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Limit theorem for reflected random walks

Hoang-Long Ngo and Marc Peigné

Abstract Let ξn,n ∈ N be a sequence of i.i.d. random variables with values in Z.
The associated random walk on Z is S(n) = ξ1 + · · · + ξn+1 and the corresponding
“reflected walk” on N0 is the Markov chain X = (X(n))n≥0 given by X(0) = x ∈ N0
and X(n+1) = |X(n)+ξn+1 | for n ≥ 0. It iswell know that the reflectedwalk (X(n))n≥0
is null-recurrent when the ξn are square integrable and centered. In this paper, we
prove that the process (X(n))n≥0, properly rescaled, converges in distribution towards
the reflected Brownian motion on R+, when E[ξ2

n] < +∞,E[(ξ
−
n )

3] < +∞ and the ξn
are aperiodic and centered.

1 Introduction and Notations

Let (ξn)n≥1 be a sequence of Z-valued, independent and identically distributed
random variables, with common law µ defined on a probability space (Ω,F ,P). We
denote S = (S(n))n≥0 the classical random walks with steps ξk defined by S(0) = 0
and S(n) = ξ1 + . . . + ξn for any n ≥ 1.

Throughout this paper, we denote N0 the set of non-negative integers and we
consider the reflected random walk (X(n))n≥0 on N0 defined by

X(n + 1) = |X(n) + ξn+1 |, for n ≥ 0,

where X(0) is a N0-valued random variables. When X(0) = x P-a.s., with x ∈ N0,
the process (X(n))n≥0 is also denoted by (Xx(n))n≥0. It evolves as the random walk
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x + S(n) as long as it stays non negative. When x + S(n) enters the set of negative
integers, the sign of its value is changed; the same construction thus applies starting
from |x + S(n)|, . . . and so on.

The process (Xx(n))n≥0 is a Markov chain on N0 starting from x. Several papers
describing its stochastic behavior have been published; we refer to [16] where the
recurrence of the reflected random walk is studied under some conditions which are
nearly to be optimal. The reader may find also several references therein.

Firstly, (Xx(n))n≥0 has some similarities with the classical random walk on R; for
instance, a strong law of large numbers holds, namely

lim
n→+∞

Xx(n)
n
= 0 P-a.s.

when E[|ξn |] < +∞ and E[ξn ] = 0 (see Lemma 4 in section 3). Nevertheless, in
contrast to what holds for the classical random walk on R, this does not yield to
the recurrence of (Xx(n))n≥0. In [16], it is proved that the process (Xx(n))n≥0 is
null-recurrent when E[|ξn |3/2] < +∞ and E[ξn] = 0 and that (Xx(n))n≥0 may be
transient when E[|ξn |3/2] = +∞, even if E[|ξn |3/2−ε ] < +∞ for any ε > 0. The reader
can find in [12] a necessary and sufficient condition for the recurrence of (Xx(n))n≥0
(see Theorem 4.6) but this condition cannot be reduced to the existence of some
moments.

Once the strong law of large number holds, it is natural to study the oscillations
of the process around its expectation. Let us state our result.

Theorem 1 Let (ξn)n≥1 be a sequence of Z-valued i.i.d. random variables such that

A1. E[ξ2
n] = σ

2 < +∞ and E[(ξ−n )3] < +∞ (
1
);

A2. E[ξn] = 0;
A3. The distribution of the ξn is strongly aperiodic, i.e. the support of the distribution

of ξn is not included in the coset of a proper subgroup of Z.

Let (X(t))t≥0 be the continuous time process constructed from the sequence (X(n))n≥0
by linear interpolation between the values at integer points. Then, as n → +∞, the
sequence of stochastic processes (Xn(t))n≥1, defined by

Xn(t) :=
1

σ
√

n
X(nt), n ≥ 1,0 ≤ t ≤ 1,

weakly converges in the space of continuous functions on [0,1] to the absolute value
(|B(t)|)t≥0 of the Brownian motion on R.

Let us insist on the fact that Xx(n) coincides with x + S(n) as long as it stays
non-negative, but after it may differ drastically. The sequence of successive reflection
times of (Xx(n))n≥0 introduces some strong inhomogeneity on time and makes it
necessary to adopt a totally different approach to prove an invariance principle as
stated above.

