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Robust Internal Model Design by Nonlinear Regression
via Low-Power High-Gain Observers

Michelangelo Bin, Daniele Astolfi and Lorenzo Marconi

Abstract— In this paper we introduce the low-power high-
gain observer, developed in [1], to solve problems of output
regulation for nonlinear systems. We show how the new tool
makes it possible the implementation of high dimensional
controllers, that tipically arise when the ideal steady-state
control that must be generated to secure zero regulation error
is affected by uncertainties.

I. INTRODUCTION

Nonlinear output regulation has been the subject of many
researches in the last decades. Although the internal model
approach has reached a mature stage (see among others [12],
[11], [4], [8] and [3]) some problems are still unsolved as
far as structural or parametric uncertainties are considered
in the steady-state control laws. In this paper, we consider
a class of minimum-phase nonlinear systems, in which the
steady-state control action needed to ensure a zero regulation
error (the so-called “friend”) is assumed to satisfy a possibly
nonlinear regression formula. Under such hypothesis, in [5]
the authors showed how the theory of high-gain observers
stands out as a very effective tool to deal with asymptotic
regulation problems. The main drawback in using such tools
for regulator design, though, is linked to the fact that high
gain structures are hard to implement if the dimension
of the internal model is high. As a matter of fact, the
standard theory of high-gain observers asks that the high-
gain parameter is powered up to the order of the internal
model, with the latter that is equal to the highest order of
derivative of the ”friend” characterizing the regression law
mentioned before. This, in turn, makes the theory ineffective
in practical applications whenever the regression law involves
many time-derivative of the friend. This is the case, in fact,
when the friend has uncertainties (see [7]). Such a drawback
is particularly evident in [9], in which the authors introduced
a new approach to the design of robust internal models,
which, taking advantage of the results of [5], allows one to
deal with parameter uncertainties in the exosystem when the
exogenous input appear as a superposition of some uncertain
linear oscillators. The peculiarity of this approach relies on
the fact that no explicit adaptation scheme is used for the
parameter estimation, rather the robustness features come
from a particular immersion property of the internal model.
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A drawback of this method is given by the fact that the
order of the internal model is increased of four times with
respect to those obtained in the case of known parameters,
requiring hence an equally increase in the order of the high-
gain based controller. In [7] this idea has been developed
further to more general nonlinear exosystems. Although
no complete theoretical foundation is provided, the authors
proposed a general procedure which can be applied case by
case to many instances of nonlinear structures. This approach
leads to robust designs of the internal models, requiring no
knowledge of the parameters and no adaptation. However,
the price to pay resides again in a huge increase of the
internal model dimension, by thus raising the problems of
implementation mentioned before. In this paper we show how
the low power high gain observers, recently introduced in [1],
can be applied to the problem of robust output regulation,
by substantially overtaking the problems linked to the high
power of the high-gain parameter mentioned before.
Notation: We denote a triplet (An, Bn, Cn) of dimension n
in prime form as

An =

(
0(n−1)×1 In−1

0 01×(n−1)

)
, Bn =

(
0(n−1)×1

1

)
,

Cn =
(
1 01×(n−1)

)
.

We denote with | · | any vector or induced matrix norm, with
‖s(·)‖∞ := supt≥0 |s(t)| the infinity norm of a time varying
signal s(t) and with ‖x‖A := infy∈A |x− y| the distance of
a vector x ∈ Rn to a set A ⊂ Rn

II. THE FRAMEWORK OF OUTPUT REGULATION BY
MEANS OF HIGH-GAIN TOOLS

In this paper we consider the class of nonlinear systems
with unitary relative degree that can be written in the form

ż = f(w, z, e)
ė = q(w, z, e) + b(w, z, e)u

(1)

with state (z, e) taking values in Rn × R, input u ∈ R and
regulation error e. The functions f(·), q(·) and b(·) are as-
sumed to be smooth in their arguments. The exogenous signal
w represents reference signals to be tracked and/or possible
disturbances to be rejected. We suppose it is generated by
an exosystem of the form

