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In cancer cells, aberrant DNA methylation is commonly associated with transcriptional alterations, including silencing of

tumor suppressor genes. However, multiple epigenetic mechanisms, including polycomb repressive marks, contribute to

gene deregulation in cancer. To dissect the relative contribution of DNAmethylation–dependent and –independent mech-

anisms to transcriptional alterations at CpG island/promoter-associated genes in cancer, we studied 70 samples of adult

glioma, a widespread type of brain tumor, classified according to their isocitrate dehydrogenase (IDH1) mutation status.

We found that most transcriptional alterations in tumor samples were DNAmethylation–independent. Instead, altered his-

tone H3 trimethylation at lysine 27 (H3K27me3) was the predominant molecular defect at deregulated genes. Our results

also suggest that the presence of a bivalent chromatin signature at CpG island promoters in stem cells predisposes not only

to hypermethylation, as widely documented, but more generally to all types of transcriptional alterations in transformed

cells. In addition, the gene expression strength in healthy brain cells influences the choice between DNA methylation- and

H3K27me3-associated silencing in glioma. Highly expressed genes were more likely to be repressed by H3K27me3 than by

DNA methylation. Our findings support a model in which altered H3K27me3 dynamics, more specifically defects in the

interplay between polycomb protein complexes and the brain-specific transcriptional machinery, is the main cause of tran-

scriptional alteration in glioma cells. Our study provides the first comprehensive description of epigenetic changes in glioma

and their relative contribution to transcriptional changes. It may be useful for the design of drugs targeting cancer-related

epigenetic defects.

[Supplemental material is available for this article.]

Cancer is a complex disease that results from the disruption of key
pathways, including those regulating cell survival and division.
Besides genetic lesions, epigenetic alterations also contribute to tu-
morigenesis mainly by leading to abnormal gene expression
(Flavahan et al. 2017).

Together with genome-wide DNA hypomethylation, DNA
hypermethylation of CpG islands (CGIs) is a well-defined feature
of cancer cells and is believed to be the main cause of aberrant
gene repression (Baylin and Jones 2016). CGIs are key regulatory
genomic regions of a few hundred base pairs in size characterized
by high frequency of CpG dinucleotides. In humans, ∼70% of
promoters are associated with CGIs that generally remain unme-
thylated during somatic development, regardless of the gene ex-
pression status (Deaton and Bird 2011). Conversely, it has been

shown that in tumors, DNA hypermethylation of their CGI/pro-
moter leads to aberrant silencing of some tumor suppressor genes,
such as BRCA1 (Dobrovic and Simpfendorfer 1997), RB1 (Greger
et al. 1994), andMLH1 (Herman et al. 1998). However, the primary
role of this defect in thewidespread cancer-associated genes silenc-
ing, and more broadly in cancer biology, is still being questioned.
Indeed, an increasing number of studies have shown that in tu-
mors, DNA hypermethylation affects primarily CGI/promoters
that control genes already repressed in the matched normal tissue
(Gal-Yam et al. 2008; Sproul et al. 2011, 2012; Hinoue et al. 2012;
Court and Arnaud 2017). Moreover, in some tumor types, such as
glioma or breast cancer, patients with a CpG island methylator
phenotype (CIMP), a signature identified in various human
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malignancies and defined by the concomitant hypermethylation
ofmultiple CGIs (Suzuki et al. 2014), have a better clinical progno-
sis compared with patients without CIMP (Noushmehr et al. 2010;
Fang et al. 2011).

Therefore, other DNA methylation–independent epigenetic
alterations at CGI/promoters might contribute to the genome-
wide pattern of aberrant gene repression observed in cancer cells.
During normal development, promoters/CGIs are dynamically
marked by the permissive H3K4me3 and/or the repressive
H3K27me3 histone marks (Mikkelsen et al. 2007). When in com-
bination, these marks constitute the so-called bivalent chromatin
signature that maintains genes (e.g., developmental genes in stem
cells) repressed, but “poised” for activation, because the bivalent
mark can resolve into either H3K4me3 or H3K27me3 (Bernstein
et al. 2006). Alterations in the control of these chromatin signa-
tures also could lead to gene silencing (Court and Arnaud 2017).
This hypothesis is supported by the observation that genes encod-
ingmethyltransferases and demethylases that regulate H3K27me3
and H3K4me3 deposition, such as EZH2, KMT2 (MLL) family
members, and KDM6A, are translocated or mutated and/or their
expression is altered in many malignancies (Suvà et al. 2013;
Dawson 2017). Such defects had been documented in a handful
of studies. In detail, analyses in established prostate (Gal-Yam
et al. 2008; Kondo et al. 2008) and urothelial (Dudziec et al.
2012) cancer cell lines and in colorectal tumor samples (Hahn
et al. 2014) highlighted that gene silencing can be mediated just
by H3K27me3.

Chromatin-based alterations could also lead to gain of gene
expression in tumors. Hahn et al. (2014) showed that genes
associated with GCI/promoters displaying a bivalent chromatin
signature in normal colon can be ectopically expressed in the
matched tumor samples following H3K27me3 loss. Moreover,
Bert et al. (2013) identified in prostate cancer cell lines some geno-
mic domains characterized by altered chromatin signatures associ-
ated with aberrant gene expression.

Therefore, it is clear that different epigenetic alterations at
promoters/CGIs could contribute to the abnormal gene expression
pattern of cancer cells. Because of the absence of dedicated integra-
tive studies, many questions remain concerning the bases and ex-
tent of these alterations as well as their relative contribution to
aberrant loss/gain of gene expression in cancer cells.

Glioma, which is derived from glial cells, is one of the most
widespread brain tumor types. In 2007, the World Health Organi-
zation (WHO) classified gliomas in four grades (I–IV) according to
their histology. Malignant anaplastic astrocytoma (a subset of the
WHO grade III gliomas) and glioblastoma multiforme (GBM;
WHO grade IV) account for about half of all gliomas, and are the
most deadly and aggressive forms. The median survival time after
diagnosis of patients with GBM does not exceed 18mo despite the
aggressive treatments. At the molecular level, aggressive gliomas
are characterized by expression of wild-type isocitrate dehydroge-
nase (IDHwt) genes (IDH1 and IDH2), whereas gliomas with better
prognosis express mutated IDH (IDHmut) (Cohen et al. 2013).
Consequently, the recently released 2016 WHO classification of
diffuse gliomas (Louis et al. 2016), which we used in this study,
is primarily based on the IDH1 mutation status (IDHmut vs.
IDHwt). IDH1 mutation results in CIMP-positive tumors (Turcan
et al. 2012) with a better clinical prognosis compared with
CIMP-negative tumors (Noushmehr et al. 2010; Cohen et al.
2013). Other epigenetic regulators also could be involved in glio-
ma development/progression, for instance the polycomb repres-
sors EZH2 and BMI1 (Häyry et al. 2008; Bruggeman et al. 2009;

Suvà et al. 2009) and KMT2 family members that are mutated in
a subset of GBM (Parsons et al. 2008; Brennan et al. 2013). Here,
we used glioma as a model to investigate the molecular bases of
transcriptional alterations of CGI/promoter-associated genes in
cancer.

Results

CGI methylation poorly contributes to transcriptional alterations

in glioma

For this study, we used 70 clinically well-characterized primary gli-
oma samples (the patients’ demographic and main molecular and
clinical features are provided in Supplemental Table S1). We classi-
fied samples according to their IDH1 status (n=55 IDHwt, and n=
15 IDHmut). This first level of classification, upstream of the 1p/
19q codeletion status according to the 2016 WHO classification
(Louis et al. 2016), clearly discriminated two tumor classes relative
to aggressiveness, with a significant survival advantage for patients
with IDHmut tumors (HR=0.32, 95% CI [0.14–0.71], P=0.005)
(Supplemental Table S1; Supplemental Fig. S1A).

Genome-wide analysis of DNA methylation at CGIs, using
the Infinium HumanMethylation450 (HM450K) BeadChip
Arrays, showed that DNA methylation defects were more
widespread in IDHmut samples, constituting a Glioma CIMP
(G-CIMP) subclass (Supplemental Fig. S1B). In agreement with
the literature (Noushmehr et al. 2010; Turcan et al. 2012; Louis
et al. 2016), in our cohort, aggressive gliomas were characterized
by IDHwt and absence of G-CIMP, whereas IDHmut gliomas
showed a G-CIMP profile and had a better prognosis.