1 ξ−n = max(0, −ξn) denotes the negative part of ξn
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A model which is quite similar to (Xn(x))n≥0 is the queuing process (W x(n))n≥0,
also called the Lindley process, corresponding to the waiting times in a single server
queue. We think to (W x(n))n≥0 as an absorbing random walk on N0; as W x(n), it
evolves as the random walk x + S(n) as long as it stays non-negative and, when it
attempts to cross 0 and become negative, the new value is reset to 0 before continuing.
We refer to [15] for precise descriptions and variations on this process and follow
the same strategy to obtain the invariance principle.

The excursions of (W x(n))n≥0 and (Xx(n))n≥0 between two consecutively times
of absorption-reflection coincide with some parts of the trajectory of (S(n))n≥0, up
to a translation; thus, their study is related to the fluctuations of (S(n))n≥0. Hence,
as in [15], we introduce the sequence of strictly descending ladder epochs (`l)l≥0 of
the random walk (S(n))n≥0 defined inductively by `0 = 0 and, for any l ≥ 1,

`l+1 := min{n > `l | S(n) < S(`l)}.

When E[|ξn |] < +∞ and E[ξn] = 0, the random variables `1, `2− `1, `3− `2, . . . are P-
a.s. finite and i.i.d. and the same property holds for the random variables S(`1),S(`2)−
S(`1),S(`3)−S(`2), . . .. In other words, the processes (`l)l≥0 and (S(`l))l≥0 are random
walks on N0 and Z with respective distribution L(`1) and L(S(`1)).

Let us briefly point out the main difference between (W x(n))n≥0 and (X(n))n≥0.
At an absorption time, the value of the process W x(n) is reset to 0 before continuing
as a classical randomwalk for a while: there is a total loss of memory of the past after
each absorption. Rather, at a reflection time, the process Xx(n) equals the absolute
value of x+S(n). This value is the “new” starting point of the process, for a while, and
has a great influence on the next reflection time; in other words, the process always
captures some memory of the past at any time of reflection. This phenomenon has
to be taken into account and requires a precise study of the sub-process (X(rk))k≥0
of (X(n))n≥0 corresponding to these successive times (rk)k≥0 of reflection; our
strategy consists in studying the spectrum of the transition probabilities matrix R of
(X(rk))k≥0, acting on some Banach space B = Bα of functions from N0 to C with
growth less than xα at infinity, for some α > 0 to be fixed. In particular, in order
to apply recent results on renewal sequences [9], we need precise estimates on the
tail of distribution of the reflection times; this is the main reason of the restrictive
assumption E[(ξ−n )3] < +∞ instead of moment of order 2, as we could expect. More
precisely, throughout the paper, we need the following properties to be satisfied:

(i) The operator R acts on Bα.
This holds when E[|S(`1)|1+α] < +∞ and yields to the condition E[(ξ−n )2+α] <
+∞ (see Proposition 1).

(ii) The function N0 → N0, x 7→ x, belongs to Bα; this imposes the condition α ≥ 1
(see Proposition 2).

Eventually, we fix α = 1 from Section 1 on.
Notations. Throughout the text, we use the following notations. Let u = (un)n≥0 and
v = (vn)n≥0 be two sequences of positive reals; we write
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• u
c
� v (or simply u � v) when un ≤ cvn for some constant c > 0 and n large

enough;
• un ∼ vn when limn→+∞

un

vn
= 1.

• un ≈ vn when limn→+∞(un − vn) = 0.
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2 Fluctuations of random walks and auxiliary estimates

2.1 On the fluctuation of random walks

Let h be the Green function of the random walk (S(`l))l≥0, called sometimes the
“descending renewal function” of S, defined by

h(x) =


+∞∑
l=0
P[S(`l) ≥ −x] if x ≥ 0,

0 otherwise.

The function h is harmonic for the random walk (S(n))n≥0 killed when it reaches
the negative half line (−∞; 0]; namely, for any x ≥ 0,

E[h(x + ξ1); x + ξ1 > 0] = h(x).