ẇ = s(w) (2)

where the state w ranges in a compact set W ⊂ Rnw assumed
to be forward invariant for the dynamics of (2). This property
is usually referred to as Poisson stability (see [4]). Finally,
we suppose that the function b(·) is bounded from below



by a positive constant b > 0, namely b(w, z, e) ≥ b for all
(w, z, e) ∈ W × Rn × R. In this framework the problem of
semiglobal output regulation reads as follows: given arbitrary
compact sets W ⊂ Rs, Z ⊂ Rn and E ⊂ R for the initial
conditions (w(0), z(0), e(0)) of (1), (2), design an error-
feedback controller of the form

ξ̇ = ψ(ξ, e), u = γ(ξ, e)

with state ξ ∈ Rd, for some integer d > 0, and a compact
set Ξ ⊂ Rd such that the trajectories of the closed-loop
system originating from W × Z × E × Ξ are bounded and
limt→∞ e(t) = 0 uniformly in the initial conditions. In this
work we show how to solve the aforementioned problem
under a certain number of assumptions.

Assumption 1 There exists a smooth map π : W → Rn
satisfying

Lsπ(w) = f(w, π(w), 0), ∀ w ∈W

and the set

A = {(w, z) ∈W × Rn | z = π(w)} (3)

is asymptotically and locally exponentially stable for system

ẇ = s(w) ż = f(w, z, 0) (4)

with a domain of attraction D ⊃W × Z.

In this setting a crucial role is played by the function

u?(w) := −q(w, π(w), 0)

b(w, π(w), 0)
(5)

As a matter of fact u?(w) is the control action needed to
make the set A × {0} invariant for (1), (2), thus keeping
the regulated error to zero in the steady state. By following
the framework of [5], we make the further assumption that
the function u?(w) satisfies a nonlinear regression formula
of the kind

Ldsu
?(w) = φ(u?(w), Lsu

?(w), . . . , Ld−1s u?(w)) (6)

for any w ∈ W , for some positive integer d and for some
known locally Lipschitz function φ : Rd → R. Under this
hypothesis, in [5] it has been shown that the problem of
output regulation is solved by a regulator of the form

ξ̇ = F (ξ) +Gv , u = γ(ξ) + v (7)

with initial conditions in a compact set Ξ ⊂ Rd and where
the functions F (·), G and γ(·) are chosen as

F (ξ) := Anξ +Bnφs(ξ)
G := col(λ1g, λ2g

2, . . . , λdg
d)

γ(ξ) := Cnξ
(8)

being (An, Bn, Cn) a triplet in prime form of dimension d,
{λ1, . . . , λd} a set of coefficients of an Hurwitz polynomial,
φs(·) a uniformly bounded and locally Lipschitz function
which agrees with φ(·) in A, g > 1 a design parameter, and
v an additional input defined as

v = −sgn(e)κ(|e|)

where κ : R≥0 → R≥0 is a properly defined class-K
function that can be taken linear when the set A is locally
exponentially stable. In [9], moreover, the authors extended
the previous high-gain methodology to the case in which
some unknown model mismatch is present in (6), namely
they showed that, when u?(w) satisfies a relation of the kind

Ldsu
?(w) = φ(u?(w), Lsu

?(w), . . . , Ld−1s u?(w)) + ν(w)
(9)

for some unknown continuous function ν : Rs → R, then
the same regulator (7), (8) achieves practical regulation as
summarized in the forthcoming proposition.

Proposition 1 Let Assumption 1 be fulfilled and assume
u?(w) satisfies (9). Let Ξ be an arbitrary compact set of
Rd, then there exists a g? ≥ 1 and a c̄ > 0 such that, for
any g > g? there exists a κ? > 0 such that for any κ > κ?

the trajectories of the closed loop system (1), (2), (7), (8)
with v = −κe and originating from W × Z × E × Ξ are
bounded and such that

lim sup
t→∞

|e(t)| ≤ c̄

κ gd
max
w∈W

|ν(w)| (10)

For a proof of Proposition 1 the reader is referred to [9,
Theorem 2].

