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Abstract. Given permutations π, σ1 and σ2, the permutation π (viewed
as a string) is said to be a shuffle of σ1 and σ2, in symbols π ∈ σ1�σ2, if π
can be formed by interleaving the letters of two strings p1 and p2 that are
order-isomorphic to σ1 and σ2, respectively. Given a permutation π ∈ S2n

and a bijective mapping f : Sn → Sn, the f-Unshuffle-Permutation
problem is to decide whether there exists a permutation σ ∈ Sn such that
π ∈ σ� f(σ). We consider here this problem for the following bijective
mappings: inversion, reverse, complementation, and all their possible
compositions. In particular, we present combinatorial results about the
permutations accepted by this problem. As main results, we obtain that
this problem is NP-complete when f is the reverse, the complementation,
or the composition of the reverse with the complementation.

Keywords: Permutation · Shuffle product · Computational complexity.

1 Introduction

Given permutations π, σ1 and σ2, π is said to be a shuffle of σ1 and σ2, in
symbols π ∈ σ1 � σ2, if π is the disjoint union of two patterns p1 and p2 (i.e., if,
viewed as a string, it can be formed by interleaving the letters of p1 and p2) that
are order-isomorphic to σ1 and σ2, respectively. This shuffling operation � was
introduced by Vargas [12] in an algebraic context and was called supershuffle.
In case σ = σ1 = σ2, the permutation π is said to be a square w.r.t. the shuffle
product (or simply a square when clear from the context), and σ is said to
be a square root of π w.r.t. the shuffle product (or simply a square root of π
when clear from the context). Note that a permutation may have several square
roots. For example, π = 18346752 ∈ 1234 � 4321 since π is a shuffle of the
patterns p1 = 1347 and p2 = 8652 that are order-isomorphic to σ1 = 1234 and
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σ2 = 4321, respectively (as shown in 18346752). However, π is not a square.
Besides, π′ = 24317856 is a square as it is a shuffle of the patterns 2175 and 4386
that are both order-isomorphic to 2143 (as shown in 24317856). Note that 2143
is not the unique square root of π′ since π′ is also a shuffle of patterns 2156 and
4378 that are both order-isomorphic to 2134 (as shown in 24317856).

The above definitions are of course intended to be natural counterparts to the
ordinary shuffle of words and languages. Given words u, v1 and v2, u is said to be
a shuffle of v1 and v2 (denoted u ∈ v1 � v2), if u can be formed by interleaving
the letters of v1 and v2 in a way that maintains the left-to-right ordering of the
letter from each word. For example, u = abccbabacbb ∈ abcab� cbabcb (as shown
in abccbabacbb). Similarly, in case v = v1 = v2, the word u is said to be a square
w.r.t. the shuffle product, and v is said to be a square root of u w.r.t. the shuffle
product. For example, abaaabaabb is a square w.r.t. the shuffle product since it
belongs to the shuffle of abaab with itself (as shown in abaaabaabb). Given words

u, v1 and v2, deciding whether u ∈ v1 � v2 is O(|u|2/ log(|u|)) time solvable [6].

To the best of our knowledge, the first O(|u|2) time algorithm for this problem
appeared in [7]. However, deciding whether a given word u is a square w.r.t. the
shuffle product is NP-complete [9, 2]. Finally, for a given word u, deciding whether
there exists a word v such that u is in the shuffle of v with its reverse vR (i.e.,
u ∈ v� vR) is NP-complete as well [9]. However, the problem is polynomial-time
solvable for words built from a binary alphabet.

Coming back to permutations, by using a pattern avoidance criterion on
directed perfect matchings, it is proved in [4] that recognizing permutations that
are squares is NP-complete, and a bijection between (213, 231)-avoiding square
permutations and square binary words is presented. Given (3142, 2413)-avoiding
(a.k.a. separable) permutations π, σ1 and σ2, it can be decided in polynomial
time whether π ∈ σ1 � σ2 [8].

We finally observe that deciding whether a permutation is a shuffle of two
monotone permutations is in P:

(i) merge permutations are the union of two increasing subsequences and
are characterized by the fact that they contain no decreasing subsequence of
length 3 [5], whereas (ii) skew-merged permutations are the union of an increasing
subsequence with a decreasing subsequence and are characterized by the fact
that they contain no subsequence ordered in the same way as 2143 or 3412 [11].

In this paper, we are interested in a generalization of the problem consisting
in recognizing square permutations. We call this new problem the f-Unshuffle-
Permutation problem, which is defined as follows. Given a permutation π ∈ S2n

and a bijective mapping f : Sn → Sn, the f-Unshuffle-Permutation problem
asks whether there exists a permutation σ ∈ Sn such that π ∈ σ� f(σ). We say
in this case that π is a generalized square permutation. In case f = id, the id-
Unshuffle-Permutation problem reduces to recognizing square permutations,
and hence is NP-complete. This paper is devoted to studying the f-Unshuffle-
Permutation problem in case f is either a trivial bijection (identity, complement,
reverse or inverse) or obtained by composing trivial bijections. These bijections act
on permutations by performing a transformation on their permutation matrices
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and can hence be seen as elements of the Dihedral group D4, as discussed in
the next section. The paper is organized as follows. In Section 2, we provide
the needed definitions. Section 3 is devoted to presenting generalized square
permutations and some associated enumerative properties. Finally, in Section 4,
we show hardness of recognizing some generalized square permutations.

2 Definitions

For any nonnegative integer n, [n] is the set {1, . . . , n}. We follow the usual
terminology on words [3]. Let us recall here the most important ones. Let u be a
word. The length of u is denoted by |u|. The empty word, the only word of null
length, is denoted by ε. For any i ∈ [|u|], the i-th letter of u is denoted by u(i). If
I is a subset of [|u|], u|I is the subword of u consisting in the letters of u at the
positions specified by the elements of I. A permutation of size n is a word π of
length n on the alphabet [n] such that each letter admits exactly one occurrence.
The set of all permutations of size n is denoted by Sn.