This holds for any oscillating random walk, possible without finite second moment.
Similarly, we denote h̃ the ascending renewal function of the random walk

(S(n))n≥0 (i.e the descending renewal function of (−S(n))n≥0).
Both functions h and h̃ are increasing, h(0) = h̃(0) = 1 and h(x) = O(x), h̃(x) =

O(x) as x → +∞ (see [2], p. 648).
We have also to take into account the fact that the random walk S does not always

start from the origin; hence, for any x ≥ 0, we set τS(x) := inf{n ≥ 1 : x+S(n) < 0};
it holds

[τS(x) > n] = [Ln ≥ −x],
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where Ln = min(S(1), . . . ,S(n)). The following result is a combination of Theorem
2 and Proposition 11 in [7] and Theorem A in [13] (see also Theorems II.6 and II.7
in [14]).

Lemma 1 For any x ≥ 0,

1.
P[τS(x) > n] ∼ c1

h(x)
√

n
as n→ +∞,

where c1 =
E[−S`1 ]

σ
√

2π
. Moreover, there exists a constant C1 > 0 such that for any

x ≥ 0 and n ≥ 1,
P[τS(x) > n] ≤ C1

h(x)
√

n
.

2. For any x, y ≥ 0,

P[τS(x) > n, x + S(n) = y] ∼
1

σ
√

2π
h(x)h̃(y)

n3/2 as n→ +∞,

and there exists a constant C2 > 0 such that, for any any x, y ≥ 0 and n ≥ 1,

P[τS(x) > n, x + S(n) = y] ≤ C2
h(x)h̃(y)

n3/2 .

These assertions yield a precise estimate of the probability P[τS(x) = n] itself, and
not only the tail of the distribution of τS . As a direct consequence, the sequence
of descending ladder epochs (`l)l≥1 of the random walk (S(n))n≥0 satisfies some
renewal theorem [7]. Let us state these two consequences which enlighten the next
section where similar statements concerning the successive epochs of reflections of
the reflected random are proved.

Corollary 1 For any x ≥ 0,

P[τS(x) = n] ∼
c1
2

h(x)
1

n3/2 as n→ +∞,

and there exists a constant C3 > 0 such that, for any x ≥ 0 and n ≥ 1,

P[τS(x) = n] ≤ C3
h(x)
n3/2 .

Furthermore,
+∞∑
l=0
P[`l = n] ∼

1
c1π

1
√

n
as n→ +∞.
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2.2 Conditional limit theorems

The following statement corresponds to Lemma 2.3 in [2]; the symbol “⇒ ” means
“weak convergence".

Lemma 2 Assume E(ξ2
i ) < +∞ and E(ξi) = 0. Then, for any x ≥ 0,

L

(( S([nt])
σ
√

n

)
0≤t≤1

|min{S(1), . . . ,S(n)} ≥ −x
)
⇒ L(L+) as n→ +∞,

where L+ is the Brownian meander.
In particular, for any bounded and Lipschitz continuous function φ : R→ R,

lim
n→+∞

E

[
φ

(
x + S(n)
σ
√

n

) ���τS(x) > n
]
=

∫ +∞

0
φ(z)ze−z

2/2dz.

This Lemma is useful in the sequel to control the fluctuations of the excursions of the
process (X(n))n≥0 between two successive times of reflection. In order to control also
the higher dimensional distributions of these excursions, we need some invariance
principle for random walk bridges conditioned to stay positive. The following result
corresponds in our setting to Corollary 2.5 in [5].

Lemma 3 For any bounded, Lipschitz continuous function φ : R→ R, any x, y ≥ 0,
and any t > s > 0,

lim
n→+∞

E

[
φ

(
x + S([ns])
σ
√

n

) ���τS(x) > [nt], x + S([nt]) = y

]
=

∫ +∞

0
2φ(u
√

s) exp

(
−

u2

2 s
t
t−s
t

)
u2√

2π s3

t3
(t−s)3

t3

du.

3 On the sub-process of reflections

We present briefly some results from [8] and [16]. The reflected times rn,n ≥ 0, of
the random walk (X(n))n≥0 are defined by: for any x ≥ 0,

r0 = r0(x) = 0 and rn+1 = inf{m > rn | X(rn) + ξrn+1 + · · · + ξm < 0}.