III. ROBUST INTERNAL MODELS BY NONLINEAR
REGRESSIONS

In this section we briefly recall the main results of [7], in
which the function φ(·) in (6) is assumed to be affected by
an uncertain parameter θ ∈ Rp, p > 0. Given two integers
b > a > 0 and a smooth function f : W → R , we denote by
f[a,b] = col(Lasf, . . . , L

b
sf) the vector of the Lie derivatives

of f(·). As a starting point we assume that the function
u?(w) satisfies a regression formula of the kind (6), in which
φ(·) is affine in the unknown parameter vector θ, namely

Lksu
? = h(u?[0,k−1]) + ψ(u?[0,k−1])θ (11)

for some k > 0 and for some smooth functions h : Rk → R
and ψ : Rk → Rp. Taking the i-th Lie derivative of (11),
with i > 0, and collecting the obtained equations yields

u?[k,k+i] = Hi(u
?
[0,k+i−1]) + Ψi(u

?
[0,k+i−1])θ (12)

having denoted with Hi(·) and Ψi(·) the functions

Hi(u
?
[0,k+i−1]) = col(h0(u?[0,k−1]), . . . , hi(u

?
[0,k+i−1]))

Ψi(u
?
[0,k+i−1]) = col(ψ0(u?[0,k−1]), . . . , ψi(u

?
[0,k+i−1]))

being h0(·) = h(·), ψ0(·) = ψ(·) and for j = 1, . . . , i
hj(·) = Lshj−1(·), ψj(·) = Lsψj−1(·). At this point we
make the following assumption.

Assumption 2 There exists m ≥ p− 1 such that

rank
(

Ψm

(
u?[0,k+m−1](w)

))
= p, ∀w ∈W.

If Assumption 2 holds then we have the following result.



Proposition 2 Let (11) holds for some k > 0 and for some
unknown θ ∈ Rp, let Assumption 2 be satisfied by some
m ≥ p−1 and let d = k+m+1. Then there exists a locally
Lipschitz function φ : Rd → R, independent on θ, such that

Ldsu
?(w) = φ(u?(w), . . . , Ld−1s u?(w)) (13)

for all w ∈W .

Proof: Equation (12) for i = m and Assumption 2
yield

θ = Ψ+
m(u?[0,k+m−1])

(
u?[k,k+m] −Hm(u?[0,k+m−1])

)
(14)

for all w ∈ W . Moreover, by taking the (m + 1)-th Lie
derivative of (11) we obtain

Lk+m+1
s u? = hm+1(u?[0,k+m]) + ψm+1(u?[0,k+m])θ. (15)

Now, let φ̄ : u?[0,k+m](W )→ R be the function defined as

φ̄
(
u?[0,k+m]

)
= hm+1(u?[0,k+m]) + ψm+1(u?[0,k+m−1])·

·Ψ+
m(u?[0,k+m−1]) ·

(
u?[k,k+m] −Hm(u?[0,k+m−1])

)
Using Assumption 2 it turns out that φ̄(·) is differentiable
and, by construction, is such that

Lk+m+1
s u?(w) = φ̄

(
u?[0,k+m](w)

)
(16)

Furthermore, by the Kirszbraun theorem (see for instance [6,
Theorem 2.10.43]), there exists a known locally Lipschitz
function φ : Rd → R that agrees with φ̄(·) on u?[0,k+m](W ).
This concludes the proof of the proposition.
As a consequence of proposition 2, if Assumption 2 holds,
we can construct a regulator of the form of (7), (8) with an
extended dimension of d = k+m+1 using in the design any
bounded Lipschitz extension of the function φ̄ in (16). The
main practical drawback of this method, however, relies in
the fact that, in general, the order d of the new regression law
can be very high, and as a consequence, the implementation
of the dynamic regulator (7), (8) may yield implementation
issues. Such design indeed includes powers of the high-gain
parameter g up to order d, and large values of g could easily
lead to the infeasibility of any numerical implementation.
In this work, we want to show how the new class of high-
gain observers introduced in [1], referred to as low-power
high-gain observer, can be applied to this framework in
order to overcome these numerical problems. In particular,
by following the low-power structure proposed in [1], we
show how to implement a dynamic regulator of dimension
2d− 2 with the high-gain parameter which is powered only
up to two, regardless the value of d.