To more precisely define the CGI/promoter alterations in our
glioma samples, we analyzed the DNA methylation profiles of
14,714 genes with a single CGI-rich promoter that could be as-
sessed using the HM450K array. Most of these genes (76.0%) were
protein-coding genes, and the others were antisense transcripts
(10.7%), long intergenic noncoding RNAs (lincRNA; 6.5%), and
pseudogenes (6.8%) (Fig. 1A). Because some CGI/promoters can
control more than one gene, these 14,714 genes are associated
with 11,795 CGI/promoters. About 90% of these CGI/promoters
were unmethylated in nontumor control brain samples (mean β-
value <0.2), and most of them remained unmethylated also in gli-
oma samples. Among these GCI/promoters, 11.6% (n=1369; asso-
ciatedwith1623genes)were aberrantlyhypermethylated in IDHwt
samples, and 22.8% (n=2692; 3198 genes) in IDHmut samples,
contributing to their CIMP-positive status. Conversely, CGI/pro-
moter hypomethylation, although more limited than hyperme-
thylation, was more common in IDHwt (n=198 CGI/promoters
associated with 235 genes; 1.7%) than in IDHmut (n=14 CGI/pro-
moters associated with 22 genes; 0.12%) samples (Fig. 1B; Supple-
mental Fig. S1C,D).

To evaluate the consequences of these DNA methylation
changes, we analyzed eight IDHwt and five IDHmut glioma sam-
ples by RNA-seq. Most genes with aberrantly hyper- or hypome-
thylated CGI/promoters (79.9% in the IDHwt and 87.4% in the
IDHmut group) showed no significant transcriptional change
compared with control brain samples (|log2 Fc|>2; P<0.05)
(Fig. 1C,D). The number of genes with altered expression was sim-
ilar between glioma subtypes despite their different DNA methyl-
ation profiles. Among the genes with aberrantly hyper- or
hypomethylated CGI/promoters, 223 and 265 were down-regulat-
ed (82 in common), and 150 and 140 were up-regulated (44 in
common) in IDHwt and IDHmut glioma samples, respectively,
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compared with controls (Fig. 1C,D). These findings indicate that
aberrant CGI/promoter methylation minimally affects gene tran-
scription in glioma. However, the deregulated genes included
some putative tumor suppressors, such as RASL10A and HTATIP2
(Schmidt et al. 2012; Dong et al. 2015), and some putative onco-
genes, such as HOXD9 and CXCL1, the overexpression of which
was, counterintuitively, associated withmethylation gain (Supple-
mental Table S2).

Gene transcription alterations are more widespread in IDHwt

glioma samples

Detailed analysis of the transcriptional landscape of tumor sam-
ples showed that transcriptional alterations were more wide-
spread in IDHwt than in IDHmut glioma samples (1670 and
1024 deregulated genes, respectively; FDR<0.05; |log2 Fc|>2)
(Fig. 2A), particularly for CGI/promoter-associated genes (Supple-
mental Fig. S2A).

Copy number variation (CNV) analyses in the same samples
showed that, as previously reported, Chromosome 7 gain and
Chromosome 10 loss characterized IDHwt samples (Louis et al.
2016), whereas the 1p/19q codeletion was mainly present in

IDHmut samples (Fig 2B). By integrating these data with the
gene expression profiles, we identified 92 genes in IDHwt and 37
genes in IDHmut samples, respectively, in which expression alter-
ation correlated with CNV (P<0.05) (Fig. 2B; Supplemental Fig.
S2B,C; Supplemental Table S3). For instance, up-regulation of epi-
dermal growth factor receptor (EGFR) and the histone methyl-
transferase EZH2 (both located on Chromosome 7) correlated
with increased copy number in IDHwt samples. Conversely, over-
expression of HOXA13, also located on Chromosome 7, did not
correlate with CNV (Fig. 2C; Supplemental Fig. S2C).

Altogether, affected genes without CNV (mostly protein-cod-
ing genes) represented∼11%of all CGI/promoter-associated genes
in IDHwt samples (841 down-regulated and 737 up-regulated
genes) and 6.7% in IDHmut samples (556 down-regulated and
431 up-regulated) (Fig. 2D; Supplemental Table S2).

Most transcriptional alterations are DNA methylation–

independent

To understand the basis of such transcriptional alterations, we
next focused our analyses on IDHwt glioma samples. We used
paired RNA-seq and HM450K data from 8 IDHwt samples to

A

B

C

D

Figure 1. Aberrant methylation at CGI/promoters is not the main contributor to transcriptional alteration in glioma. (A) Classification of the 14,714
genes analyzed in this study. (B) DNA methylation level (mean β-values) of the 11,795 CGI/promoters (rows) analyzed in IDHmut and IDHwt glioma
and control (normal brain tissue) samples (columns). Left columns show their hypermethylation or hypomethylation status in IDHmut and IDHwt glioma
samples compared with controls. (C,D) Differential expression status of genes associated with hypermethylated (C ) or hypomethylated (D) CGI/promoters
in IDHwt (left) and IDHmut (right) glioma samples compared with controls.
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concomitantly determine the DNA methylation and transcrip-
tional changes in the 1578 affected genes. In these IDHwt
samples, we could identify four main transcriptional defect types
(Fig. 3A): gain or loss of gene expression associated with CGI/pro-
moter hypermethylation (referred to as “Meth+/Exp+” and
“Meth+/Exp−”defects, respectively), and gain or loss of gene ex-
pression without changes in CGI/promoter methylation status
(i.e., the CGI/promoter remained unmethylated; referred to as
“No Meth/Exp+” and “No Meth/Exp−” defects, respectively).
More than 93% of aberrantly repressed genes did not display any
significant DNA methylation alteration at their CGI/promoter
(No Meth/Exp−). About 47% of the affected genes showed gain
of expression that was associated with DNA hypermethylation at
their CGI/promoter in 6% of them (Meth+/Exp+).

To evaluate the robustness of this classification, we first ana-
lyzed the HM450K data of all 55 IDHwt glioma samples of our co-
hort and confirmed that DNA hypermethylation was associated
with genes classified in the Meth+/Exp+ and Meth+/Exp− groups,
and absence of methylation with genes classified in the No
Meth/Exp+ and No Meth/Exp− groups. The only exception was
a subset of “methylable” genes that gained methylation in some

samples (Fig. 3B). Next, we concomitantly assessed, in 42 IDHwt
glioma samples, the DNA methylation and expression by RT-
qPCR of randomly selected genes from the Meth+/Exp+,
No Meth/Exp+, and No Meth/Exp− groups. Genes in the Meth+/
Exp+ group were methylated and ectopically expressed in all ana-
lyzed IDHwt glioma samples. The seven genes from the No Meth/
Exp− group were aberrantly repressed in all analyzed samples, and
their CGI/promoter mostly unmethylated (Fig. 3C). For instance,
the candidate tumor suppressor gene BIN1 was unmethylated in
all analyzed samples. PCSK6 and HOXD1 provided examples of
“methylable” genes. They were methylated in a subset of samples,
but their expression was repressed in all of them. The six genes
from the No Meth/Exp+ group were all overexpressed; and most
of them, including the tumor progression-associated VEGFA and
E2F2 genes, tended to be unmethylated in all analyzed samples.
This group also included some “methylable” genes (Fig. 3B),
such as KDR (the tyrosine kinase receptor for VEGFA) that was
overexpressed in all samples, and its CGI/promoter was methylat-
ed only in a subset of glioma. These “methylable” genes displayed
an overall significant gain of DNA methylation in the 55 IDHwt
samples. Therefore, we reclassified them from their initial No

A

C

B

D

Figure 2. Extent of transcriptional alterations in IDHwt and IDHmut glioma samples. (A) Volcano plot analysis of differential gene expression in IDHwt
(left) or IDHmut (right) glioma samples. Blue and red dots represent genes that were significantly down- or up-regulated, respectively, compared with
healthy controls (n=14,714 genes analyzed). (B) Circular karyotype showing the duplication (red) and deletion (blue) frequencies at the 14,714 analyzed
genes in IDHwt (outer circles) and IDHmut (inner circles) samples. Genes showing a significant correlation between CNV and expression are symbolized by
an orange (up-regulated) or green (down-regulated) line. (C) Correlation analysis between CNV and expression levels for the EGFR and HOXA13 genes in
IDHwt (yellow dots, left) and IDHmut (blue dots, right) glioma samples. Black dots indicate value in healthy controls. EGFR overexpression correlated with
increased copy number in IDHwt glioma samples. (D) Classification of the genes with expression alterations that did not correlate with CNV.
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Meth/Exp+ and No Meth/Exp− groups (based on the analysis of
eight IDHwt samples) into the Meth+/Exp+ and Meth+/Exp−
groups, respectively, for the subsequent analyses.