Notice that these random variables areN0∪{+∞}-valued stopping timeswith respect
to the filtration (Gn)n≥0.

When E[|ξn |] < +∞ and E[ξn] = 0, the random walk (S(n))n≥0 is oscillating,
hence the rn,n ≥ 0, are all finite P-a.s. and S(n)/n converges P-a.s. towards 0. The
strong law of large numbers is still true for the reflected random walk (Xx(n))n≥0 on
N0 but does not derive directly.
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Lemma 4 If E[|ξn |] < +∞ and E[ξn] = 0, then, for any x ∈ N0,

lim
n→+∞

Xx(n)
n
= 0 P-a.s.

Proof For any n ≥ 1, there exists a (random) integer kn ≥ 1 such that rkn ≤ n <
rkn+1. It holds

Xx(n) = Xx(rkn ) +
(
ξrkn+1 + · · · + ξn

)
= Xx(rkn ) + S(n) − S(rkn ),

so that

0 ≤
Xx(n)

n
=

Xx(rkn )
n

+
S(n)

n
−

S(rkn )
n
≤

max{|ξ1 |, . . . , |ξn |}

n
+

S(n)
n
−

S(rkn )
n

.

The first term on the right hand side converges P-a.s. towards 0 since E[|ξn |] <
+∞.

By the strong law of large number, the second term tends P-a.s. to 0.

At last, the same property holds for the last term, since
���S(rkn )

n

��� = ���S(rkn )
rkn

���× rkn
n
≤���S(rkn )

rkn

���. �

It follows from Lemma 2.3 in [17] that the sub-process of reflections (X(rk))k≥0 is
a Markov chain on N0 with transition probability R given by: for all x, y ∈ N0,

R(x, y) =

{
0 if y = 0∑x

w=0 U∗(−w)µ∗(w − x − y) if y ≥ 1,
(1)

where µ∗ is the distribution of S(`1) and U∗ =
+∞∑
n=0
(µ∗)?n denotes its potential.

Set C := sup{y ≥ 1 : µ(−y) > 0}. The support of µ∗ equals Z− = Z ∩ (−∞,0)
when C = +∞, otherwise it is {−C, . . . ,−1}; furthermore, U∗(−w) > 0 for any
w ≥ 0. Then, R(x, y) > 0 if and only if y ∈ Sr , where Sr = N0 \ {0} when C = +∞
and Sr = {1, . . . ,C} otherwise. Consequently, the set Sr is the unique irreducible
and ergodic class of the Markov chain (X(rk))k≥0 and this chain is aperiodic on Sr .

The measure ν on N0 defined by

ν(x) =
+∞∑
y=1

(1
2
µ∗(−x) + µ∗

(
(−x − y,−x)

)
+

1
2
µ∗(−x − y)

)
µ∗(−y),

is, up to a multiplicative constant, the unique stationary measure for (X(rk))k≥0; its
support equals Sr (see Theorem 3.6 [17]).
Notice that this measure ν is finite when E[ξn] = 0 and E

[
|S(`1)|1/2

]
< +∞ (and in

particular when E[ξn] = 0 and E[|ξn |3/2] < +∞ [16]). In this case, we normalize ν
it in such a way it is a probability measure.
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3.1 On the spectrum of the transition probabilities matrix R

Let us recall some spectral properties of the matrixR = (R(x, y))x,y∈N0 . By Property
2.3 in [8], the matrix R is quasi-compact on the space L∞(N0) of bounded functions
on N0, with 1 as the unique (and simple) dominant eigenvalue; in particular, the rest
of the spectrum of R is included in a disc with radius < 1.