IV. INTERNAL MODEL DESIGN VIA LOW-POWER
HIGH-GAIN OBSERVERS

In this section we design a regulator of the form (7) solving
the semiglobal practical output regulation problem for system
(1), (2), under the same assumptions of Proposition 1. In
particular, inspired by the result in [1] we propose a new
dynamic regulator that achieves an asymptotic bound of the

same form of (10) without implementing terms (g, . . . , gd).
To this end, let (A,B,C) be a triplet in prime form of
dimension 2, N := B>B ∈ R2×2, Γ :=

(
C 0 . . . 0

)
∈

Rd×(2d−2), Ψ := blkdiag (C, . . . , C, I2) ∈ Rd×(2d−2) and
D2(g) := diag(g, g2), with g the high-gain parameter. We
define φs(·) as any bounded locally Lipschitz function which
agrees with φ(·) on the set A. The proposed low-power
regulator of dimension 2d− 2 is defined by (7) with

F (ξ) :=

 F1(ξ)
...

Fd−1(ξ)

, G :=


D2(g)K1

0...
0

, γ(ξ) := Γξ ,

(17)
where

F1(ξ) := Aξ1 +Nξ2 ,

Fi(ξ) := Aξi +Nξi+1 +D2(g)Kiηi ,
i = 2, . . . , d− 2

Fd−1(ξ) := Aξd−1 +Bφs(Ψξ) +D2(g)Kd−1ηd−1 ,

in which ξ = (ξ1, . . . , ξd−1) ∈ R2d−2, ξi ∈ R2, Ki =
col(ki1, ki2) for i = 1, . . . , d− 1, and

ηi := (B>ξi−1 − Cξi), i = 2, . . . , d− 1 .

The following proposition presents the main result of this
paper.

Proposition 3 Let Assumption 1 be fulfilled and assume
u?(w) satisfies (9). Let Ξ be an arbitrary compact set
of R2d−2. Then, there exists a choice of the coefficients
(ki1, ki2), i = 1, . . . , d − 1, a g? ≥ 1 and a µ̄ > 0 such
that for any g > g? there exists a κ? > 0 such that for any
κ > κ? the trajectories of the closed loop system (1), (2),
(7), (17) with v = −κe and originating from W×Z×E×Ξ,
are bounded and such that

lim sup
t→∞

|e(t)| ≤ µ̄

κ gd
max
w∈W

|ν(w)|. (18)

Proposition 3 can be proved similarly to Theorem 2 in [9].
In particular the closed loop system (1), (2), (7), (17) is a
system with unitary relative degree between the input v and
the output e and zero dynamics described by

ẇ = s(w) , ż = f(w, z, 0)

ξ̇1 = Aξ1 +Nξ2 +D2(g)K1(c(w, z)− Cξ1)

ξ̇i = Aξi +Nξi+1 +D2(g)Kiηi
i = 2, . . . , d− 2

ξ̇d−1 = Aξd−1 +Bφs(ξ
′) +D2(g)Kd−1ηd−1

(19)
Under Assumption 1, the zero dynamics (19) of the closed
loop system can be made ISS (input-to-state stable) relatively
to a compact attractor with respect to the input ν(w), as
summarized in the forthcoming technical lemma (proved in
the Appendix). To this end, let define the function τe : W →
R2d−2 as

τe(w) := col(τe1 (w), . . . , τed−1(w)),

τei (w) := col(Li−1s u?(w), Lisu
?(w))



Lemma 1 There exists a constant g? ≥ 1 such that, for any
choice of g > g?, the zero dynamics (19) are ISS relatively
to the set

E =
{

(w, ξ, z)∈W×R2d−2 ×Rn | ξ = τe(w), z = π(w)
}

(20)
with respect to the input ν(w) with an asymptotic bound of
the form

lim sup
t→∞

‖(w, z, ξ)‖E ≤
µ

gd
max
w∈W

|ν(w)| (21)

for some positive constant µ > 0.

Finally, in view of Lemma 1, the small-gain arguments of
[12, Theorem 2 and 3] can be used to show that the claim
of Proposition 3 holds for some constant µ̄ > 0.

We stress that with the proposed design we obtained the
same asymptotic properties (namely a gain 1/gd) of the
standard high-gain design (7), (8), without requiring powers
of the high-gain parameter g of order larger than 2, thus
avoiding numerical problems.