To assess the reproducibility of these observations, we per-
formed the same analyses in an independent cohort of 134
IDHwt samples described in Ceccarelli et al. (2016). In these sam-
ples, we confirmed the existence of the four main transcriptional
defect groups, with proportions similar to those observed in our
cohort. Overall, the number of affected genes was smaller in this
validation cohort (970 vs. 1564), possibly because of the different
RNA-seq strategies used. Indeed, Ceccarelli et al. (2016) usedmain-
ly nonstranded RNA-seq in which sense–antisense overlapping
transcripts were discarded from the analyses, whereas we used a
stranded RNA-seq approach that considered independently sense
and antisense transcripts. Nonetheless, all four defect categories
significantly overlapped in the two cohorts (minimal P-value <1
×10−40; Fisher’s exact test), demonstrating the robustness of our
observations (Fig. 3D).

Finally, to further characterize these defects, we studied the
methylation pattern of the 681 genes that were transcriptionally

affected in both IDHwt and IDHmut glioma samples (377 down-
regulated and 303 up-regulated in both groups, and one down-
regulated in IDHwt and up-regulated in IDHmut). Most of these
genes displayed the same methylation pattern in IDHwt and
IDHmut samples. However, “methylable” genes and a subset of
unmethylated genes in IDHwt gliomas (symbolized by a blue col-
umn in Supplemental Fig. S3) tended to be methylated in
IDHmut samples, suggesting that different molecular pathways
can lead to the same aberrant gene expression pattern.

Altogether, this integrative analysis identified four classes of
transcriptional defects at CGI/promoter genes in IDHwt glioma:
aberrant loss and gain of gene expression without DNA methyla-
tion defect (most genes), and gene expression defects associated
with aberrant DNA methylation either in all samples or in some
samples (i.e., at methylable genes). In summary, among the
1578 CGI/promoter-associated genes affected in IDHwt glioma
samples, most belonged to the NoMeth/Exp− group (n=628), fol-
lowed by the No Meth/Exp+ (n=612), Meth+/Exp− (n= 208), and
Meth+/Exp+ (n=116) (Supplemental Fig. S4). The classification for
each gene is provided in Supplemental Table S2.

A B

C D

Figure 3. Four expression defect classes. (A) Integrative analysis of differential gene expression and methylation in eight IDHwt glioma samples iden-
tified four main defect classes: gain of expression with gain of methylation (Meth+/Exp+), gain of expression with CGI/promoter remaining unmethy-
lated (No Meth/Exp+), loss of expression with gain of methylation (Meth+/Exp−), and loss of expression with the CGI/promoter remaining
unmethylated (No Meth/Exp−). (B) Differential DNA methylation analysis in all IDHwt glioma samples (n=55) versus controls (n=8) (delta of the
mean β-value). Glioma samples were grouped in the four classes of expression defects defined in A. The methylated and methylable status of genes
is indicated in the left column. (C) Integrative analysis of differential expression and methylation at selected Meth+/Exp+ (upper), No Meth/Exp+ (mid-
dle), and No Meth/Exp− (lower) genes in 42 IDHwt glioma samples compared with controls (n=8). (D) Integrative analysis of differential gene expres-
sion and methylation in an independent cohort of 135 IDHwt glioma samples (validation cohort) also identified the four main defect classes. Odds ratio
and significance of the overlap (Fisher’s exact test) between the data of the validation cohort and our cohort, for each defect category, are shown on the
right panel.
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The four defect classes include mainly genes with a chromatin

bivalent signature in stem cells

Gene Ontology analysis (Fig. 4A; Supplemental Fig. S5) showed
that the Meth+/Exp− and No Meth/Exp− groups were enriched
in genes involved in transmembrane ion transport, specifically
in synapsis and neurons. Conversely, the No Meth/Exp+ group
was enriched in genes implicated in general processes, such as
cell cycle, cell division, and chromosome segregation. Finally,
the Meth+/Exp+ group was highly enriched in genes encoding
homeodomain proteins, including the HOX family, and implicat-
ed in embryonic development.

Studies on the molecular bases of CGI hypermethylation
have shown that genes with a bivalent chromatin signature in
stem cells are more likely to gain aberrant methylation in cancer
cells (Ohm et al. 2007; Deneberg et al. 2011; Court and Arnaud
2017). To evaluate whether such an instructive program could ap-
ply to some or all genes of the four defect categories, we evaluated
the GCI/promoter chromatin signature of genes in these four cat-
egories in human embryonic stem (ES) cells, in NPCs, and in brain
samples. In agreement with previous findings, most genes in the
Meth+ groups showed bivalent signatures in ES cells and NPC.
This was true regardless of their aberrant expression pattern (i.e.,
both Meth+/Exp− and Meth+/Exp+). Similarly (but more unex-
pectedly), ∼36% and 48% of genes in the No Meth/Exp+ and No
Meth/Exp− groups, respectively, showed a bivalent chromatin sig-

nature in ES cells (comparedwith 24%of all studied genes) (Fig. 4B;
Supplemental Fig. S5).

In agreement with the resolution of the bivalent signature
during development/cell differentiation, the chromatin signature
tended to change toward an exclusive H3K4me3 signature,
but also to a “none” signature (i.e., depleted for both H3K4me3
and H3K27me3) in brain samples (Fig. 4C). In comparison, most
of the transcriptionally unaffected genes maintained their
H3K4me3-only signature from ES cell to brain samples.
Accordingly, the transcriptionally affected genes displayed a dy-
namic expression pattern from ES cells to NPC and brain. This
was true also for the subset of genes in the No Meth/Exp+ and No
Meth/Exp− groups that maintained an exclusive H3K4me3 signa-
ture in ES cells, NPC, and brain, but showed loss and gain of expres-
sion in brain, respectively (Fig. 4C).

Altogether, these findings suggest that genes with a bivalent
chromatin signature in ES cells and/or with a dynamic expression
pattern during neural differentiation are more prone to be deregu-
lated in IDHwt glioma.

CGI/promoter hypermethylation is associated with gain

of expression

Because bisulfite treatment cannot distinguish between methyla-
tion and 5-hydroxymethylation (5-hmC), we evaluated whether

A

B

C

Figure 4. Genes with bivalent chromatin signature in ES cells are more prone to be deregulated in IDHwt glioma. (A) Gene Ontology terms (biological
processes) enriched in genes from the four defect categories. For each category, the four highest terms are shown. (B) Distribution of genes of each defect
category according to their chromatin signature in human ES cells: (none) gray; (bivalent) black; (H3K4me3-only) blue; (H3K27me3-only) purple. As ref-
erence, the distribution of the 14,714 genes analyzed in this study according to their chromatin signatures in human ES cells is shown in the left panel. (C)
Expression level and chromatin signatures of genes of the four defect categories in human ES cells, neural progenitor cells (NPCs), and healthy brain. For
comparison, the same analysis is provided on the right panel for genes without expression defect (unaffected) in IDHwt glioma samples.
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the DNA methylation level detected with the HM450K array at
genes classified in the Meth+/Exp+ group could be explained by
5hmC deposition. By using publicly available 5hmC data for
IDHwt tumors (Johnson et al. 2016), we found that CGI/promoter
regions ofMeth+/Exp+ geneswere devoid of 5hmC (median level =
1.2%), indicating that the signal detected with the HM450K array
was attributable to DNA methylation (Supplemental Fig. S6A).
Note that a similar observation is made at the three other defect
groups (Supplemental Fig. S7).

To determine how DNA hypermethylation and expression
gain could coexist in this group of genes, we next assessed their
CGI/promoter chromatin signature using publicly available
ChIP-seq data for IDHwt glioma cells. Compared with healthy
brain (control), H3K27me3 level was strongly decreased, whereas
H3K4me3 level was increased in ∼65% of these genes and totally
depleted in the others (Fig. 5A).