Definition 1 (Reduced form). If λ is a list of distinct integers, the reduced
form of λ, denoted reduce(λ), is the permutation obtained from λ by replacing
its i-th smallest entry with i. For instance, reduce(31845) = 21534.

Definition 2 (Order-isomorphism). Let λ1 and λ2 be two words of distinct
integers such that reduce(λ1) = reduce(λ2). We say that λ1 and λ2 are order-
isomorphic and we denote it by λ1 ' λ2.

Definition 3 (Pattern containment). A permutation σ is said to be con-
tained in, or to be a subpermutation of, another permutation π, written σ � π,
if π has a (not necessarily contiguous) subsequence whose terms are order-
isomorphic to σ. We also say that π admits an occurrence of the pattern σ.

Thus, σ � π if there is a set I of positions in π such that reduce(π|I) = σ. For

example, 1423 � 149362785 since reduce
(
149362785|{2,3,5,8}

)
= reduce (4968) =

1423.

Definition 4 (Trivial bijections). Let π = π(1)π(2) . . . π(n) be a permutation
of size n. The reverse of π is the permutation r(π) = π(n)π(n− 1) . . . π(1). The
complement of π is the permutation c(π) = π′(1)π′(2) · · ·π′(n), where π′(i) =
n− π(i) + 1. The inverse is the regular group theoretical inverse on permutations,
that is the π(i)-th position of the inverse i(π) is occupied by i. The reverse,
complement and inverse are called the trivial bijections from Sn to itself.

Abusing notations, for any S ⊆ Sn, we let c(S), i(S) and r(S) stand respec-
tively for {c(π) : π ∈ S}, {i(π) : π ∈ S} and {r(π) : π ∈ S}.

Definition 5 (Shuffle). Let σ1 ∈ Sk1 and σ2 ∈ Sk2 be two permutations. A
permutation π = π(1)π(2) . . . π(k1 + k2) is a shuffle of σ1 and σ2 if there is a
subset I of [n] such that π|I ' σ1 and π|Ī ' σ2, where Ī = [n]\ I and n = k1 +k2.
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In other terms, π is obtained by interleaving the letters of two words respectively
order-isomorphic with σ1 and σ2. We denote by σ1 � σ2 the set of all shuffles of
σ1 and σ2.

For example,

12� 21 = {1243, 1324, 1342, 1423, 1432, 2134, 2314, 2341, 2413, 2431,

3124, 3142, 3214, 3241, 3421, 4123, 4132, 4213, 4231, 4312} .

We are now ready to define the f-Unshuffle-Permutation problem we
focus on in this paper.

Definition 6 (f-Unshuffle-Permutation). Given a permutation π ∈ S2n and
a bijective mapping f : Sn → Sn, the f-Unshuffle-Permutation problem is
to decide whether there exists a permutation σ ∈ Sn such that π ∈ σ� f(σ).

3 Generalized square permutations and enumerative
properties

The bijections c, i, and r are involutions and can be seen as particular elements
of the dihedral group D4 encoding all the symmetries of the square. Before
explaining why, let us recall a definition for D4.

The group D4 is generated by two elements a and b subjected exactly to the
nontrivial relations

aa = ε, bbbb = ε, abab = ε, (1)

where ε is the unit of D4. One can think of element a (resp. b) acting on a
square by performing a symmetry through the vertical axis (resp. a 90◦clockwise
rotation). Now, we can regard, for any n ∈ N, each element of D4 as a map
φ : Sn → Sn such that φ(π), π ∈ Sn, is the permutation obtained by performing
on its permutation matrix the transformations specified by φ. The maps c, i, and
r can thus be expressed as

c = bba, i = ba, r = a. (2)

Figure 1 shows the Cayley graph of this group. The main interest of seeing
the three trivial bijections on Sn as elements of D4 lies in the fact that all the
other bijections obtained by composing the trivial ones can be expressed by
compositions of the two elements a and b. This will alow us to gain concision in
some proofs presented in the sequel.

We now turn to defining identity squares, complement squares, reverse squares
and inverse squares that are natural generalizations of square permutations to
trivial bijections from Sn to itself.
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Fig. 1. The Cayley graph of the group D4.

Definition 7 (Square permutations for trivial bijections). For n ∈ N,
define

Sε2n = {π ∈ S2n : ∃σ ∈ Sn, such that π ∈ σ� σ},
Sc

2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� c(σ)},
Sr

2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� r(σ)},
S i

2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� i(σ)}.

We begin by proving that applying any trivial bijection is in some sense
compatible with the shuffle operator.

Lemma 1 (Trivial bijections and shuffle). Let π, σ1 and σ2 be permutations
such that π ∈ σ1 � σ2. Then

– c(π) ∈ c(σ1)� c(σ2);
– r(π) ∈ r(σ1)� r(σ2);
– i(π) ∈ i(σ1)� i(σ2).

Proof. Let n be the size of π. Since π is a shuffle of σ1 and σ2, there is a subset
I = {i1 < · · · < ik} of [n] such that π|I ' σ1 and π|Ī ' σ2.

By setting J = {n− ik + 1 < · · · < n− i1 + 1}, we have

r(π)|J = (π(n) . . . π(1))|J = π(ik) . . . π(i1) ' r(σ1). (3)

For the same reason, we have also r(π)|J̄ ' r(σ2). Hence, r(π) is a shuffle of r(σ1)
and r(σ2).

Now, set J = {π(i) : i ∈ I} = {π(`1) < · · · < π(`k)} where `1, . . . , `k are
elements of I. We have

i(π)|J =
(
π−1(1) . . . π−1(n)

)
|J = π−1(π(`1)) . . . π−1(π(`k)) = `1 . . . `k ' i(σ1).

(4)
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For the same reason, we have also i(π)|J̄ ' i(σ2). Hence, i(π) is also shuffle of
i(σ1) and i(σ2).

Finally, since b = i ◦ r in D4, the map c can be expressed as compositions
involving r and i. Hence, c(π) is a shuffle of c(π1) and c(π2).