V. EXAMPLE

In this section we propose an example in which the low-
power high-gain observer and the design approach by nonlin-
ear regression are applied together to address a robust output
regulation problem. The control goal is to asymptotically
reject a disturbance which can be indistinguishably generated
by an uncertain linear, Duffing or Van der Pool oscillator
without the need of changing anything in the controller. To
this end, a regression formula of the kind (6) is derived by
following the procedure presented in Section III, with an
overall order of d = 7. Note that such dimension could easily
lead to implementation issues when standard high-gain tools
are used, also for low values of the high-gain parameter g.
The proposed controller, based on the low-power high-gain
observers, instead experiments no particular problem, also
with high values of g. In this example we consider as the
controlled plant the following forced nonlinear oscillator

ẋ1 = −2x1 + x32

ẋ2 = 2x2 − 2x1 + u− w
(22)

where u is the control input and w is the exogenous dis-
turbance, which is assumed to be generated from a linear, a
Duffing or a Van der Pool oscillator with unknown parame-
ters, namely we can assume w to satisfy

ẅ = αw + βẇ + ηw3 + γw2ẇ (23)

which for different configurations of the parameters includes,
among all the others, also the dynamics of interest. In
our example, the control goal is to regulate e = x2 to
zero by error feedback control, asymptotically rejecting the
exogenous disturbance w. Hence to be consistent to the
notation used in Section IV we call e = x2 and z = x1
and we rewrite system (22) as

ż = −2z + e3, ė = 2e− 2z + u− w

which clearly fits into the considered framework. Note that
the steady state control law able to maintain the error

to zero is exactly u?(w) = w, which satisfies (6) with
φ(u?(w), u̇?(w)) given by (23). Therefore, following the
notation of Section III, we define the following regression

L2
su
? = ψ(u?[0,1])θ (24)

being ψ(u?[0,1]) = col(u?, u̇?, u?3, u?2u̇?) and θ =
col(α, β, η, γ). Taking the 4-th Lie derivative of (24) and
collecting the equations yields

u?[2,6] = Ψ4(u?[0,5])θ (25)

where Ψ4(·) ∈ R5×4 is the regression matrix. Assumption 2
can be then tested either numerically (see [7]) or analytically.
Taking the 5-th Lie derivative of (24) yields

u?(7) = ψ5(u?[0,6])
(

Ψ+
4 (u?[0,5])u

?
[2,6]

)
(26)

which has the form (6), with d = 7 and no parameter
appearing. A controller of the form (7), (17) with an overall
dimension of 2(d − 1) = 12 has been used with a properly
saturated version of (26) entering in the last state equation.
The controller design is completed by the choice v = −ke,
where k > 0 is chosen large enough. Figure 1 shows the
simulation results of the overall closed-loop systems subject
to a disturbance w(t) which in the first 10 seconds is a
sinusoid with α = −9, at time t = 10s switches to the output
of a Duffing oscillator obtained with α = 2 and η = −1,
and at time t = 20s switches to the output of a Van der
Pool oscillator obtained with α = −4, β = 1 and γ = −1.
In order to dominate the dynamics of the 7th derivative
of the considered exosystem, we used a gain g = 200.
While with this design the implementation has not problems,
with standard high gain tools we would have had a term of
gd = 2007, which is a 17-digit number which could easily
lead to numerical problems at the implementation phase.

VI. CONCLUSIONS

In this paper we introduced the low-power high-gain
observers in the problem of output regulation. With respect
to standard high-gain tools, the controller exhibits a larger
dimension (2d − 2 instead of d), allowing however the
implementation of much higher dimensional internal models.
In fact, in the new design, the power of the high-gain
parameter g limits to 2 (instead of d) thus avoiding numerical
problems arising when standard high-gain tools are used
for large dimensional internal models. The advantages of
this tool have been shown in the example in Section V.
The structure of the modified low-power high-gain observer
recently introduced in [2] can be also used in order to avoid
peaking phenomenon.
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APPENDIX
PROOF OF LEMMA 1

Proof: Consider the subsystem ξ of (19) and the change
of variables

ξ 7→ ε := Dg(ξ − τe(w)) (27)

with Dg := blkdiag(D1
g , . . . , D

d−1
g ), where Di

g :=
g2−iD2(g)−1 and let define the function

c(w, z) := −q(w, z, 0)

b(w, z, 0)

We start analysing the dynamics of ε = col(ε1, . . . , εd−1)
component-wise, where for each i = 1, . . . , d − 1, εi =
col(εi1, εi2) ∈ R2. For i = 1 we have

ε̇11 = gε12 − gk11ε11 + gk11(c(w, z)− τe11(w))