Analysis of the HM450K data on the localization of hyperme-
thylated sites relative to the transcription start site (TSS) showed
that atH3K4me3-enriched genes, the gain ofDNAmethylation oc-
curred at the border of the CGI/promoter, while the TSS area re-

mained unmethylated (Fig. 5B). Analysis of individual loci in
glioma samples using stranded RNA-seq data suggested that
transcription initiated from H3K4me3-marked TSS embedded in
methylated CGIs (Fig. 5C; Supplemental Fig. S6B). This was ob-
served in several genes that promote gliomagenesis, including
TWIST1 (Mikheev et al. 2018), CTHRC1 (Liu et al. 2017a), and
FOXD3-AS1 (Chen et al. 2016). The H3K4me3 and DNA methyla-
tion signals were mutually exclusive (Fig. 5C; Supplemental Fig.
S6B), in agreement with their documented antagonism (Weber
et al. 2007).

In H3K4me3-depleted genes, DNA methylation was spread
along the entire CGI/promoter, including the TSS (Fig. 5B), sug-
gesting that transcription from these genes could arise from an al-
ternative TSS. Analysis of RNA-seq data supported this hypothesis
because genes, such as HOXC11 and NR2F2, showed transcription
signal from H3K4me3-enriched regions located away from the
documented TSS (Fig 5D; Supplemental Fig. S6C). However, for
few genes, such as HEYL and C15orf48 (Supplemental Fig. S6D),
transcription apparently initiated from amethylated CGI through
an unknown mechanism.

A

B

D

C

Figure 5. Expression from genes with methylated CGI/promoter. (A) Data mining–derived ChIP-seq read density data for H3K27me3 (pink) and
H3K4me3 (blue) in “Meth+/Exp+” genes in a ±2 kb window centered on their TSS, in healthy brain (left) and IDHwt-derived cell lines (right). The mean
ChIP-seq signal values are shown on the lower panels for “Meth+/Exp+” genes (red line) and for the 14,714 analyzed genes (black line) that were used
as normalized reference. (B) Heatmap showing CpG sites density and their mean methylation level in a ±2 kb window centered on the TSS of “Meth+/
Exp+” genes and enriched (upper) or depleted (lower) for H3K4me3 in IDHwt glioma samples compared with healthy controls. The ChIP-seq read density
obtained in IDHwt-derived cell lines is shown on the right panels. (C ) Genome Browser view at the TWIST1 and FOXD3 loci to show H3K4me3 enrichment,
differential DNA methylation, and the oriented RNA-seq signal. These two loci are representative of genes that initiate from an H3K4me3-marked TSS
embedded in a methylated CGI/promoter in IDHwt samples. (D) HOXC11 is representative of genes in which expression initiates from an alternative
TSS in IDHwt glioma samples.
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Altogether, these approaches support the hypothesis that in
Meth+/Exp+ genes, transcription could be allowed by the absence
of DNA methylation at the TSS or the use of alternative TSS.

E2F- and HOX-target genes are frequently overexpressed

in glioma

The publicly availableChIP-seq data indicated that genes in theNo
Meth/Exp+ group were enriched in H3K4me3 and depleted in
H3K27me3 in IDHwt glioma cells compared with healthy brain
(Fig. 6A). We observed this H3K4me3 gain also in the subset of
genes that were constitutively marked by the H3K4me3-only
signature in ES cells, NPC, and brain (Fig. 6A, green rectangle).
To understand the basis of their overexpression in glioma, we de-
termined whether specific motifs were enriched at their CGI/pro-
moters. We found that overall, No Meth/Exp+ genes were
putative targets of transcription factors associated with cell cycle

pathways, including the Krüppel-like factors (KLF)/specificity pro-
tein (SP) and E2F families (Fig. 6B,C). Moreover, most of the
H3K4me3-only genes showed specific motif enrichment for the
E26 transformation-specific (ETS) and nuclear transcription factor
Y (NFY) families. The other NoMeth/Exp+ genes were putative tar-
gets of homeodomain transcription factors, including HOX pro-
teins (Fig. 6B).

Most of these transcription factors were expressed in healthy
controls and remained expressed in glioma samples (Fig. 6C).
However, a subset was specifically overexpressed in IDHwt glioma
samples, includingHOX genes, E2F2, E2F7, ETS1, ETV1, and ETV4
(Fig. 6C, RNA-seq data). We confirmed these findings by RT-qPCR
analysis of selected genes in 42 IDHwt samples (Fig. 6D). Genes en-
coding aberrantly overexpressed transcription factors mostly be-
longed to the Meth+/Exp+ (e.g., HOXA2 and HOXD8) and No
Meth/Exp+ (e.g., E2F2) groups (Supplemental Table S2). This ob-
servation suggests that the initial overexpression of a few key

A B
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C

Figure 6. Transcription factor bindingmotifs in the promoters of genes overexpressed in glioma samples. (A) Datamining–derived ChIP-seq read density
data for H3K27me3 (pink) and H3K4me3 (blue) at “No Meth/Exp+” genes in a ±2 kb window centered on their TSS in healthy brain (left) and IDHwt-de-
rived cell lines (right). The mean ChIP-seq signal values are shown on the lower panel for all “No Meth/Exp+” genes (orange line) and for those that are
(dotted green line) or not (dotted pink line) marked by H3K4me3-only in ES cells, NPC, and brain. The black line, used as normalized reference, shows
the value for all analyzed genes. (B) Transcription factor motif enrichment in the CGI/promoter of “No Meth/Exp+” genes, calculated using i-cis Target
and represented as a normalized enrichment score (NES). Enrichment is shown for genes that are (green squares) or are not (pink squares) marked by
H3K4me3-only in ES cells, NPC, and brain. When a transcription factor possesses several binding motifs, data are presented as a box plot. (C )
Expression status, assessed by RNA-seq, of the transcription factors identified in B. The middle column shows their expression status in healthy control
(n=5) (white, not expressed; gray, expressed: fpkm>1) and the right column their expression in IDHwt glioma samples (n=8). The left column shows
themotif enrichment in all “NoMeth/Exp+” genes (black), and those marked (green) and not marked (pink) by H3K4me3-only in ES cells, NPC, and brain.
(D) Expression versus controls of selected overexpressed transcription factor identified in C assessed by RT-qPCR in 42 IDHwt glioma samples. Details for
each sample are provided in the lower panel (P-value by Mann–Whitney U test).

Court et al.

1612 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 12, 2020 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.249219.119/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


transcription factors could lead to overexpression of most genes
belonging to the No Meth/Exp+ group.

The repressive signature of silenced genes is related to their

transcriptional status in healthy brain

To understand how Meth+/Exp− and No Meth/Exp− genes were
transcriptionally repressed, we compared their chromatin signa-
ture in healthy brain and in glioma cells using publicly available
ChIP-seq data. This highlighted a marked H3K27me3 enrichment
in both groups in glioma samples compared with controls (Fig.
7A). The only exception was the subset of No Meth/Exp− genes
that displayed the constitutive H3K4me3-only signature in ES
cells, NPC, and brain (Fig. 7A, light blue rectangle) andmaintained
this signature in glioma cells. H3K27me3 enrichment in glioma
cells led to a bivalent chromatin signature in the large subset of
genes that were also marked by H3K4me3 (Fig. 7A). At CGIs/pro-

moters of Meth+/Exp− genes, H3K4me3 tended to be reduced
andH3K27me3was enriched (Fig. 7A), suggesting that unlike nor-
mal cells (Brinkman et al. 2012), both H3K27me3 and DNAmeth-
ylation can coexist at CGI/promoters in glioma cells.

ChIP analysis of selected genes from the No Meth/Exp−
group (PCSK6, MAL, SH3GL3, andNKAIN2) confirmed the marked
H3K27me3 gain associated with reduced or unchanged H3K4me3
andH3K9ac levels, according to the studied locus, in the seven gli-
oma samples tested (Fig. 7B,C; Supplemental Fig. S8A). Also, bisul-
fite analysis of the H3K27me3-immunopreciptated fraction
confirmed that both DNA methylation and H3K27me3 coexisted
at CGI/promoters in glioma samples, as exemplified by the meth-
ylable PCSK6 gene (Supplemental Fig. S8B).

Several studies have highlighted that the propensity of genes
to be hypermethylated in cancer cells is related to their transcrip-
tional status in the normal tissue (Gal-Yam et al. 2008; Sproul
et al. 2011, 2012; Hinoue et al. 2012; Court and Arnaud 2017).