The following lemma is well-known and is a consequence of interpreting c, r,
and i as compositions involving a and b according to (2) and the relations (1)
between a and b.

Lemma 2 (Compositions of trivial bijections). For any permutation π,

– (c ◦ r)(π) = (r ◦ c)(π);

– (i ◦ c)(π) = (r ◦ i)(π);

– (i ◦ r)(π) = (c ◦ i)(π).

According to Lemma 2 (and the fact that the group D4 has exactly eight
elements), we thus only need to consider the following compositions in the rest
of the paper.

Definition 8 (Square permutations for compositions of trivial bijec-
tions). For n ∈ N, define

Src
2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (r ◦ c)(σ)},
Sci

2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (c ◦ i)(σ)},
S ic

2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (i ◦ c)(σ)},
S irc

2n = {π ∈ S2n : ∃σ ∈ Sn such that π ∈ σ� (i ◦ r ◦ c)(σ)}.

We hence obtain the eight sets Sε2n, Sc
2n, Sr

2n, S i
2n, Src

2n, Sci
2n, S ic

2n, and S irc
2n

of square permutations provided by Definitions 7 and 8. Let us now investigate
some easy bijective and enumerative properties satisfied by these sets.

Proposition 1 (Bijection between Sc
2n and Sr

2n). For any n ∈ N, i (Sc
2n) =

Sr
2n.

Proof. Let π ∈ S2n. We have

π ∈ Sc
2n ⇔ ∃σ ∈ Sn, π ∈ σ� c(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (i ◦ c)(σ) (Lemma 1)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (r ◦ i)(σ) (Lemma 2)

⇔ ∃σ ∈ Sn, i(π) ∈ σ� r(σ)

⇔ i(π) ∈ Sr
2n.

Proposition 2 (Bijection between S ic
2n and Sci

2n). For any n ∈ N, c
(
S ic

2n

)
=

Sci
2n, i

(
S ic

2n

)
= Sci

2n, and r
(
S ic

2n

)
= Sci

2n.
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Proof. Let π ∈ S2n. We have

π ∈ S ic
2n ⇔ ∃σ ∈ Sn, π ∈ σ� (i ◦ c)(σ)

⇔ ∃σ ∈ Sn, c(π) ∈ c(σ)� (c ◦ i ◦ c)(σ) (Lemma 1)

⇔ ∃σ ∈ Sn, c(π) ∈ σ� (c ◦ i)(σ)

⇔ c(π) ∈ Sci
2n.

Moreover, we have

π ∈ S ic
2n ⇔ ∃σ ∈ Sn, π ∈ σ� (i ◦ c)(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (i ◦ i ◦ c)(σ) (Lemma 1)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (i ◦ r ◦ i)(σ) (Lemma 2)

⇔ ∃σ ∈ Sn, i(π) ∈ σ� (i ◦ r)(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ σ� (c ◦ i)(σ) (Lemma 2)

⇔ i(π) ∈ Sci
2n.

Finally, the fact that i ◦ c ◦ i = r implies that r is also a bijection between S ic
2n

and Sci
2n.

Proposition 3 (Bijection between S i
2n and S irc

2n). For any n ∈ N, (i ◦ c)
(
S irc

2n

)
=

S i
2n.

Proof. Let π ∈ S2n. We have

π ∈ S irc
2n ⇔ ∃σ ∈ Sn, π ∈ σ� (i ◦ r ◦ c)(σ)

⇔ ∃σ ∈ Sn, i(π) ∈ i(σ)� (r ◦ c)(σ) (Lemma 1)

⇔ ∃σ ∈ Sn, (r ◦ i)(π) ∈ (r ◦ i)(σ)� c(σ) (Lemma 1)

⇔ ∃σ ∈ Sn, (i ◦ c)(π) ∈ (i ◦ c)(σ)� c(σ) (Lemma 2)

⇔ ∃σ ∈ Sn, (i ◦ c)(π) ∈ i(σ)� σ

⇔ (i ◦ c)(π) ∈ S i
2n.

To simplify notations, we write sε2n, sc
2n, sr

2n, si
2n, src

2n, sci
2n, sic

2n, and sirc
2n for the

cardinalities of the sets Sε2n, Sc
2n, Sr

2n, S i
2n, Src

2n, Sci
2n, S ic

2n, and S irc
2n , respectively.

Table 1 shows the first cardinalities. We note that, at this time, none of the
corresponding integer sequence does appear in OEIS [10].

Lemma 3 (Upper bound for the number of generalized squares). For
any n ∈ N,

|Q2n| ≤
(

2n− 1

n− 1

)(
2n

n

)
n!, (5)

where Q2n is any of the sets Sε2n, Sc
2n, Sr

2n, S i
2n, Src

2n, Sci
2n, S ic

2n, or S irc
2n .
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n 0 1 2 3 4 5

src2n 1 2 20 472 18 988 1 112 688
sc2n = sr2n 1 2 20 480 19 744 1 185 264
si2n = sirc2n 1 2 20 488 20 250 1 229 858
sε2n 1 2 20 504 21 032 1 293 418
sci2n = sic2n 1 2 20 586 27 990 2 044 596

(2n)! 1 2 24 720 40 320 3 628 800

Table 1. Cardinalities of the sets of square permutations of sizes 0 ≤ 2n ≤ 10.

Proof. This is a consequence of the fact that to construct a permutation π of
Q2n, we can proceed by first choosing a set of n letters among the alphabet [2n]
(
(

2n
n

)
choices), then by specifying an order from left to right for these letters (n!

choices), and finally by deploying the chosen letters onto a set I of n positions
among the set of all possible positions [2n] (

(
2n
n

)
choices). The empty positions

are filled by the unique authorized completion such that π|I ' φ
(
π|Ī
)

where φ is

the considered bijection on Sn. For this reason, there is no more than
(

2n
n

)2
n!

elements in Q2n. The tighter bound (5) is the consequence of the fact that we
can assume that the first position can always be fixed.

Let us denote by S•2n the union of all the sets Sε2n, Sc
2n, Sr

2n, S i
2n, Src

2n, Sci
2n,

S ic
2n, and S irc

2n . We show that S2n and S•2n do not coincide.

