
HAL Id: hal-02304090
https://hal.science/hal-02304090

Preprint submitted on 2 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new algorithm for graph center computation and
graph partitioning according to the distance to the

center
Frédéric Protin

To cite this version:
Frédéric Protin. A new algorithm for graph center computation and graph partitioning according to
the distance to the center. 2019. �hal-02304090�

https://hal.science/hal-02304090
https://hal.archives-ouvertes.fr

A new algorithm for graph center computation

and graph partitioning according to the distance

to the center

Frédéric Protin

2 October 2019

Abstract: We propose a new algorithm for finding the center of a graph, as well
as the rank of each node in the hierarchy of distances to the center. In other
words, our algorithm allows to partition the graph according to nodes distance
to the center. Moreover, the algorithm is parallelizable. We compare the per-
formances of our algorithm with the ones of Floyd-Warshall algorithm, which
is traditionally used for these purposes. We show that, for a large variety of
graphs, our algorithm outperforms the Floyd-Warshall algorithm.

1 Introduction

The center of a non-oriented graph, also called its Jordan center, is the set of
all vertices of minimum eccentricity, that is, the set of all vertices for which
the greatest distance to other vertices is minimal. Equivalently, it is the set of
vertices with eccentricity equal to the graph’s radius. Vertices belonging to the
center are called central nodes. (See e.g. [5] for precise definitions).

Finding the center of a graph is useful e.g. in facility location problems,
where the goal is to minimize the worst-case distance to the facility. For exam-
ple, placing a fire station at a central point reduces the longest distance the fire
truck has to travel. [9] showed that the center of a graph related to a rumor
spread is a good estimator for the rumor source (see also [7]). We are also inter-
ested in partitioning the graph according to nodes distance to the center. This
partitioning is useful, for example, for visualization or reporting, as showed in
Figure 1 below, where the graph represents the cable network between electronic
devices, as proposed in the Connect’it project of the enterprise Activus-group.
Vincent Viton of Activus-group ([12]) suggested to use the nodes hierarchy in
order to improve visualization.

For a non-oriented graph G = (V,E), where V is the set of nodes and E the
set of edges, Bellman-Ford algorithm [2, 8, 10] computes the distance from a
fixed node to every other node. Its complexity is O(|V ||E|), where | · | denotes

1

2 PRINCIPLES OF THE NEW ALGORITHM 2

Figure 1: Application of nodes hierarchization of a graph to visualization. In
this example the graph is a tree.

the cardinal of a set. Therefore, the complexity in the worse case, i.e. for a dense
graph, is O(|V |3). Dijkstra’s algorithm [3], applied to the same graph, returns in
addition the paths from the fixed node to every other node. When applied to our
context of interest, these algorithms return more than the required information,
at the price of being slower than the algorithm we propose in the present work.
Note that another algorithm was proposed in [6] for trees.

2 Principles of the new algorithm

Let G = (V,E) be a connected graph, with V being the set of nodes (or vertices),
and E the set of edges. Recall that the center of the graph G is the set of nodes
that minimizes the greatest distance to the other nodes. Here we consider the
distance dist(·, ·) : V × V → N, where the distance (i, j) between two nodes i
and j is the smallest number of edges in a path joining them. Therefore, the
center of G is the set

C0 :=
{
i ∈ V : max

j
dist(i, j) = min

i
max

j
dist(i, j)

}
.

Besides determining the center of a graph, we also want to obtain a partition
of the graph according to nodes distance to the center :

G =
⊔
n∈N

{
i ∈ V : max

j
dist(i, j) = min

i
max

j
dist(i, j) + n

}
=:

⊔
n∈N
Cn.

Let A denote the adjacency matrix of the graph G. We denote by Ã the
matrix obtained from A by changing the diagonal coefficients into 1, i.e. Ãij =

2 PRINCIPLES OF THE NEW ALGORITHM 3

Aij for i 6= j, and Ãii = 1 for every i. In other words, Ã is the adjacency matrix

of the graph G̃, obtained from G by imposing the fact that every node has a
single edge connecting it to itself.

Note that, for every i, j ∈ V , the coefficient (Ãn)ij of the nth power of the

matrix Ã indicates the number of paths of length at most n going from node i
to node j.

Note also the fact that, if for given i, j ∈ V , n is the smallest integer such
that (Ãn)ij 6= 0, then the shortest path from i to j has length equal to n.

We deduce the following method for computing the center of the graph and
for partitioning it.

The main idea of the algorithm

Compute the successive powers Ãn of the matrix Ã, for n ≥ 1, until at least
one row gets filled with non-null coefficients. More precisely, let us denote by
n0 the smallest power such that the matrix Ãn0 contains at least one row with
no null coefficients:

n0 := min
{
n ≥ 1 : ∃ i ∈ V s.t. (Ãn)ij 6= 0, ∀j ∈ V

}
.