A B

C D E F

Figure 7. Gene repression is associated with H3K27me3 gain. (A) Data mining–derived ChIP-seq read density data for H3K27me3 (pink) and H3K4me3
(blue) at “Meth+/Exp−” and “No Meth/Exp−” genes in a ±2 kb window centered on their TSS, in healthy brain (left) and IDHwt-derived cell lines (right).
The mean ChIP-seq signal values are shown in the lower panels for “Meth+/Exp−” (purple line) and “No Meth/Exp−” (blue line) genes. Genes in the “No
Meth/Exp−” group were further subdivided in genes marked (dotted light blue line) and not marked (dotted dark blue line) by H3K4me3-only in ES cells,
NPC, and brain. The black line used as normalized reference shows the value for all analyzed genes. (B) ChIP analysis of H3K9ac, H3K4me3, and H3K27me3
at selected genes in IDHwt (n=7) and control (n=5) samples. The precipitation level was normalized to that obtained at the TBP promoter (for H3K4me3
andH3K9ac) and at the SP6 promoter (for H3K27me3; P-values calculatedwith theMann–WhitneyU test). (C) Detail for each sample of the ChIP analysis at
the PCSK6 locus. Heatmaps of the expression andmethylation values are in the upper panel. (D) Expression level of “Meth+/Exp−” (purple column) and “No
Meth/Exp−” (blue column) genes and of all analyzed genes (white column) in healthy controls. (E,F) Principal component analysis. (E) Two-dimensional
scatter plot of the values of each “Meth+/Exp−” (purple dots) and “NoMeth/Exp−” gene (blue dots) along the first (Dim 1) and second (Dim 2) principal
component. For each class defect, the centroids are shown by colored squares. (F) H3K4me3 and expression levels in healthy brain are the variables that
most contributed to and were significantly correlated with the first principal component.
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Accordingly, we observed that the transcriptional status in brain
discriminated between Meth+/Exp− and No Meth/Exp− genes.
Specifically, DNA methylation–independent silencing (No Meth/
Exp−) mainly affected genes that were highly expressed in normal
brain. Conversely, poorly expressed genes tended to be hyperme-
thylated (Fig. 7D). To more systematically assess the bases of the
differences between these groups, we performed principal compo-
nent analysis (PCA) for all genes in theMeth+/Exp− andNoMeth/
Exp− groups. The first principal component accounted for∼44.5%
of the variance and allowed separating the two groups (centroid
values along the axis: +0.984 and −0.326, respectively) (Fig. 7E).
The observation that the first principal component was sig-
nificantly correlated with the permissive H3K4me3 mark (R=
0.79; P<3.4 × 10−126) and the expression level (R=0.71; P< 1×
10−129) in healthy brain (Fig. 7F) supported the hypothesis that
the expression status in healthy cells contributes to the choice of
silencing pathway used in cancer cells. Additional analyses using
normalized RNA-seq data for 21 different tissues showed that
genes from the No Meth/Exp− group were strongly expressed spe-
cifically in adult brain tissues (Supplemental Fig. S8C,D).

Thus, besides DNAmethylation, H3K27me3 enrichment and
chromatin bivalency emerge as major causes of aberrant gene re-
pression in aggressive glioma cells. The choice between these alter-
native silencing pathways is related to the expression level of the
affected genes in healthy tissues/cells.

The four classes of expression defects are observed also in IDHmut

glioma samples

We next extended our analyses to IDHmut glioma. Integrative
analysis of differential gene expression andmethylation identified
the four main defect classes also in these samples (Supplemental
Fig. S9A–C; Supplemental Table S2). DNA methylation–indepen-
dent defects were the most frequent, although less prominent
than in IDHwt samples. Specifically, the 556 repressed genes
were equally distributed between the No Meth/Exp− (n=294)
and the Meth+/Exp− (n=262) groups (Supplemental Fig. S4).

These observations were validated in an independent cohort
of 415 IDHmut samples derived fromCeccarelli et al. (2016), with a
highly significant overlap in the composition of each defect group
between cohorts (minimal P-value <1×10−40; Fisher’s exact test)
(Supplemental Fig. S9D). We also observed that, as in IDHwt sam-
ples, genes with a bivalent chromatin signature in ES cells and/or
with a dynamic expression pattern during neural differentiation
weremore prone to be deregulated in IDHmut glioma (Supplemen-
tal Fig. S10). Then, to understand the molecular bases of these al-
terations, and in the absence of publicly available ChIP-seq data
on IDHmut samples, we performedChIP analyses at selected genes
from theMeth+/Exp− group (PCSK6 andMAL) andNoMeth/Exp−
group (SH3GL3 and PCDH10) in five IDHmut samples. We found
that H3K27me3 enrichment was associated with reduced or un-
changed H3K4me3 and H3K9ac in function of the studied locus
(Supplemental Fig. S11A). This confirms that, like in IDHwt sam-
ples, gain of H3K27me3 and chromatin bivalency are, besides
DNA methylation, the main hallmarks of repressed genes in IDH-
mut glioma cells. Finally, by considering the expression level in
healthy brain and performing principal component analysis, we
observed that the expression status in healthy cells contributed
to the choice of silencing pathway used in IDHmut cells, with
genes repressed independently of DNA methylation (No Meth/
Exp− group) being mainly genes that were highly expressed in
brain (Supplemental Fig. S11B–D).

Altogether, these approaches show that the main observa-
tions made in IDHwt glioma also apply to IDHmut glioma.

Discussion

Here, we used glioma, one themost widespread brain tumor types,
as a model to evaluate the relative contribution of DNA methyla-
tion–dependent and –independentmechanisms to transcriptional
alteration at CGI/promoter-associated genes in cancer cells. Our
study showed that H3K27me3 level changes are the predominant
molecular defect at both aberrantly repressed and expressed genes.
Moreover, our findings support that H3K27me3 dynamics deregu-
lation, particularly when present in a bivalent context, is themain
cause of transcriptional alteration in glioma cells.

Some studies have described H3K27me3-based transcription-
al repression in cancer cells (Gal-Yam et al. 2008; Kondo et al.
2008; Dudziec et al. 2012; Statham et al. 2012; Hahn et al. 2014).
In colorectal tumors, ectopic gene expression has been associated
with aberrant loss of H3K27me3 from CGI/promoters with biva-
lent chromatin signature (Hahn et al. 2014). Moreover, gene ex-
pression changes in primary human clear cell renal cell
carcinomas can be attributed to chromatin accessibility alter-
ations, independently of DNA methylation (Becket et al. 2016).
Our study further extends these observations and provides, for
the first time, a comprehensive description of these alterations in
glioma samples and their relative contribution to transcriptional
alteration in such tumors. Specifically, our integrative analyses
identified andquantified fourmain types of transcriptional defects
in glioma (Fig. 8) that recapitulate the DNA methylation- and
H3K27me3-based molecular signatures at aberrantly repressed
and expressed CGI/promoter-associated genes. We detected these
defects in IDHwt and also in IDHmut glioma samples (Fig. 8B), in-
dicating that they occur regardless of theG-CIMP status and tumor
aggressiveness. Additional studies are required to determine
whether the relative distribution of these defects can discriminate
different IDHmut subpopulations (e.g., classified according to the
1p/19q codeletion status) and can be associated with specific clin-
ical features. Moreover, these observations prompt to investigate
whether they might apply to cancer cells in general.

Our study revisited the relationship between aberrant tran-
scription andDNAmethylation in cancer cells. First, we confirmed
that gene expression deregulation is very rarely associated with
CGI/promoter DNAhypomethylation in glioma samples, in agree-
ment with the general unmethylated status of CGI/promoters in
healthy cells. Unexpectedly, we found that DNA hypermethyla-
tion is not themain cause of transcriptional repression at CGI/pro-
moter genes, and that it can be associated also with gain of
expression. Indeed,∼16%of ectopically expressed geneswere asso-
ciated with a hypermethylated CGI/promoter in IDHwt glioma
samples. Specifically, in many genes, ectopic expression was asso-
ciated with CGI/promoters that gained methylation at their bor-
ders, whereas the H3K4me3-marked TSS was methylation-free.
At other genes, extensivemethylation of theirmainCGI/promoter
was associated with the use of an alternative promoter. It is not
known whether there is a causal link between these events.
These two distinct signatures have also been described in prostate
cancer cell lines (Bert et al. 2013), suggesting that an association
between CGI/promoter DNA hypermethylation and gain of gene
expression is common in cancer.