Proposition 4 (Existence of non-square permutations). For any n ∈
N, n ≥ 9, S2n 6= S•2n.

Proof. By Lemma 3 (and using its notations), we have

| S•2n | ≤ 8 |Q2n| ≤ 8

(
2n− 1

n− 1

)(
2n

n

)
n!. (6)

The proportion of the elements of S•2n among all the permutations of S2n admits
as upper bound, when n ≥ 1,

| S•2n |
|S2n|

≤
8
(

2n−1
n−1

)(
2n
n

)
n!

(2n)!
= 4

(
2n

n

)
1

n!
. (7)

But 4
(

2n
n

)
1
n! < 1 for n ≥ 9, thereby proving the result.

Proposition 5 (Square permutations in some intersections). Let n ∈ N
such that 2n ≡ 0 (mod 4). Then,

the permutation π = 12 . . . (n− 1)(n) (2n)(2n− 1) . . . (n+ 2)(n+ 1)
belongs to Sε2n ∩ Sr

2n ∩ Sc
2n ∩ S i

2n ∩ Sci
2n ∩ S ic

2n.

Proof. Let I = {1, 3, 5, . . . , 2n− 1} and Ī = [2n] \ I. Then, since

π|I ' 12 . . .
n

2
n(n− 1) . . .

(n
2

+ 1
)
' π|Ī , (8)
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we have π|I ' π|Ī ' i(π|Ī). This shows that π belongs to Sε2n ∩ S i
2n.

Now, let J = {1, 2, . . . , n} and J̄ = [2n] \ J . Then, since

π|J ' 12 . . . n and π|J̄ ' n . . . 21, (9)

we have π|J ' r(π|J̄) ' c(π|J̄) ' (i ◦ c)(π|J̄) ' (c ◦ i)(π|J̄). This shows that π

belongs to Sr
2n ∩ Sc

2n ∩ S ic
2n ∩ Sci

2n.

4 Recognizing generalized square permutations

This section is devoted to proving that deciding membership to Sr
2n, Sc

2n and
Src

2n is NP-complete. The approach relies on constraint directed matchings on
permutations.

Definition 9 (Directed matching on permutations). Let π ∈ Sn. A di-
rected matching on π is a set M of pairwise disjoint arcs (i, j), 1 ≤ i, j ≤ n and
i 6= j, that connect pairs of elements of π. The directed matching M is perfect if
every element of π is the source or the sink of an arc of M.

Definition 10 (Two-arcs pattern occurrences). A two-arc pattern is a
perfect directed matching on the set [4]. A perfect directed matching M on a
permutation π of size 2n admits an occurrence of a two-arc pattern A if there is
an increasing map φ : [4] → [2n] (i.e., i < i′ implies φ(i) < φ(i′)) such that, if
(i, i′) is an arc of A, then (φ(i), φ(i′)) is an arc of M. We say moreover that M
avoids A if A does not admits any occurrence of A.

We shall draw two-arcs patterns by unlabeled graphs wherein vertices are
implicitly indexed from 1 to 4 from left to right. Figure 4 shows an example of a
directed perfect matching on a permutation. The directed matching does contain

the patterns , , , and and does avoid the patterns

, , , , , and .

1
2

2
5

3
4

4
8

5
1

6
7

7
6

8
3

π =

M

Fig. 2. A directed perfect matchingM = {(1, 5), (4, 2), (7, 3), (6, 8)} on the permutation
π = 25481763. Recall that arcs refer to positions in π.

In case π is written as a concatenation of contiguous patterns π = π1 π2 · · · πk,
we write Mπi→πj for the subset of arcs of M with source index in πi and sink
index in πj . Hence,

M =
⊔
i∈[k]
j∈[k]

Mπi→πj . (10)
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The following properties will prove useful for defining equivalences between
squares and restricted directed perfect matchings.

Definition 11 (Property P1 — Order isomorphism). Let π be a permu-
tation. A directed perfect matching M on π is said to have property P1 if, for
any two distinct arcs (i, i′) and (j, j′) of M, we have π(i) < π(j) if and only if
π(i′) < π(j′).

Definition 12 (Property P2 — Order anti-isomorphism). Let π be a per-
mutation. A directed perfect matching M on π is said to have property P2 if, for
any two distinct arcs (i, i′) and (j, j′) of M, we have π(i) < π(j) if and only if
π(i′) > π(j′).

Definition 13 (Property Q1 — First start first terminal). Let π be a
permutation. A directed perfect matching M on π is said to have property Q1 if
it avoids the following set of two-arcs patterns:

Q1 =

{
, , , , ,

}
.

Definition 14 (Property Q2 — First start last terminal). Let π be a
permutation. A directed perfect matching M on π is said to have property Q2 if
it avoids the following set of two-arcs patterns:

Q2 =

{
, , , , ,

}
.

Observe that Q1 tQ2 is the set of all two-arcs patterns.

Theorem 1 ([4]). Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Sε2n.
2. There exists a directed perfect matching M on π that satisfies properties P1

and Q1.

The following two definitions will intervene in the next constructions.

Definition 15 (Lifting). Let π = π(1)π(2) . . . π(n) be a permutation of size n
and k be a positive integer. We call k-lifting of π, denoted π[k], the permutation
(k + π(1)) (k + π(2)) . . . (k + π(n)) on the alphabet {k + 1, . . . , k + n}.

Definition 16 (Monotone). For any positive integer k, we let ↗k stand for
the increasing permutation 1 2 . . . k and ↘k stand for the decreasing permutation
k (k − 1) . . . 1.

Lemma 4 (One shot lemma). Let π ∈ S2n and M be a perfect directed
matching on π that satisfies properties Pi and Qj, i ∈ {1, 2} and j ∈ {1, 2}.
Then, the perfect directed matching M′ obtained by reversing each arc of M
satisfies properties Pi and Qj.
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Lemma 5. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]},
i21 < i22 < · · · < i2n, be such that I1 ∩ I2 = ∅. The directed perfect matching

M = ([2n], E) defined by E =
{(
i1j , i

2
j

)
: j ∈ [n]

}
avoids the patterns ,

, , , , and .