It is of interest in the next section to let R act on a bigger space than L∞(N0). For
instance, following [8], we may fix K > 1 and consider the Banach space

LK (N0) := {φ : N0 → C : ‖φ‖K := sup
x≥0
|φ(x)|/Kx < +∞}

endowed with the norm ‖ · ‖K . By Property 2.3 in [8], if
∑
x≥0

Kxµ(x) < +∞ then R

acts as a compact operator on LK (N0).
In this article, we only assume that µ has a finite moment of order 2 and its

negative part has moment of order 3. Consequently, we consider a smaller Banach
space Bα adapted to these hypotheses and defined by: for α > 0 fixed,

Bα :=
{
φ : N0 → C : |φ|α := sup

x≥0

|φ(x)|
1 + xα

< +∞
}
.

Endowed with the norm | · |α, the space Bα is a Banach space on C.

Proposition 1 Fix α > 0 and assume E[ξ2
n] + E[(ξ

−
n )

2+α] < +∞ and E[ξn] = 0.
Then, the operator R acts on Bα and R(Bα) ⊂ L∞(N0). Furthermore,

1. R is compact on Bα with spectral radius 1;
2. 1 is the unique eigenvalue of R with modulus 1, it is simple with corresponding

eigenspace C1;
3. the rest of the spectrum of R on Bα is included in a disc with radius < 1.

Let Π be the projection from Bα onto the eigenspace C1 corresponding to this
spectral decomposition, i.e. such that ΠR = RΠ = Π. In other words, there exists a
bounded operator Q on Bα with spectral radius < 1 such that R may be decomposed
as follows:

R = Π + Q, ΠQ = QΠ = 0 with Π(·) = ν(·)1.

In the next section, we require thatBα does contain the descending and ascending
renewal functions h and h̃ of the random walk S. This imposes in particular that α
is greater or equal to 1.

Proof (1) By (1), for any φ ∈ Bα and x ≥ 0,

Rφ(x) =
∑
y≥1

x∑
w=0

U∗(−w)µ∗(w − x − y)φ(y)
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with U∗(−w) =
+∞∑
n=0
P[S(ln) = −w] = P

[
∪n≥0[S(ln) = −w]

]
≤ 1. Therefore,

|Rφ(x)| ≤
∑
y≥1

x∑
w=0

µ∗(w − x − y)|φ(y)|

≤
∑
y≥1

µ∗((−∞,−y))|φ(y)|

≤
©«
∑
y≥1
(1 + yα)µ∗((−∞,−y))

ª®¬ |φ|α .
By Theorem 1 in [6], the condition E[(ξ−n )2+α] < +∞ implies E

[
|S(`1)|1+α

]
< +∞;

hence, ∑
y≥1
(1 + yα)µ∗((−∞,−y)) ≤ E [|S(`1)|] + E

[
|S(`1)|1+α

]
< +∞.

Consequently,

|Rφ|α ≤ |Rφ|∞ ≤
(
E [|S(`1)|] + E

[
|S(`1)|1+α

] )
|φ|α (2)

which proves thatR acts onBα when E[(ξ−n )2+α] < +∞. More precisely, the operator
R is bounded fromBα into L∞(N0) and since the canonical injection L∞(N0) ↪→ Bα
is compact, the operator R is compact on Bα.

Let us now check that R has spectral radius ρα = 1 on Bα. On the one hand, the
equality R1 = 1, with 1 ∈ Bα, yields ρα ≥ 1. On the other hands, R is a power
bounded operator on Bα, which readily implies ρα ≤ 1; indeed, for any n ≥ 1,

|Rnφ(x)| ≤
+∞∑
z=0
Rn−1(x, z)|Rφ(z)| ≤ |Rφ|∞

+∞∑
z=0
Rn−1(x, z) = |Rφ|∞,

which yields, combining with (2),

|Rnφ|α ≤ |R
nφ|∞ ≤

(
E [|S(`1)|] + E

[
|S(`1)|1+α

] )
|φ|α .

Consequently, denoting ‖Rn‖α the norm of Rn on Bα, it holds

sup
n≥0
‖Rn‖α ≤

(
E [|S(`1)|] + E

[
|S(`1)|1+α

] )
< +∞.

This achieves the proof of assertion 1.
(2) Let us control the peripherical spectrum of R in Bα. Let θ ∈ R and φ ∈ Bα

such that Rφ = eiθφ.
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By (2), the function Rφ is bounded, so is φ. Furthermore, the operator R being
positive, it holds |φ| ≤ R|φ|. Consequently, the function |φ|∞− |φ| is super-harmonic
and non-negative, hence constant since the Markov chain (X(rn))n≥0 is irreducible
and recurrent on this set.