Besides the concomitant gain of expression andDNAmethyl-
ation, this group of genes was characterized also by a reduction of
H3K27me3 level in glioma cells (compared with controls),
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suggesting that the interplay between these repressive marks is a
driving force in their transcriptional deregulation. In the mouse,
widespread DNA methylation depletion triggers redistribution of
H3K27me3 (Brinkman et al. 2012; Reddington et al. 2013) that

in turn leads to a loss of H3K27me3 and ectopic expression at a
subset of polycomb target genes, including Hox clusters
(Reddington et al. 2013). Reciprocally, analyses in mouse ES cells
showed that the area close to CGI/promoters of polycomb target

A

B

Figure 8. Working model. (A) In glioma, alterations in the control of the H3K27me3 signature could be one of the main contributors to the four types of
transcriptional defects observed at CGI/promoter-controlled genes (upper). In this model, genome-wide hypomethylation induces H3K27me3 redistribu-
tion that could lead to ectopic expression of genes that are normally repressed by polycomb proteins, including some genes encoding transcription factors.
These overexpressed transcription factors could then promote the aberrant expression of their target genes (dotted arrow). Similarly, alterations in the
interplay between the polycomb complex and the transcriptional machinery could affect H3K27me3 fate during ES and/or neural stem cell differentiation.
Specifically, this alteration could lead to the aberrant maintenance of bivalency and silencing at a subset of genes that are normally specifically expressed in
brain. At genes that are normally poorly expressed in healthy brain, this process is associated with gain of DNAmethylation in glioma. Beside defects in the
H3K27me3 signature, we also identified a subset of genes that are apparently constitutively associated with H3K4me3-only, regardless of their expression
status in brain and glioma (lower). The mechanisms underlying their transcriptional deregulation remain to be determined. (B) Percentage of unaffected
and affected CGI/promoter-controlled genes for each of the four described defects in IDHwt and IDHmut glioma samples from our cohort.
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genes is protected from aberrant DNA methylation gain by poly-
comb proteins (Li et al. 2018). Therefore, the Meth+/Exp+ defect
might affect a subset of polycomb target genes that are particularly
sensitive to the H3K27me3 redistribution induced by the genome-
wide hypomethylation of cancer cells. Noteworthy, in the aggres-
sive IDHwt glioma, this group is enriched in homeodomain genes,
and more specifically in HOX genes. Deregulation of HOX genes
contributes to the tumorigenic potential of glioblastoma stem cells
by activating a network of downstream genes (Gallo et al. 2013).
Accordingly, we observed that many ectopically expressed genes
from the NoMeth/Exp+ group are putative HOX transcription fac-
tor targets. Altogether, our observations support a domino effect
model to account for the gain of expression of CGI/promoter
genes in aggressive glioma. In this model, genome-wide hypome-
thylation leads to ectopic expression (and methylation gain) of
Meth+/Exp+ genes (especially HOX genes) that then promote
gain of expression of target genes from the No Meth/Exp+ group
(Fig. 8A). Additional studies are required to test thismodel and spe-
cifically whether No Meth/Exp+ genes are bona fide HOX tran-
scription factor targets.

Another key finding of our study is that a bivalent chromatin
signature in stem cells may not only predispose genes to hyperme-
thylation, as widely documented (Ohm et al. 2007; Deneberg et al.
2011; Court and Arnaud 2017), butmore globally to transcription-
al alteration in cancer cells. We observed that genes with CGI/pro-
moters marked by a bivalent chromatin signature in ES cells and
NPCweremore prone to be deregulated in glioma samples, regard-
less of the transcriptional defect. This was particularly true for
genes with DNA methylation-associated defects, irrespective of
their association with gain or loss of expression (Meth+/Exp+
and Meth+/Exp−), and to a lesser extent, for genes with DNA
methylation–independent defects (No Meth/Exp+ and No Meth/
Exp−). This observation suggests that defects in the control of
the bivalent chromatin signature, and more specifically of
H3K27me3 dynamics, upon differentiation, are one of the main
causes of transcriptional deregulation of CGI/genes in cancer cells.
Accordingly, we found that aberrant gene repression in glioma
samples affected mainly genes with brain-specific expression,
and thus more sensitive to bivalency alterations upon neural
stem cell differentiation. Besides the functional aberrations of
H3K27me3 and H3K4me3 writers and erasers documented in
many tumors (Suvà et al. 2013; Dawson 2017), these control de-
fects could also result from transcriptional changes in key tissue-
specific transcription factors or cofactors. Studies inmouse ES cells
and tissues showed that their transcriptionally inactive status is
sufficient to promote the recruitment of the polycomb responsive
complex PRC2 and H3K27me3 deposition at CGI/promoters
(Mendenhall et al. 2010; Klose et al. 2013; Riising et al. 2014;
Jadhav et al. 2016; Maupetit-Méhouas et al. 2016). This suggests
that the fate of bivalent chromatin domains upon development/
differentiation relies on the interplay between PRC2 and the avail-
ability of the ad hoc transcriptional machinery. Our observation
that the gene transcription strength in healthy brain influences
the choice of silencing mechanism at repressed genes in glioma
precisely argues for an alteration in this interplay. Specifically,
we propose that following the alteration of a subset of brain-specif-
ic cofactors, the resulting weakened transcriptional machinery
cannot efficiently counteract PRC2 recruitment upon differentia-
tion, leading to aberrant maintenance of chromatin bivalency
and to silencing of a subset of genes that are normally specifically
expressed in brain. Moreover, gain of function of factors that pro-
mote, directly or indirectly, the recruitment of PRC2 at CGI could

facilitate this process. This includes for instance the histone deme-
thylase KDM2B (Farcas et al. 2012;Wu et al. 2013; Blackledge et al.
2014) that is critical in various cancers, including glioma (Staberg
et al. 2018; Yan et al. 2018). At normally poorly expressed genes,
these events associated with the initial weak level of H3K4me3, a
mark that prevents recruitment of DNAmethyltransferases, would
facilitate the subsequent gain of DNA methylation (Fig. 8A).

In addition to genes in which their chromatin signature was
altered in glioma, we also identified a subset of genes with an ap-
parent constitutive H3K4me3-only signature in healthy (ES cells
to brain) and glioma samples, and that showed either gain of ex-
pression (No Meth/Exp+) or aberrant repression (No Meth/Exp−)
in glioma samples (Fig. 8A). Additional studies are required to es-
tablish the molecular bases of these observations. Specifically, it
would be interesting to determine whether the regulation of these
genes in normal and pathological contexts relies exclusively on
the availability of ad hoc transcription factor(s), or whether it is
also associated with not yet identified repressive histone marks.
Moreover, No Meth genes that are ectopically expressed in glioma
samples were also expressed in ES cells and NPC (Fig. 4). Similarly
to genes with bivalent chromatin signature in ES cells whose aber-
rant repression in glioma recapitulated their repression in stem
cells (Fig. 4), this group of genes could contribute to glioma aggres-
siveness by maintaining tumor cells in a stem-cell-like state.

Our study also provides a framework to explain the counterin-
tuitive observation that patients with CIMP-positive IDHmut have
a better clinical outcome thanpatientswithCIMP-negative IDHwt.
Our data indicate that CIMP is observedmainly at genes that are al-
ready repressed in healthy brain. Consequently, the number of de-
regulated genes with CGI/promoters associated with DNA
methylation defects is similar between glioma subtypes. Converse-
ly, thehigher frequency (about two times) ofDNAmethylation–in-
dependent transcriptional alterations in IDHwt than in IDHmut
samples could contribute to the prognosis difference between glio-
ma subtypes. The CIMP-positive status, by promoting stable gene
repression, could also act as a protectivemechanism against cancer
progression, by limiting the tumorepigenetic plasticity and its abil-
ity to adapt to environmental changes, such as metastasis forma-
tion or treatment (Sproul and Meehan 2013). Specifically, among
the many genes that gain expression in IDHwt samples and that
are maintained repressed through gain of methylation in IDHmut
samples (Supplemental Table S4), a dozen are oncogenes with
some documented for their role in glioma biology, such as spalt
like transcription factor 4 (SALL4) (Liu et al. 2017b) and the long
noncoding RNAMIR155 host gene (MIR155HG) (Wu et al. 2017).

In conclusion, our study on the extent and consequences of
epigenetic alterations in glioma indicates that transcriptional de-
regulations relymainly on chromatin-basedDNAmethylation–in-
dependent mechanisms. It also shows that the gene expression
level in healthy tissue influences the type of silencing pathway
used for repression in cancer cells, whereby highly expressed genes
are more likely to be repressed by H3K27me3 rather than DNA
methylation. Besides providing an original framework to under-
stand the epigenetic basis of carcinogenesis, these observations
are also important for the design of drugs to target epigenetic de-
fects in cancer.