Proof. Suppose, aiming at a contradiction, that M does contain the pattern

, , , , , or , say for arcs
(
i1j , i

2
j

)
and

(
i1k, i

2
k

)
.

Wlog, assume i1j < i1k (see Figure 3). This is a contradiction since i1j < i1k implies

j < k, and hence, i2j < i2k.

i2k i2j i1j i1k i2k i1j i2j i1k i1j i2k i1k i2j
(i) (ii) (iii)

i1j i1k i2k i2j i2k i1j i1k i2j i1j i2k i2j i1k
(iv) (v) (vi)

Fig. 3. Arcs (i1j , i
2
j ) and (i1k, i

2
k) with i1j < i2k.

Lemma 6. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]},
i21 < i22 < · · · < i2n, be such that I1 ∩ I2 = ∅. The directed perfect matching

M = ([2n], E) defined by E =
{(
i1j , i

2
n−j+1

)
: j ∈ [n]

}
avoids the patterns ,

, , , , and .

Proof. Suppose, aiming at a contradiction, thatM does contain the pattern ,

, , , , or , say for arcs
(
i1j , i

2
n−j+1

)
and

(
i1k, i

2
n−k+1

)
.

Wlog, assume i1j < i1k (see Figure 4). This is a contradiction since i1j < i1k implies

j < k, and hence, i2n−j+1 > i2n−k+1.

Proposition 6. Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Sr
2n.

2. There exists a directed perfect matching M on π that satisfies properties P1

and Q2.

Proof. (1 ⇒ 2) Let π ∈ Sr
2n. Then, there exists σ ∈ Sn such that π ∈ σ �

r(σ), and hence there exist two disjoint set of indexes I1 = {i1j : j ∈ [n]},
i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, such that
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i2n−j+1 i1j i2n−k+1 i1k i2n−j+1 i1j i1k i2n−k+1 i1j i2n−j+1 i
2
n−k+1 i1k

(i) (ii) (iii)

i1j i2n−j+1 i1k i2n−k+1 i2n−j+1 i
2
n−k+1 i1j i1k i1j i1k i2n−j+1 i

2
n−k+1

(iv) (v) (vi)

Fig. 4. Arcs (i1j , i
2
n−j+1) and (i1k, i

2
n−k+1) with i1j < i2k.

π(i11)π(i12) · · ·π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · ·π(i2n) is order-
isomorphic to r(σ). Let M = (V,E) be the directed graph defined by V = [2n]
and E =

{(
i1j , i

2
n−j+1

)
: j ∈ [n]

}
. Clearly, M is a directed perfect matching

since I1 ∩ I2 = ∅ and I1 ∪ I2 = [2n]. According to Lemma 6, M does avoid

the patterns , , , , , and . Finally, for any two
distinct arcs

(
i1j , i

2
n−j+1

)
and

(
i1k, i

2
n−k+1

)
of M, we have π

(
i1j
)
< π

(
i1k
)

if and

only if π
(
i2n−j+1

)
< π

(
i2n−k+1

)
since π(i11)π(i12) · · ·π(i1n) is order-isomorphic to

σ and π(i21)π(i22) · · ·π(i2n) is order-isomorphic to r(σ). Therefore, M satisfies
properties P1 and Q2.

i2p i1j i2n−j+1 i1q i2p i1j i1q i2n−j+1 i1j i2p i2n−j+1 i1q
(i) (ii) (iii)

i1j i2p i1q i2n−j+1 i2p i2n−j+1 i1j i1q i1j i1q i2p i2n−j+1

(iv) (v) (vi)

Fig. 5. All possible configurations considered in Proof of Proposition 6 (2⇒ 1).

(2⇒ 1) Let M be a directed perfect matching that satisfies properties P1

and Q2. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, be the set of the sources of

the arcs of M and let I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, be the set of the

sinks of the arcs of M. We first show that, for every j ∈ [n],
(
i1j , i

2
n−j+1

)
is an

arc of M. The proof is by induction on j = 1, 2, . . . , n.

– Base. Suppose, aiming at a contradiction that
(
i11, i

2
n

)
is not an arc of M.

Then, there exist 1 ≤ p < n and 1 < q ≤ n such that
(
i11, i

2
p

)
and

(
i1q, i

2
n

)
are

two arcs of M. But i11 < i1q and i2p < i2n, and hence one of the configurations
of Figure 5 (with j = 1 and k = n) does occur in M. This is a contradiction
since M satisfies Property Q2, and hence

(
i11, i

2
n

)
is an arc of M.

– Induction step. Assume that
(
i1k, i

2
n−k+1

)
is an arc of M for 1 ≤ k < j, and

suppose, aiming at a contradiction, that
(
i1j , i

2
n−j+1

)
is not an arc of M.
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Then, there exist 1 ≤ p < n − j + 1 and j < q ≤ n such that
(
i1j , i

2
p

)
and(

i1q, i
2
n−j+1

)
are two arcs of M. But i1j < i1q and i2p < i2n−j+1, and hence one

of the configurations of Figure 5 does occur in M. This is a contradiction
since M satisfies Property Q2, and hence

(
i1j , i

2
n−j+1

)
is an arc of M.

Now, let σ1 be the pattern of π induced by the sources of M and σ2 be the
pattern of π induced by the sinks of M (i.e., σ1 = π

(
i11
)
π
(
i12
)
. . . π

(
i1n
)

and

σ2 = π
(
j2
1

)
π
(
j2
2

)
. . . π

(
i2n
)
). Clearly σ1 and σ2 are disjoint in π (since M is a

matching) and cover π (since M is perfect). Moreover, the fact that M satisfies
P1 implies immediately that reduce(σ1) is order-isomorphic to (reduce ◦ r)(σ2),
and hence this shows that π ∈ Sr

2n.