Note that the indexes of those rows in Ãn0 correspond to the center nodes of
the graph and hence form the set C0:

C0 :=
{
i ∈ V : (Ãn0)ij 6= 0, ∀j ∈ V

}
.

In order to completely partition the graph and determine Ck, for every k ≥ 1,
we continue computing successively the powers Ãn, for n = n0 + k, k ≥ 1, until
all the rows of Ãn get filled with non-null coefficients.

Note that for any k ≥ 1, the set Ck is formed by the indexes of the rows
having at least one null coefficient in Ãn0+k−1, but no null coefficients in Ãn0+k:

Ck :=
{
i ∈ V \ Ck−1 : (Ãn0+k)ij 6= 0, ∀j ∈ V

}
.

Note that, since the graph is connected, we have Ck 6= ∅ for k = 0, . . . , r, and
Ck = ∅ for k > r, where r is the radius of the graph.

An improved version

The method presented above solves the problem of finding the center of a graph
and of partitioning the graph, but it is expensive in time. We present in the
following few improvements which significantly diminish the computing time,
resulting in a quite powerful algorithm.

Improvement 1. Note that the only important thing to know about the
coefficients of Ãn, when applying the previous method, is if they vanish or not.

2 PRINCIPLES OF THE NEW ALGORITHM 4

Therefore, the method still works if the non-null coefficients in the matrix Ã, as
well as in its powers, are replaced by 1. Let us formalize this remark, and show
how we can use it in order to accelerate the previously described algorithm.

Denote by M 7→ R(M) the application which replaces each of the coefficients
mij ∈ N of a matrix M by max (mij , 1). Note that this operation commutes
with the matrix product. Consequently, if we want to compute R(AB) for two
matrices A and B with coefficients in N, we can instead prefer to compute the
product R(A)R(B), which gives the same result and faster. Indeed, when we
multiply a row (`1, ..., `k) by a column (c1, ..., ck)T , we can stop the recursive
computation of the scalar product as soon as `i = ci = 1 for some index i, and
return the value 1.

Improvement 2. Since the coefficient (Ãn)ij of Ãn equals the number of paths

of length at most n from node i to node j, the sequence ((Ãn)ij)n is increasing.

Thus (Ãn−1)ij ≥ 1 entails (Ãn)ij ≥ 1. It is therefore useless to compute a

coefficient (Ãn)ij when (Ãn−1)ij ≥ 1.

Improvement 3. A naive way to determine n0 is to compute successively the
terms of the sequence (Ãn)n, until one row gets filled with non-null coefficients.
We propose here a faster way to determine n0, as follows.

We compute recursively the sequence of powers Ã, Ã2, Ã4, Ã16, . . . , Ã2n , . . .,
until at least one row gets filled with non-null coefficients, say for some Ã2m ,
with m ≥ 1. We form a list with all these powers of Ã until Ã2m−1

.
We then construct recursively a subset A of {1, 2, . . . ,m−1}, in the following

manner. We first initialize A := {m − 1}. We then consider one by one the
numbers m − 2,m − 3, . . . , 2, 1 in this order, and add to the current subset A
those numbers k which satisfy the fact that the product Ã2k ·

∏
`∈A, `>k

Ã2` does

not contain any row filled with non-null coefficients.
It is straightforward that

Ãn0−1 =
∏
`∈A

Ã2` ,

and n0 − 1 =
∑
`∈A

2`, which is the unique binary decomposition of n0 − 1.

Improvement 4. Since the graph is non oriented, the matrix Ãn is symmetric
and thus the computing time of Ãn is reduced by half.

A detailed description of the final algorithm using the above improvements
is given in the next section.

3 DESCRIPTION OF THE ALGORITHM 5

3 Description of the algorithm

In this section we present in detail the final algorithm, which takes into account
the main ideas and the improvements previously presented.

Improvements 1, 2 and 4 lead to the following function (called multiply) for
computing R(M ·M2), the product of two matrices M and M2, composed with
the application R described in Improvement 2, which replaces each coefficient
by its maximum with 1. This function will be used for computing the powers
Ãn. The variable width represents the number of rows of the matrix M .

Algorithm 1: def multiply(M : matrix, M2 : matrix, width : int):

M3←M2
for `← 0 to width do

for c← l + 1 to width do
if M3[`][c] = 0 then

for i← 0 to width do
if M [`][i] ≥ 1 and M2[i][c] ≥ 1 then

M3[`][c] = 1
M3[c][`] = 1
break

end

end

end

end

end
return M3

We will also use the following variant (called multiplyIns) which performs
the same multiplication as before, but also inserts the sets Ck, k ≥ 0 into a
dictionary, as the algorithm progresses. The keys of this dictionary are the
nodes of the graph, and the values are the corresponding distances to the center
of the graph.