Methods

Tumor and control samples

Glioma samples (n=70) resected between 2007 and 2014 were ob-
tained from Clermont-Ferrand University Hospital Center, France
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(anonymized samples from the “Tumorotheque Auvergne
Gliomes,” ethical approval DC-2012-1584). The ethics committees
and the respective competent authorities approved this study. The
study protocols conform to the World Medical Association
Declaration of Helsinki.

Immediately after surgery, samples were snap frozen and
stored in liquid nitrogen. Random sections of each tumor were an-
alyzed under a light microscope after hematoxylin–eosin staining
to determine the extent of necrosis and the percentage of tumor
cells. All glioma samples included >50% of tumor cells. Gliomas
were classified according their IDH1 mutation status: IDHwt (n=
55) and IDHmut (n=15). IDH1 genotyping was performed by
EpigenDx (pyrosequencing assays ADS1703 and ADS1704) (Fogli
et al. 2016).

Eight control brain samples (healthy controls, mean age of
27.3 yr, standard deviation±2 yr) were removed by autopsy 4–16
h after accidental death (Brain and Tissue Bank of Maryland).
These samples, identified by the Brain and Tissue Bank of
Maryland as corpus callosum (n=5) and frontal cortex (n=3), cor-
responded towhitematter enriched in astrocytes and oligodendro-
cytes from which gliomas originate.

Tumor and control samples were homogenized into powder
by cryogenic grinding, equally distributed in at least three vials be-
fore use for matched genomic DNA, RNA, and chromatin extrac-
tion. All samples were stored at −80°C until use. Overall survival
(OS) was calculated as the number of days between the surgery
date and the patient’s death. Tumor resection was classified as
gross total resection, when no enhanced contrast was detected
48 h postsurgery, or as partial resection, when enhanced contrast
was still detected 48 h postsurgery.

The demographic and clinical features are presented in
Supplemental Table S1. The related statistical analyses were per-
formed using the Stata software, version 13 (StataCorp) and the
R software, version 3.3.1 (R Core Team 2016). To test the prognos-
tic value of the patients’ characteristics in univariate analyses, OS
curves were compared between groups using the log-rank test.
Results are expressed as hazard ratios (HRs) and 95%confidence in-
tervals (CIs).

Validation cohorts, obtained from The Cancer Genome Atlas
(TCGA) research network, were described in Ceccarelli et al.
(2016).We retained IDHmut (n=415) and IDHwt (n=134) samples
for which matched DNA methylation (HM450K array) and RNA
expression (RNA-seq) data were available. Clinical and molecular
data on these patients were retrieved from the cBioPortal for
Cancer Genomics (https:// www.cbioportal.org/) (Cerami et al.
2012; Gao et al. 2013); processed RNA-seq and methylation data
were obtained from the TCGA web site (https://portal.gdc.cancer
.gov/) and analyzed as described below. The TCGA ID for each sam-
ple is provided in the Supplemental Table S5.

Genome reference

Arrays (HM450K and Cytoscan HD), as most of the databases
used in this study, are based on the hg19 reference. Moreover,
compared with GRCh37/hg19, a higher fraction of HM450K
probes displays low mapping quality with the GRCh38 assembly
(Zhou et al. 2017). Therefore, we used the hg19 as the genome
reference in this study. Realigning to GRCh38 assembly should
not significantly affect the conclusions of this work as we deter-
mined that among the 11,795 CGI/promoters, all being single
CGI/promoters within the associated gene(s), studied here,
>93% remained single CGI/promoters (i.e., overlap ±1 kb with
the TSS area) within the associated gene(s) in GRCh38. This pro-
portion is maintained when considering only affected CGI/
promoters.

Selection of the genes to be analyzed

The positions of genes and CpG islands (CGI: defined using stan-
dard criteria: GC content ≥50%; length >200 bp; ratio Obs/Exp
CpG >0.6) were downloaded from GENCODE annotation release
V19, and CpG island tracks of UCSC hg19 assembly, respectively.
For each gene, the promoter region was defined as TSS ±1 kb. To
assess the relationship between CGI/promoter methylation status
and gene expression, we first identified the genes associated with
only one promoter with CGI features (n= 15,350). Because our co-
hort included both men and women, we then excluded genes lo-
cated on the X or Y Chromosomes. We finally retained 14,714
genes in which the CGI/promoter is covered by at least two probes
in the HM450K Illumina array.

DNA methylation analyses

DNA extraction

DNA was isolated from frozen tissue samples using the QIAamp
DNA Mini Kit (Qiagen) according to the manufacturer’s
recommendations.

Gene-specific bisulfite sequencing

Bisulfite conversion, PCR amplification, cloning, and sequencing
were performed as previously described (Arnaud et al. 2006).
Details on the primers used are in Supplemental Table S6.

HM450K analysis

The HM450K array data for controls and gliomas sample (eight
normal brain, 55 IDHwt, and 15 IDHmut gliomas) were analyzed
as previously described (Maupetit-Mehouas et al. 2018). Specifi-
cally, DNA bisulfite conversion and array hybridization were per-
formed by Integragen SA, using the Illumina Infinium HD
methylation protocol. β-Values were computed using the
GenomeStudio control interplate normalization and background
subtraction (version 2011.1, manifest files: HumanMethyla-
tion450_1 5017482_v.1.2.bpm). For each sample, β-values with
a detection P-value >0.01 were excluded. All probes with a detec-
tion P-value >0.01 or lacking signal in >5% of our samples were
excluded. Finally, 26,507 probes containing common SNPs
(dbSNP 147) in their last 5 bp or in the CpG sites were discarded.
Because our patient cohort included both men and women,
probes on the X and Y Chromosomes were also excluded from
the analysis. After the implementation of these quality filters, a
total of 443,691 CpG methylation values were considered suit-
able for the downstream analysis. Methylation level at the
14,714 genes (11,795 CGIs) was given by the mean β-value of
all probes located in their CGI. Differential methylation analyses
were performed using the limma R package (Ritchie et al. 2015),
as previously described (Court et al. 2014). These analyses con-
cerned the entire groups (eight controls vs. 55 IDHwt, and eight
controls vs. 15 IDHmut) or only the samples with matched RNA-
seq data (three controls vs. eight IDHwt and three controls vs.
five IDHmut). The HM450K probes were considered differentially
methylated when the FDR was <0.05 and when the β-value
difference between groups was >0.1. To consider only robust
methylation variations, CGI/promoters were classified as hyper-
methylated or hypomethylated only if they included at least
two probes differentially methylated (gain or a loss of methyla-
tion) in their CGI.

To test the robustness of this strategy we performed again the
analyses by using Wilcoxon test, instead of limma (Ritchie et al.
2015), and by including the filters described in Zhou et al.
(2017). For both IDHwt and IDHmut samples, we identified the
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same four groups of defects. At the statistical level, the affected
probes displayed >91% of homology with both tests. In addition,
the percentage of affected genes for each defect only marginally
changed between our initial conditions and these conditions
(Supplemental Fig. S12).

5hmC analysis by data mining

5hmC data from 30 IDHwt glioma samples were retrieved from
Johnson et al. (2016) (GSE73895). β-values, derived from
HM450K arrays hybridized with DNA after conversion with oxida-
tive bisulfite (oxBS) and bisulfite only (BS), were computed as de-
scribed above. The level of 5hmC for each probe and sample was
obtained by subtracting the β-values of oxBS samples from their
corresponding BS pair.

Expression analysis

RNA extraction

RNA was isolated from frozen tissue samples using the
RNeasy Mini Kit (Qiagen), according to the manufacturer’s
recommendations.

RT-qPCR expression analyses

RT-qPCR assays were performed using a microfluidic-based ap-
proach as previously described (Maupetit-Méhouas et al. 2016).
First-strand cDNA was preamplified for 14 cycles with the pool of
primers used for RT-qPCR and the TaqMan PreAmplification
Master Mix (Life Technologies 4488593). Primer sequences are in
Supplemental Table S6. RT-qPCR assays were then performed
and validated using Fluidigm 96.96 Dynamic Arrays and the
BiomarkHD system (Fluidigm) according to themanufacturer’s in-
structions. The relative expression level was quantified with the 2-
dCt. The housekeeping genes PPIA, TBP, and RPL13Awere used to
normalize transcript expression. Each analysis was performed in
duplicate.