Lemma 7. Let π ∈ S2n and M be a perfect directed matching on π that avoids

the patterns , , , and . Then, for any arc (i, j) ∈M, either
1 ≤ i ≤ n < j ≤ 2n or 1 ≤ j ≤ n < i ≤ 2n.

Proof. We only prove the case 1 ≤ i ≤ n < j ≤ 2n since the proof for 1 ≤ j ≤
n < i ≤ 2n is similar.

Suppose, aiming at a contradiction, that there exists an arc (i, j) ∈M with

1 ≤ i < j ≤ n. SinceM avoids the patterns , , and , there
is no arc (k, `) ∈ M with j < k ≤ 2n and j < ` ≤ 2n, k 6= `. Then it follows
that there exist 2n− j ≥ n distinct arcs (k, `) ∈M with 1 ≤ min{k, `} ≤ j − 1
and j + 1 ≤ max{k, `} ≤ 2n, k 6= `. This is a contradiction since (i, j) ∈M with
1 ≤ i < j ≤ n.

The following technical lemma is needed to simplify the proof of upcoming
Proposition 7.

Lemma 8. Let k, `1, `2, `3 and `4 be positive integers and π ∈ Sr
2k+`1+`2+`3+`4

be the permutation defined by π = X1 L X2 X3 R X4, where X1 = µ1[k + `2],
L =↗k [`2], X2 = µ2, X3 = µ3[k + `1 + `2], R = ↘k[k + `1 + `2 + `3] and
X4 = µ4[2k + `1 + `2 + `3] for some permutations µi ∈ S`i , 1 ≤ i ≤ 4 (see
Figure 6). Let M be a directed perfect matching on π that satisfies properties P1

and Q2. IfML→R 6= ∅ orMR→L 6= ∅, then either |ML→R| = k or |MR→L| = k.

Proof. Suppose first, aiming at a contradiction, thatML→R 6= ∅ andMR→L 6= ∅.
Let (i, j) ∈ML→R and (i′, j′) ∈MR→L. By construction, we have π(i) < π(i′)
and π(j) > π(j′) thereby contradicting Property P1. Then it follows that either
ML→R 6= ∅ or MR→L 6= ∅, but not both.

Suppose now that ML→R 6= ∅ and MR→L = ∅ (the case ML→R = ∅ and
MR→L 6= ∅ can be proved with the same arguments). Suppose, aiming at a
contradiction, that |ML→R| 6= k and let (i, j) ∈ML→R. According to Lemma 7,
we are left with considering the four following cases.

– There exists (i′, j′) ∈ ML→µ3
. Since M avoids , we have i < i′, and

hence π(i) < π(i′) and π(j) > π(j′). This is a contradiction sinceM satisfies
Property P1.
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– There exists (i′, j′) ∈Mµ3→L and hence π(i) < π(i′) and π(j) > π(j′). This
is a contradiction since M satisfies Property P1.

– There exists (i′, j′) ∈ ML→µ4
. Since M avoids , we have i′ < i, and

hence π(i) > π(i′) and π(j) < π(j′). This is a contradiction sinceM satisfies
Property P1.

– There exists (i′, j′) ∈Mµ4→L and hence π(i) < π(i′) and π(j) > π(j′). This
is a contradiction since M satisfies Property P1.

Therefore, |ML→R| = k.

µ1

L

µ2

µ3

R

µ4

`2

k

`1

`3

k

`4

Fig. 6. Ilustration of Lemma 8, where π = X1 L X2 X3 R X4.

Proposition 7. r-Unshuffle-Permutation is NP-complete.

Proof. We reduce from Permutation Pattern which, given two permutations
π ∈ Sn and σ ∈ Sk with k ≤ n, asks whether σ is a pattern of π. Permutation
Pattern is known to be NP-complete [1]. Let π ∈ Sn and k ∈ Sk be an instance
of Permutation Pattern. Set N2 = n+ k + 1 and N1 = 2N2. Define a target
permutation µ ∈ S2n+2k+2N1+2N2 by µ = µπ µ2 µ1 µσ µ′2 µ′π µ′1 µ′σ, where

µσ = σ, µπ = π[k +N1 +N2],

µ′π = r(π)[2n+ k + 2N1 + 2N2] µ′σ = r(σ)[n+ k +N1 + 2N2],

µ1 =↗N1
[k], µ′1 =↘N1

[2n+ k +N1 + 2N2],

µ2 =↗N2
[k +N1], µ′2 =↘N2

[n+ k +N1 +N2].

Clearly, the construction can be carried out in polynomial time. We claim
that σ is a pattern of π if and only if µ ∈ Sr

2n+2k+2N1+2N2
.

(⇒) Suppose that σ is a pattern of π. Then there exist indices P = {p1, p2, . . . , pk},
1 ≤ p1 < p2 < · · · < pk ≤ n, such that σ and π(p1)π(p2) · · · π(pk) are
order-isomorphic. For the sake of simplification, let Q = [n] \ P and write
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µπ

µ2

µ1

µσ

µ′2

µ′π

µ′1

µ′σ

k

N1

N2

n

N2

n

N1

k

Fig. 7. Schematic representation of the construction used in Proposition 7.

Q = {q1, q2, · · · , qn−k}, 1 ≤ q1 < q2 < · · · < qn−k ≤ n. Define a directed
matching

M =Mµσ→µ′
π
]Mµ′

π→µπ ]Mµπ→µ′
σ
]Mµ1→µ′

1
]Mµ2→µ′

2

on µ as follows.

Mµσ→µ′
π

= {(n+N1 +N2 + i, n+ k +N1 + 2N2 + pi) : 1 ≤ i ≤ k}
Mµ′

π→µπ = {(2n+ k +N1 + 2N2 − qi + 1, qi) : 1 ≤ i ≤ n− k}
Mµπ→µ′

σ
= {(pi, 2n+ 2k + 2N1 + 2N2 − i) : 1 ≤ i ≤ k}

Mµ1→µ′
1

= {(n+N2 + i, 2n+ k + 2N1 + 2N2 − i+ 1) : 1 ≤ i ≤ N1}
Mµ′

2→µ2
= {(n+ k +N1 + 2N2 − i+ 1, n+ i) : 1 ≤ i ≤ N2}.