3 DESCRIPTION OF THE ALGORITHM 6

Algorithm 2: def multiplyIns(M : matrix, M2 : matrix, width : int, round
: int, rows : list of int):

M3←M2
for `← 0 to width do

for c← ` + 1 to width do
if M3[`][c] = 0 then

for i ← 0 to width do
if M [`][i] ≥ 1 and M2[i][c] ≥ 1 then

M3[`][c] = 1
M3[c][`] = 1
/* rows[`] is the number of non-null

coefficients of the `th row of M3. */

rows[`]← rows[`] + 1
rows[c]← rows[c] + 1
if rows[`] = width then

dictNodes[nodes[`]]← round ; // insert data.

end
if lines[c] = width then

dictNodes[nodes[c]]← round ; // insert data.

end

end

end

end

end

end
return M3

The last function we use (called testRow) checks, for a given matrix M , if it
contains any row filled with non-null coefficients.

Algorithm 3: def testRow(M : matrix, width : int):

Result: def testRow(M, width):
output← FALSE
for `← 0 to width do

s← |{x ∈M2[`] : x 6= 0}|; // Number of coefficients 6= 0.
if s = width then

output← TRUE
break

end

end
return output

The final algorithm (called Partitioning) is then the following. Here MAdja-
cency denotes the adjacency matrix of the graph, and width its number of rows,
which are given as input. Identity matrix of order n is denoted Identity(n).

3 DESCRIPTION OF THE ALGORITHM 7

Algorithm 4: Partitioning(MAdjacency : matrix, width : int)

/* Initialization. */

M ←MAdjacency + Identity(width) ; // The matrixList Ã.
M2←M
matrixList← [M] ; // list initialized with the matrix M.

/* Computation of the list of successive powers Ã2n. */

for round← 0 to width do
product← multiply(matrix[−1],matrix[−1], width)
if (product, width); // Check if a row is filled.

then
break

end
matrixList.add(product)

end

/* Computation of Ãn0−1. */

if length(matrixList) ≥ 2 then
encode← length(matrixList)− 1
aux← matrixList[−1]
for round ← 0 to width do

U ← multiply(aux,matrixList[encode-1], width)
if not testRow(U, width); // Check if a row is filled.

then
aux← U

end
encode← encode− 1
if encode = 0 then

break
end

end
M2← aux

end
/* Counting the number of non-null coefficients in each row

*/

for `← 0 to width do
rows[`]← |{x ∈M2[l] : x 6= 0} |; // Nb. of coefficients 6= 0.

/* If the matrix Ã contains a row without null

coefficients, fill the dictionary with center nodes.

*/

if rows[`] = width then
dictNodes[nodes[l]] = 0

end

end
/* Computation of the complete hierarchy of nodes. */

for round ← 0 to width do
if length(dictNodes) = width then

break
end
M2 = multiplyIns(M,M2, width, round, rows)

end
print(dictNodes) ; // print the final result

4 EXPERIMENTAL RESULTS AND CONCLUSIONS 8

Scalability. Each step described in Section 1 is obviously parallelizable. The
proposed algorithm is therefore parallelizable in a straightforward manner.

4 Experimental results and conclusions

An explicit derivation of the computational complexity of the algorithm is a
quite tedious question, because it depends highly on the geometry of the graph.

We choose instead to compare experimentally the algorithm we propose with
the Floyd-Warshall algorithm. Note that, by construction, the computing time
of the algorithm we propose decreases when the connectivity of the graph in-
creases, or equivalently, when the depth of the graph decreases. The worse case
for the algorithm we propose is when the graph is linear. In this case, the Floyd-
Warshall algorithm is faster than our new algorithm, but still the computing
times are of the same order.

The experiments were performed using the library Networkx in Python. We
generated random graphs with a given morphology (number of nodes (N), num-
ber of edges (NA) and depth (P)). Recall that the depth of a graph is the
maximal distance from a node to the center.

In Table 1 we report an extract of our experiments. The computing times
for the Floyd-Warshall algorithm and for the algorithm we propose are reported
in seconds. Unfavorable cases for our proposed algorithm are highlighted in red,
and improvements of a factor ≥ 10 for the computing time with respect to the
Floyd-Warshall algorithm are highlighted in green.

Conclusion. The experiments performed suggest that the algorithm we pro-
pose is faster that the Floyd-Warshall algorithm, except for graphs with a high
ratio P/N .