Without loss of generality, we may assume |φ| = 1 on Sr , i.e φ(x) = eiϕ(x) for any
x ∈ Sr , with ϕ : Sr → R. Equality Rφ = eiθφ may be rewritten as: for any x ∈ Sr ,∑

y∈Sr

ei(ϕ(y)−ϕ(x))R(x, y) = eiθ .

Recall that R(x, y) > 0 for any x, y ∈ Sr ; thus, by convexity, ei(ϕ(y)−ϕ(x)) = eiθ

for any x, y ∈ Sr . Thus, eiθ = 1 and the function φ is harmonic on Sr , hence
constant. Eventually, the function φ is constant on N0: this is the consequence of
equality Rφ(x) = eiθφ(x) = φ(x), valid for any x ∈ N0, combined with the facts that
R(x, y) > 0 if and only if y ∈ Sr and that φ is constant on Sr .

(3) Assertion 3 is a consequence of assertion 2 and the compactness of R on Bα.

3.2 A Renewal limit theorem for the times of reflections

In this section, we prove the analogous of Corollary 1 for the process (rn)n≥0. Let us
introduce some notations and conventions.

From now on, we focus on the process (X(n))n≥0 and denote

((N0)⊗N, (P(N0))⊗N, (X(n))n≥0, (Px)x∈N0, θ)

the canonical space associated to this process, that is the space of trajectories of
the Markov chain (X(n))n≥0. In particular, Px, x ∈ N0, denotes the conditional
probabilitywith respect to the event [X(0) = x] andEx the corresponding conditional
expectation. The operator θ is the classical shift transformation defined by: for any
(xk)k≥0 ∈ (N

0)⊗N,
θ((xk)k≥0) = ((xk+1)k≥0.

For n ≥ 1 and x, y ≥ 0, set

Rn(x, y) := Px[r1 = n,X(n) = y],

and

Σn(x, y) :=
+∞∑
k=1
Px[rk = n,X(n) = y].

We are interested in the behavior as n→ +∞ of these quantities. It has been already
studied in [15] (see Lemma 7) for the Lindley process. For the reflected random
walk, the argument is more complicated since the position at time rk may vary, so
that the excursions of the random walk (X(n))n≥0 between two successive reflection
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times are not independent. This explain why we focus here on the reflection process
and it is of interest to express quantities Rn(x, y) and Σn(x, y) in terms of operators
and product of operators related to this sub-process.

We consider the linear operators Rn : L∞(N0) → L∞(N0),n ≥ 0, defined by: for
any φ ∈ L∞(N0) and x ≥ 0,

Rnφ(x) =
∑
y≥1

Rn(x, y)φ(y) = Ex[r1 = n; φ(X(n))].

In particular, Rn(x, y) = Rn1{y }(x). The quantity Σn(x, y) is also expressed in terms
of the Rk as follows:

Σn(x, y) =
+∞∑
k=1
Px[rk = n,X(n) = y]

=

+∞∑
k=1

∑
j1+· · ·+jk=n

Px[r1 = j1,r2 − r1 = j2, . . . ,rk − rk−1 = jk,X(n) = y]

=

+∞∑
k=1

∑
j1+· · ·+jk=n

Rj1 . . . Rjk 1{y }(x) (3)

Firstly, let us check that the Rn act on Bα.

Lemma 5 There exists a positive constant C4 such that, for any n ≥ 1 and α > 0,

|Rn |α ≤ C4
E

[
(ξ−n )

2+α]
n3/2 .

Proof For any φ ∈ Bα and x ≥ 0,

|Rnφ(x)| ≤
∑
y≥1
|φ(y)|Px[r1 = n,X(n) = y]

=
∑
y≥1

∑
z≥0
|φ(y)|P[τS(x) ≥ n − 1, x + S(n − 1) = z, z + ξn = −y]

=
∑
y≥1

∑
z≥0
|φ(y)|P[τS(x) ≥ n − 1, x + S(n − 1) = z]P[ξn = −y − z].