Informally,

– Mµσ→µ′
π

is the directed (left-to-right) matching describing the (reversed)
occurrence of σ in r(π),

– Mµ′
π→µπ is the directed (right-to-left) matching connecting the elements of

r(π) and π that are not part of the occurrence of σ in π,

– Mµπ→µ′
σ

is the directed (left-to-right) matching describing the (reversed)
occurrence of r(σ) in π,

– Mµ1→µ′
1

is a directed (left-to-right) matching that fully connects µ1 to µ′1
and

– Mµ′
2→µ2

is a directed (right-to-left) matching that fully connects µ′2 to µ2.
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It is now a simple matter to check that M is a directed matching on µ that
satisfies properties P1 and Q2. Therefore, according to Proposition 6, µ ∈
Sr

2n+2k+2N1+2N2
.

(⇐) Suppose that µ ∈ Sr
2n. Therefore, according to Proposition 6, there exists

a directed perfect matching M on µ that satisfies properties P1 and Q2. We
begin with a sequence of claims that help defining the general structure of M.

Claim. We may assume that |Mµ1→µ′
1
| = N1.

Proof. Combining Lemma 7 and N1 = 2N2 > n + k + N2, we conclude that
Mµ1→µ′

1
6= ∅ or Mµ′

1→µ1
6= ∅. Thus, applying Lemma 8, we obtain |Mµ1→µ′

1
| =

N1 or |Mµ′
1→µ1

| = N1. Therefore, by Lemma 4 (One shot lemma), we may
assume that Mµ1→µ′

1
6= ∅.

Claim. Assuming |Mµ1→µ′
1
| = N1, we have |Mµ′

2→µ2
| = N2.

Proof. Combining Claim 4, Lemma 7 and N2 > n + k, we conclude that
Mµ2→µ′

2
6= ∅ orMµ′

2→µ2
6= ∅. Applying Lemma 8, we obtain |Mµ2→µ′

2
| = N2 or

|Mµ′
2→µ2

| = N2. The claim now follows from Mµ1→µ′
1
6= ∅ (Claim 4) and the

fact that M avoids (Property Q2).

From the above two claims and the fact that M avoids (Property Q2),
we conclude that |Mµσ→µ′

π
| = k. But M satisfies Property P1 and hence there

exists an occurrence of r(σ) in r(π). It follows that σ is a pattern of π.

Proposition 8. Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Sc
2n.

2. There exists a directed perfect matching M that satisfies properties P2

and Q1.

Proof. (1 ⇒ 2) Let π ∈ Sr
2n. Then, there exists σ ∈ Sn such that π ∈ σ �

c(σ), and hence there exist two disjoint set of indices I1 = {i1j : j ∈ [n]},
i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, such that

π(i11)π(i12) · · ·π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · ·π(i2n) is order-
isomorphic to c(σ). Let M = (V,E) be the directed graph defined by V = [2n]
and E =

{(
i1j , i

2
j

)
: j ∈ [n]

}
. Clearly, M is a directed perfect matching since

I1 ∩ I2 = ∅ and I1 ∪ I2 = [2n]. According to Lemma 5, the directed perfect

matching M does avoid the patterns , , , , , .
Finally, for any two distinct arcs

(
i1j , i

2
j

)
and

(
i1k, i

2
k

)
ofM, we have π

(
i1j
)
< π

(
i1k
)

if and only if π
(
i2j
)
> π

(
i2k
)

since π(i11)π(i12) · · ·π(i1n) is order-isomorphic to σ

and π(i21)π(i22) · · ·π(i2n) is order-isomorphic to c(σ) (and hence π(i2j ) = n− π(i1j )

and π(i2k) = n− π(i1k)). Therefore, M satisfies properties P2 and Q1.
(2⇒ 1) Let M be a directed perfect matching that satisfies properties P2

and Q1. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, be the set the sources of the

arcs of M and let I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, be the set of the sinks

of the arcs of M. We first show that, for every j ∈ [n],
(
i1j , i

2
j

)
is an arc of M.

The proof is by induction on j = 1, 2, · · · , n.
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i2j i2p i1j i1q i2j i1j i2p i1q

(i) (ii)

i1j i2j i1q i2p i1j i1q i2j i2p

(iii) (iv)

i2j i1j i1q i2p i1j i2j i2p i1q
(v) (vi)

Fig. 8. All possible configurations considered in Proof of Proposition 8 (2⇒ 1).

– Base. Suppose, aiming at a contradiction that
(
i11, i

2
1

)
is not an arc of M.

Then, there exist 1 < p ≤ n and 1 < q ≤ n such that
(
i11, i

2
p

)
and

(
i1q, i

2
1

)
are

two arcs of M. But i11 < i1q and i21 < i2p, and hence one of the configurations
of Figure 8 (with j = 1) does occur in M. This is a contradiction since M
satisfies Property Q1, and hence

(
i11, i

2
1

)
is an arc of M.

– Induction step. Assume that
(
i1k, i

2
n−k+1

)
is an arc of M for 1 ≤ k < j, and

suppose, aiming at a contradiction, that
(
i1j , i

2
j

)
is not an arc of M. Then,

there exist j < p ≤ n and j < q ≤ n such that
(
i1j , i

2
p

)
and

(
i1q, i

2
n−j+1

)
are

two arcs of M. But i1j < i1q and i2j < i2p, and hence one of the configurations
of Figure 8 does occur in M. This is a contradiction since M satisfies
Property Q1, and hence

(
i1j , i

2
j

)
is an arc of M.

Now, let σ1 be the pattern of π induced by the sources of M and σ2 be the
pattern of π induced by the sinks of M (i.e., σ1 = π

(
i11
)
π
(
i12
)
. . . π

(
i1n
)

and

σ2 = π
(
j2
1

)
π
(
j2
2

)
. . . π

(
i2n
)
). Clearly σ1 and σ2 are disjoint in π (since M is a

matching) and cover π (since M is perfect). Moreover, the fact that M satisfies
P2 implies immediately that reduce(σ1) is order-isomorphic to (reduce ◦ c)(σ2),
and hence this shows that π ∈ Sc

2n.