Note also that the Improvement 3 is optional, but beneficial. We have ex-
perimentally noted that, as we could expect, this improvement slows down the
algorithm a little bit on shallow graphs, but accelerates it a lot on very deep
graphs.

References

[1] S. Warshall, A theorem on Boolean matrices, Journal of the ACM (1962),
9(1), pp. 11–12.

[2] R. Bellman, On a routing problem, Quarterly of Applied Mathematics
(1958), 16, pp. 87–90.

[3] E.W. Dijkstra, A Short Introduction to the Art of Programming, Technis-
che Hogeschool Eindhoven (1971), pp. 67–73.

REFERENCES 9

Table 1: Comparison of computing time (in seconds) of the new algorithm and
the Floyd-Warshall algorithm, for different graph morphologies.

heightGraph morphology Floyd-Warshall New algorithm
N= 500 , NA= 995, P = 15 189 114

N = 500 , NA = 1495, P = 17 198 113
N = 500 , NA = 1491, P = 14 191 97
N = 500 , NA = 1981, P = 14 195 82
N = 500 , NA = 2477, P = 14 201 89
N = 500 , NA = 2962 , P = 14 194 76
N= 500 , NA= 5365 , P = 13 186 62
N= 500 , NA= 14511, P = 13 196 55
N= 500 , NA= 22840 , P = 13 186 49
N= 500 , NA= 40824, P = 13 198 52
N= 500 , NA= 14632, P = 3 203 13
N= 500 , NA= 14515, P = 8 191 26
N= 500 , NA= 14569, P = 6 193 18
N= 500 , NA= 14556, P = 3 193 10
N= 500 , NA= 14550, P = 2 204 8
N= 500 , NA= 14553, P = 1 189 10
N= 500 , NA= 14402, P = 25 198 147
N= 500 , NA= 22563, P = 25 192 132
N= 500 , NA= 2964, P = 26 192 157
N= 500 , NA= 2963, P = 4 196 54
N= 200 , NA= 1161, P = 3 12 2
N= 200 , NA= 2915, P = 8 12 3
N= 200 , NA= 1473, P = 75 13 51
N= 400 , NA= 15075, P = 75 98 383
N= 400 , NA= 17412, P = 25 97 90
N= 400 , NA= 4247, P = 26 99 85
N= 400 , NA= 4276, P = 16 97 43
N= 400 , NA= 30467, P = 15 97 48
N= 400 , NA= 31636, P = 2 100 1
N= 400 , NA= 31329, P = 6 100 10
N= 400 , NA= 17807, P = 7 98 12
N= 400 , NA= 7963, P = 7 100 13
N= 400 , NA= 7964, P = 3 102 6
N= 400 , NA= 4270, P = 5 100 15
N= 600 , NA= 6460, P=6 338 60
N= 800 , NA= 8674, P =6 794 141

N= 800 , NA= 311332, P=5 793 37
N= 1000 , NA= 39301, P = 4 1503 81
N= 1000 , NA= 39164, P = 25 1403 558
N= 1000 , NA= 10868, P = 26 1510 727

N= 200 , NA= 1998, P=26 11 17
N= 300 , NA= 3145, P = 26 41 42

REFERENCES 10

[4] R.W. Floyd, Algorithm 97: Shortest Path, Communications of the ACM
(1962), 5(6), pp. 345.

[5] L. Gross and J. Yellen, Graph Theory and Its Applications, CRC Press
(2019).

[6] S.M. Hedetniemi, E.J. Cockayne and S.T. Hedetniemi, Linear algorithms
for finding the Jordan center and path center of a tree, Transportation
Science (1981), 15(2), pp. 98-114.

[7] R. Krithika, A.K. Mohan and M. Sethumadhavan, Jordan center segrega-
tion: rumors in social media networks, in : Security in Computing and
Communications, 5th International Symposium, SSCC (2017), Manipal,
India.

[8] R. Lester and Jr. Ford, Network Flow Theory, Santa Monica, California,
RAND Corporation (1956), coll. ”Paper P-923”.

[9] W. Luo, W.P. Tay, M. Leng and M.K. Guevara, On the universality of
the Jordan center for estimating the rumor source in a social network,
2015 IEEE International Conference on Digital Signal Processing (DSP),
Singapore (2015), pp. 760-764.

[10] E.F. Moore, The shortest path through a maze, in Proc. Internat. Sympos.
Switching Theory (1957), Part II, pp. 285–292, Harvard Univ. Press.

[11] B. Roy, Transitivité et connexité, C. R. Acad. Sci. Paris (1959), 249, pp.
216–218.

[12] V. Viton (2019), Personal communication.