ε̇11 = gε22 − gk12ε11 + gk12(c(z, w)− τe11(w))

for i = 2, . . . , d− 2 we have

ε̇i1 = gεi2 + gki1ε(i−1)2 − gki1εi1
ε̇i2 = gε(i+1)2 + gki2ε(i−1)2 − gki2εi1

and finally, for i = d− 1 we obtain

ε̇(d−1)1 = gε(d−1)2 + gk(d−1)1(ε(d−2)2 − ε(d−1)1)

ε̇(d−1)2 = g1−d[∆φ(ξ̃, τe(w))− ν(w)]
+gk(d−1)1(ε(d−2)2 − ε(d−1)1)

with

∆φ(ε, τe(w)) := φs(Ψ(D−1g ε+ τe(w)))− φ(Ψτe(w)) .

By defining δ(z, w) = c(w, z)−u?(w), the system ε can be
compactly rewritten as

ε̇ = gMε+ g1−dB2d−2[∆φ(ε, τe(w))− ν(w)] + gHδ(w, z)

being B2d−2 := col(0, . . . , 0, 1) ∈ R2d−2, H :=
col(k11, k12, 0, . . . , 0) ∈ R2d−2 and M defined as

M :=



E1 N 0 . . . . . . 0

Q2 E2 N 0
...

0
. . . . . . . . . . . .

...
...

. . . Qi Ei N
. . .

...
...

. . . . . . . . . . . . 0
...

. . . Qd−2 Ed−2 N
0 . . . . . . . . . 0 Qd−1 Ed−1


where for i = 1, . . . , d − 1, Ei ∈ R2×2, Qi ∈ R2×2 are
defined as

Ei =

(
−ki1 1
−ki2 0

)
, Qi =

(
0 ki1
0 ki2

)
By using Lemma 1 in [1] it is possible to show that the
eigenvalues of matrix M can be assigned arbitrarily with a



suitable choice of the coefficients kij . In particular let fix kij ,
so that M is Hurwitz and let P = P> > 0 be the solution
of the Lyapunov equation PM +MTP = −I . Consider the
Lyapunov candidate

V (ε) =
√
ε>Pε

and note that
√
λ|ε| ≤ V (ε) ≤

√
λ̄|ε|, being λ and λ̄

respectively the smallest and largest eigenvalues of P . Taking
the Dini derivative of V along the solutions yields

D+V = g
ε>(PM +M>P )ε

2
√
ε>Pε

+
ε>√
ε>Pε

(
gPHδ(w, z)

+g1−dB2d−2(∆φ(ε, τe(w))− ν(w))

)
Since τe(W ) is compact and φ(·) and φs(·) are locally
Lipschitz, then there exists ` > 0 such that |∆φ(ε, τe(w))| ≤
`|D−1g ε| ≤ `gd−1|ε| . Moreover, since

|ε|√
ε>Pε

≤ 1√
λ

∀ ε ∈ R2d−2 .

we obtain

D+V ≤ −
( g

2λ̄
− a1

)
V + a2g|δ(w, z)|+

a3
gd−1

|ν(w)|

having defined a1 = `/
√
λ, a2 = |H|λ̄/

√
λ and a3 = 1/

√
λ.

Define g? = max{2λ̄a1, 1} and pick g > g?. Then there
exists c1 > 0 such that

D+V ≤ −gc1V + a2g|δ(w, z)|+ a3g
1−d|ν(w)|

and therefore

V (t) ≤ exp(−gc1 t)V (0)

+
1− exp(−gc1 t)

c1

(
a2 ‖δ(w, z)‖∞ +

a3
gd
‖ν(w)‖∞

)
(28)

and

|ε(t)| ≤ a4 exp(−gc1 t)|ε(0)|+a5 ‖δ(w, z)‖∞+
a6
gd
‖ν(w)‖∞

being a4 =
√
λ̄/λ, a5 = a2/(c1

√
λ) and a6 = a3/(c1

√
λ).