Corollary 1. c-Unshuffle-Permutation is NP-complete.

Proof. Combine Proposition 7 with Proposition 1.

Proposition 9. Let π ∈ S2n. The two following statements are equivalent.

1. π ∈ Src
2n.
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2. There exists a directed perfect matching M that satisfies properties P2

and Q2.

Proof. (1 ⇒ 2) Let π ∈ Src
2n. Then, there exists σ ∈ Sn such that π ∈ σ �

(r ◦ c)(σ), and hence there exist two disjoint set of indices I1 = {i1j : j ∈ [n]},
i11 < i12 < · · · < i1n, and I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, such that

π(i11)π(i12) · · ·π(i1n) is order-isomorphic to σ and π(i21)π(i22) · · ·π(i2n) is order-
isomorphic to (r ◦ c)(σ). LetM = (V,E) be the directed graph defined by V = [2n]
and E =

{(
i1j , i

2
n−j+1

)
: j ∈ [n]

}
. Clearly,M is a directed perfect matching since

I1 ∩ I2 = ∅ and I1 ∪ I2 = [2n]. According to Lemma 6, the directed perfect

matchingM does avoid the patterns , , , , and .
Finally, for any two distinct arcs

(
i1j , i

2
n−j+1

)
and

(
i1k, i

2
n−k+1

)
of M, we have

π
(
i1j
)
< π

(
i1k
)

if and only if π
(
i2n−j+1

)
> π

(
i2n−k+1

)
since π(i11)π(i12) · · ·π(i1n)

is order-isomorphic to σ and π(i21)π(i22) · · ·π(i2n) is order-isomorphic to (r ◦ c)(σ).
Therefore, M satisfies properties P1 and Q2.

i2p i1j i2n−j+1 i1q i2p i1j i1q i2n−j+1

(i) (ii)

i1j i2p i2n−j+1 i1q i1j i2p i1q i2n−j+1

(iii) (iv)

i2p i2n−j+1 i1j i1q i1j i1q i2p i2n−j+1

(v) (vi)

Fig. 9. All possible configurations considered in Proof of Proposition 9 (2⇒ 1).

(2⇒ 1) Let M be a directed perfect matching that satisfies properties P1

and Q2. Let I1 = {i1j : j ∈ [n]}, i11 < i12 < · · · < i1n, be the set the sources of the

arcs of M and let I2 = {i2j : j ∈ [n]}, i21 < i22 < · · · < i2n, be the set of the sinks

of the arcs of M. We first show that, for every j ∈ [n],
(
i1j , i

2
n−j+1

)
is an arc of

M. The proof is by induction on j = 1, 2, · · · , n.
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– Base. Suppose, aiming at a contradiction that
(
i11, i

2
n

)
is not an arc of M.

Then, there exist 1 ≤ p < n and 1 < q ≤ n such that
(
i11, i

2
p

)
and

(
i1q, i

2
n

)
are

two arcs of M. But i11 < i1q and i2p < i2n, and hence one of the configurations
of Figure 9 (with j = 1 and k = n) does occur in M. This is a contradiction
since M satisfies Property Q2, and hence

(
i11, i

2
n

)
is an arc of M.

– Induction step. Assume that
(
i1k, i

2
n−k+1

)
is an arc of M for 1 ≤ k < j, and

suppose, aiming at a contradiction, that
(
i1j , i

2
n−j+1

)
is not an arc of M.

Then, there exist 1 ≤ p < n − j + 1 and j < q ≤ n such that
(
i1j , i

2
p

)
and(

i1q, i
2
n−j+1

)
are two arcs of M. But i1j < i1q and i2p < i2n−j+1, and hence one

of the configurations of Figure 9 does occur in M. This is a contradiction
since M satisfies Property Q2, and hence

(
i1j , i

2
n−j+1

)
is an arc of M.

Now, let σ1 be the pattern of π induced by the sources of M and σ2 be the
pattern of π induced by the sinks of M (i.e., σ1 = π

(
i11
)
π
(
i12
)
. . . π

(
i1n
)

and

σ2 = π
(
j2
1

)
π
(
j2
2

)
. . . π

(
i2n
)
). Clearly σ1 and σ2 are disjoint in π (since M is a

matching) and cover π (since M is perfect). Moreover, the fact that M satisfies
P2 implies immediately that reduce(σ1) is order-isomorphic to (reduce ◦ r ◦ c)(σ2),
and hence this shows that π ∈ Src

2n.

Proposition 10. (r ◦ c)-Unshuffle-Permutation is NP-complete.

Proof (sketch). The proof is similar to Proposition 7, replacing µ′1 by ↗N1

[2n+k+N1+2N2], µ′2 by↗N2
[n+k+N1+N2], µ′π by (r ◦ c)(π)[2n+k+2N1+2N2]

and µ′σ by (r ◦ c)(σ)[n+ k +N1 + 2N2].

5 Conclusion and perspectives

In this paper we have proposed to investigate the problem of recognizing those
permutations π for which there exists a permutation σ such that π ∈ σ� f(σ)
for some bijection f : Sn → Sn. Quite a number of problems are left open by
the results presented here. For instance, can we efficiently decide membership to
S i

2n (i.e., the permutations π for witch there exists a permutation σ such that
π ∈ σ� i(σ))? To conclude, we wish to mention two conjectures.

Conjecture 1 (Enumeration). For any n ∈ N, src
2n ≤ sc

2n = sr
2n ≤ sirc

2n = si
2n ≤

sε2n ≤ sci
2n = sic

2n.

Conjecture 2 (Ubiquitous generalized squares). For any n ∈ N, Sε2n ∩ Sr
2n ∩ Sc

2n ∩
S i

2n ∩ Sci
2n ∩ S ic

2n ∩ Src
2n ∩ S irc

2n 6= ∅.
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