  ). Hence, from Equation (35) we deduce R 1221 + R 1331 -(a 11 a 33 + a 11 a 22 -a 2 ∇ E(e 1 , e 2 ), e 3 ) -g(d ∇ E(e 1 , e 3 ), e 2 ) R 1332 -(a 12 a 33 -a 32 a 13 ) = g(d ∇ E(e 1 , e 3 ), e 1 ) R 1223 -(a 22 a 13 -a 32 a 12 ) = -g(d ∇ E(e 1 , e 2 ), e 1 ) ) = g(d ∇ E(e 2 , e 1 ), e 2 ) + g(d ∇ E(e 3 , e 1 ), e 3 ) The same computation holds for the unit vector fields e 2 and e 3 and we get R 2331 -(a 12 a 33 -a 13 a 23 ) = -g(d ∇ E(e 2 , e 3 ), e 2 ) R 2332 + R 2112 -(a 22 a 33 + a 22 a 11 -a 2

	13 -a 2 12 ) +	c 2 2	(h -1) -	c 2 2	(h + 1)
	= g(d -(c 1 -c 2 ) 2 (V, e 1 13 -a 2 12 ) + c 1 2	(h -1) -	c 2 2	(h + 1)
	= g(d		

∇ E(e 2 , e 3 ), e 1 ) + g(d ∇ E(e 1 , e 2 ), e 3 ) R 2113 -(a 23 a 11 -a 12 a 13 ) = -g(d ∇ E(e 1 , e 2 ), e 2 )

  e 1 , e 2 ), e 1 ) -g(d ∇ E(e 3 , e 2 ), e 3 ) R 3221 -(a 13 a 22 -a 23 a 21 ) + 1 2 (c 1 + c 2 )h(V, e 2 ) = g(d ∇ E(e 2 , e 3 ), e 3 ) R 3112 -(a 32 a 11 -a 31 a 12 ) -1 2 (c 1 + c 2 )h(V, e 1 ) = -g(d ∇ E(e 1 , e 3 ), e 3 ) R 3113 + R 3223 -(a 22 33 -a 11 a 33 + a 2 13 + a 2 23
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Let's calculate each term of the last identity. First we have

Next, we have

and

It's clear that A + B + C = 0.

Lemma 3.4. The restriction ϕ 2 of the parallel spinor Ψ (for the Spin c structure described above) on M 1 (c 1 ) × M 2 (c 2 ) is a solution of the generalized Killing equation

where ∇ 2 (resp. γ 2 ) denotes the Spin c connection (resp. the Clifford multiplication) on the induced Spin c bundle. Moreover,

The curvature 2-form of the auxiliary line bundle associated with the induced Spin c structure is given in the basis {e 1 , e 2 = Xe 1 , ξ} by

Moreover, we have

g(V, e 2 ) = i(γ 2 (e 1 )ϕ 2 , ϕ 2 ),

Proof. By the Gauss formula (9), the restriction ϕ 2 of the parallel spinor

Now, for any X, Y ∈ Γ(T M ), we have

In the basis {e 1 , e 2 = Xe 1 , ξ}, we have

Now, let's calculate

In a similar way, we have