Define Vξ(w, ξ) = V (Dg(ξ − τe(w))) and let B be the set

B :=
{

(w, ξ) ∈W × R2d−2 | ξ = τe(w)
}

From (27) we have that for any g > 1 and any w ∈W

‖(w, ξ)‖B ≤ |ξ − τ
e(w)| ≤ |D−1g ε| ≤ g2d−2√

λ
Vξ(w, ξ)

Moreover let wp ∈ W be such that ‖(w, ξ)‖B = |(w, ξ) −
(wp, τ

e(wp))|. Since τe(·) is smooth and W compact, there
exists Lτ so that the following bound holds

Vξ(w, ξ) ≤
√
λ̄|ε| =

√
λ̄
∣∣Dg(ξ − τe(w))

∣∣
≤
√
λ̄g2−2d|ξ − τe(wp) + τe(wp)− τe(w)|

≤
√
λ̄g2−2d (‖(w, ξ)‖B + |τe(wp)− τe(w)|)

≤
√
λ̄g2−2d(1 + Lτ ) ‖(w, ξ)‖B

Therefore, having defined δ = g2d−2/
√
λ and δ̄ =√

λ̄g2−2d(1 + Lτ ) we obtain δ||(w, ξ)||B ≤ Vξ(w, ξ) ≤
δ̄||(w, ξ)||B and thus we conclude that the (w, ξ) subsystem
is ISS relative to the set B with respect to the inputs ν(w)
and δ(w, z). Consider now the set A defined in (3). From
Assumption 1 and due to converse Lyapunov results (see for
instance Theorem 4 in [12]), there exist a locally Lipschitz
function Vz : W × Rn → R, a constant cz > 0 and two
class-K functions α(·) and ᾱ(·) such that

α(‖(w, z)‖A) ≤ Vz(w, z) ≤ ᾱ(‖(w, z)‖A)

V̇z(z) ≤ −czVz(w, z)

for any (w, z) ∈ W × Z. With wp ∈ W such that
‖(w, z)‖A = |(w, z) − (wp, π(wp))| and bearing in mind
that c(·) and π(·) are smooth and π(W ) is compact, there
exist two constants Lc, Lπ > 0 such that

|δ(w, z)| = |c(w, z)− c(w, π(w))| ≤ Lc(|z − π(w)|)
= Lc(|z − π(wp) + π(wp)− π(w)|)
≤ Lc(‖(w, z)‖A + Lπ|w − wp|)
≤ Lc(1 + Lπ)α−1(Vz(w, z))

Due to the exponential stability of A in Assumption 1
and since w and z range in compact sets, there exists a
constant c2 > 0 such that |δ(w, z)| ≤ c2Vz(w, z). Define
χ = col(w, z, ξ) and let Vχ(χ) = Vξ(w, ξ) + g(a2c2/cz +
1)Vz(w, z). Then we obtain

D+Vχ ≤− gc1Vξ(w, ξ) + a2g|δ(w, z)|+ a3g
1−d|ν(w)|

− gcz(
a2c2
cz

+ 1)Vz(w, z)

≤− gc1Vξ(w, ξ)− gczVz(w, z) + a3g
1−d|ν(w)|

≤ − cχVχ(χ) + a3g
1−d|ν(w)|

being cχ = min{gc1, c2z/(a2c2 + cz)}. Consider now the set
E defined in (20). Since α(·) and ᾱ(·) are linearly bounded,
then there exist two constants β, β̄ > 0 such that

Vχ(χ) = Vξ(w, ξ) + g(
a2c2
cz

+ 1)Vz(w, z)

≤ δ̄ ‖(w, ξ)‖B + g(
a2c2
cz

+ 1)ᾱ(‖(w, z)‖A)

≤ δ̄ ‖χ‖E + g(
a2c2
cz

+ 1)ᾱ(‖χ‖E) ≤ β̄||χ||E

‖χ‖E ≤ ‖(w, ξ)‖B + g(
a2c2
cz

+ 1) ‖(w, z)‖A

≤ δ−1Vξ(ξ) + g(
a2c2
cz

+ 1)α−1(Vz(z)) ≤ β−1Vχ(χ)

Hence β ‖χ‖E ≤ Vχ(χ) ≤ β̄ ‖χ‖E and we obtain that
the zero dynamics (19) of the closed loop system are ISS
relatively to set E with respect to the input ν(w). The
bound claimed in the statement follows by noting that
limt→∞ Vz(t) = 0 and from (28) we have

lim sup
t→∞

Vχ(t) =
a3
c1gd

max
w∈W

|ν(w)|

Therefore from the bounds obtained for ‖χ‖E we obtain (21)
with µ = a3/(c1δ).