RNA-sequencing

RNA-seq was performed using total RNA after ribosomal RNA
depletion (Ribo-Zero rRNA Removal Kit, Illumina) from three
brain, eight IDHwt, and five IDHmut glioma samples. RNAprocess-
ing, rRNA depletion, library preparation, and sequencing on an
Illumina HiSeq 2500 apparatus were performed by Integragen SA
according to the manufacturer’s protocol (mean of 90 million of
paired reads per sample). Stranded RNA-seq reads were mapped
to the human genome (hg19) using TopHat2 (version 2.1.0) and
a transcript annotation file from GENCODE (Release 19) (Kim
et al. 2013). The average alignment ratewas∼94.5%with a concor-
dant pair alignment rate of 92%. Only properly paired reads were
considered for downstream analysis. The read count per gene
was obtained with the HTseq-count script (option: -m intersec-
tion-nonempty -s reverse), and the FPKM gene expression level
was determined with Cuffquant and Cuffnorm from the
Cufflinks suite (version 2.2.1) based on GENCODE V19 transcript
annotation (Trapnell et al. 2010; Anders et al. 2015). Strand-specif-
ic RNA-seq signals were derived from the RNA-seq alignments us-
ing SAMtools, genomeCoverageBed, and bedGraphToBigWig
tools, and visualized using the UCSC Genome Browser (Li et al.
2009; Kent et al. 2010;Quinlan andHall 2010). Differential expres-
sion analyses between controls and glioma samples were based on
read counts using the DESeq2 and edgeR R packages (Robinson
et al. 2010; Love et al. 2014). Genes were considered as differen-
tially expressed between groups when |log2-fold change| >2 with
an adjusted P-value <0.05 in both statistical approaches.

Gene expression data mining

Gene expression levels in several human tissues were obtained
from the Roadmap Epigenomics project (https://egg2.wustl.edu/
roadmap/web_portal/processed_data.html#RNAseq_uni_proc).
The transcription levels in different brain regions were retrieved
from the Gene Expression Omnibus (GEO) database (accession
number GSE33587).

Chromatin analyses

Chromatin immunoprecipitation from glioma samples

Anti-H3K9ac (Millipore 06-942), -H3K4me3 (Diagenode 03-050),
and -H3K27me3 (Millipore 07-449) antibodies were used to assess
the respectivemarks at selected genes by ChIP of native chromatin
isolated from glioma samples and controls as previously described
(Maupetit-Méhouas et al. 2016). Input and antibody-bound frac-
tions were quantified by real-time PCR amplification with the
SYBR Green mixture (Roche) using a LightCycler 480II (Roche) in-
strument. Background precipitation levels were determined by
performing mock precipitations with a nonspecific IgG antiserum
(Sigma-Aldrich C-2288) and were only a fraction of the precipita-
tion levels obtained with the specific antibodies. The bound/input
ratios were calculated and normalized to the precipitation level at
theTBPpromoter for the anti-H3K9ac and -H3K4me3ChIPs and at
the SP6 promoter for the anti-H3K27me3 ChIP. The primers used
are described in Supplemental Table S6.

ChIP-seq data mining associated with chromatin analyses

ChIP-seq data from NPC and brain samples were from the NIH
Roadmap Epigenomics project (http://www.roadmapepigenom
ics.org/) detailed as follows:

For H9-derived NPCs: input (GSM772805), H3K4me3
(GSM77 2736), and H3K27me3 (GSM772801).

In brain: input (GSM772991), H3K4me3 (GSM772996),
H3K2 7me3 (GSM772993), andH3K9me3 (GSM670005).

ChIP-seq data for theH3K4me3 andH3K27me3profiles in glioma-
derived cells were obtained from the GEO database (accession
numbers: GSM1121888 and GSM1121885, respectively).

To describe the histone modification enrichment in each
defect group, the ChIP-seq read densities around TSS (± 2 kb)
were represented by a heatmap in which each line represents
one single promoter. The mean signal around TSS (±2 kb) for
each defect group was compared with themean signal for all genes
included in this study (n=14,714) to correct for the bias attribut-
able to the use of different data sets.

Gene classification according to their chromatin signature

The gene classification according to their chromatin signature (bi-
valent, H3K4me3-only, H3K27me3-only, and none) in human ES
cells is fromCourt and Arnaud (2017). For NPC and brain samples,
this classification was performed as previously described (Court
and Arnaud 2017). Briefly, data for input, H3K4me3, and
H3K27me3 ChIPs were aligned to the hg19 genome assembly.
Peaks were then called withMACS 1.4.2 using the input as control
for peak detection (Zhang et al. 2008). Chromatin signatures were
classified using an in-house R scripts (Supplemental Code).
Specifically, a bivalent region was defined by the overlapping of
H3K4me3 and H3K27me3 peaks for at least 1 kb. H3K4me3-only
and H3K27me3-only regions were identified as 1-kb peaks for
H3K4me3 or H3K27me3 that did not overlap. The rest of the ge-
nome was considered as having a “none” chromatin signature.
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To attribute a chromatin signature to CGI/promoter regions, only
the signature spreading across the CGI region was retained.

Copy number variation analyses

CNV analyses were performed using the Genome-Wide Human
CytoScan HD Array (Affymetrix) and the samples analyzed by
RNA-seq (three controls, eight IDHwt, and five IDHmut glioma
samples). DNA and array data were processed by the Genomic
Platform/Curie Institute according to themanufacturer’s protocol.
Arrays were scanned using an Affymetrix GeneChip Scanner
3000 7G. Scanned data files were analyzed with Affymetrix
Chromosome Analysis Suite v3.1 (ChAS) (Affymetrix) using the
CytoScanHD_Array.na33.annot.db annotation file on the hg19
genome. To findCNVs, single samples were analyzed using the ref-
erence model file “CytoScanHD_Array.na33.r2.REF_MODEL.” To
prevent the detection of false-positive CNVs, only alterations
that involved at least 50 consecutive probes and spanning >100
kb were considered in the analysis. To evaluate genetic alterations
at gene level, themean log2 ratio of the CNV fragment overlapping
with a CGI/promoter region was assigned to each gene. For genes
with a CGI/promoter region not covered by a CNV fragment, the
mean log2 ratio was considered as null. Positive and negative
mean log2 ratios were used to categorize duplicated and deleted re-
gions, respectively. To identify genes, the expression alteration of
which correlates (P<0.05) with CNV changes, the mean log2 ratio
of the CNV values and the normalized pseudo RNA-seq counts for
each transcriptionally affected gene in the same sample were com-
pared using the Pearson’s correlation.

Principal component analysis

The PCA was done with the FactoMineR package using molecular
features (histone modifications, DNA methylation, and expres-
sion) associated with genes from Meth+/Exp− and No Meth/Exp
−the groups in brain (Le et al. 2008). For each gene, the histone
modification levels at the CGI/promoter region (TSS ±1 kb) were
based on the average ChIP-seq signal for H3K4me3, H3K27me3,
and H3K9me3 obtained in brain samples. The DNA methylation
levels were determined by the log2 value of the mean β-value, ob-
tained from eight brain control samples, for all the probes located
in the CGI of that gene. For the transcriptional level, the average
FPKM value from three brain control samples was log2 trans-
formed. Because the different variables usedwere defined by differ-
ent measure units, they were standardized all before the PCA
analysis (i.e., centered and scaled).

Functional annotations

InterPro protein functional classification analysis was performed
using the functional annotation tools in DAVID 6.8 (https
://david.ncifcrf.gov/) (Huang et al. 2009). Gene Ontology analyses
were donewith theGeneRanker tools of theGenomatix suite (http
://www.genomatix.de/). To identify putative regulatory features
linked to the transcriptional defect groups, the CGI positions in
genes were analyzed with i-cis Target (https://gbiomed.kuleuven
.be/apps/lcb/i-cisTarget/) (Herrmann et al. 2012). The comparative
analysis tools were then used to identify specific binding sites.
Because transcription factors could have multiple position weight
matrices (PWM), all normalized enrichment scores (NES) given by
i-cis Target for a factor were displayed in a box plot. The tumor sup-
pressor gene and oncogene lists were obtained from www.ongene
.bioinfo-minzhao.org, www.cta.lncc.br, and www.uniprot.org
with the keywords “tumor suppressor” (KW-0043) and “proto-on-
cogene” (KW-0656).

Data access

Data generated in this study have been submitted to the NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/) under the following accession numbers: GSE123678
for the HM450K DNA methylation data; GSE123682 for the
Cytoscan HD data; and GSE123892 for the oriented RNA-seq
data. Custom R scripts used to perform this study are available as
Supplemental Code.
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