Hence, by Lemma 1,

|Rnφ(x)|
1 + xα

�
1

n3/2

∑
y≥1

∑
z≥0
|φ(y)|

h(x)
1 + xα

h̃(z)P[ξ1 = −y − z].

Since h(x) = O(x) and h̃(z) = O(z),
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|Rnφ(x)|
1 + xα

�
|φ|α

n3/2

∑
y≥1

∑
z≥0
(1 + yα)h̃(z)P[ξ1 = −y − z]

�
|φ|α

n3/2

∑
y≥1

∑
z≥0
(1 + yα)zP[ξ1 = −y − z]

=
|φ|α

n3/2

∑
t≥1

t∑
y=1
(1 + yα)(t − y)P[ξ1 = −t]

�
|φ|α

n3/2

∑
t≥1

t2+αP[ξ1 = −t],

which achieves the proof. �

Hence,
∑
n≥1
|Rn |α < +∞; in particular, the sequence (

∑N
n=1 Rn)N ≥1 converges in Bα.

Note that its limit equals R in Bα; indeed,∑
n≥1

Rnφ(x) =
∑
n≥1
Ex[φ(X(n)),r1 = n] = Ex[φ(X(r1))] = Rφ(x).

We can write R =
∑

n≥1 Rn and, for any z ∈ D := {z ∈ C : |z | ≤ 1}, we set

R(z) =
∑
n≥1

znRn.

Proposition 2 Fix α > 0 and assume E[ξ2
n] + E[(ξ

−
n )

2+α] < +∞ and E[ξn] = 0. The
sequence (Rn)n≥0 is an aperiodic renewal sequence of operators, i.e. it satisfies
the following properties (see [9]):

(R1). The operator R = R(1) has a simple eigenvalue at 1 and the rest of its
spectrum is contained in a disk of radius < 1.

(R2). For any n ≥ 1, set rn := νRn1 =
∑

x≥1 ν(x)Px(r1 = n); hence,

ΠRnΠ = rnΠ,

where Π denotes the eigenprojection of R for the eigenvalue 1.
(R3). There exists a constant C > 0 such that |Rn |α ≤

C
n3/2 .

(R4).
∑

j>n rj ∼ c√
n
with c = c1ν(h), where c1 is the positive constant given by

Lemma 1 and h is the descending renewal function of the random walk S.
(R5). The spectral radius of R(z) is strictly less than 1 for z ∈ D \ {1}.

Proof (R1) is a direct consequence of Proposition 1.
(R2) Recall that Πφ = ν(φ)1 for any φ ∈ Bα. Hence, setting gn(x) := Px(r1 = n), it
holds RnΠφ = ν(φ)gn, thus

ΠRnΠφ = ν(φ)Π(gn) =
∑
x≥1

ν(x)Px(r1 = n)ν(φ)1,
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which is the expected result.
(R3) follows from Lemma 5.
(R4) Thanks to Lemma 1,∑

j≥n

rj =
∑
x≥1

∑
j≥n

ν(x)Px[r1 = j] =
∑
x≥1

ν(x)Px[r1 ≥ n] ∼ c1
ν(h)
√

n
as n→ +∞.

Notice that 0 < ν(h) < +∞ since E[|S(`1)|] < +∞; indeed, 1 ≤ h(x) = O(x) and∑
x≥1

xν(x) �
∑
x≥1

∑
y≥1

x+y∑
w=x

µ∗(−w)µ∗(−y)x =
∑
y≥1

∑
w≥1

µ∗(−w)µ∗(−y)

w∑
x=(w−y)∨0

x

≤
∑
y≥1

∑
w≥1

ywµ∗(−w)µ∗(−y) =
©«
∑
y≥1

yµ∗(−y)
ª®¬

2

= (E[|S(`1)|])2 < +∞.

(R5) The argument is the same as the one used to control the peripherical spectrum
of R in Proposition 1. For any z ∈ D \ {1}, the operators R(z) are compact on Bα,
with spectral radius ρz ≤ 1.

If ρz = 1, there exist θ ∈ R and φ ∈ Bα such that R(z)φ = eiθφ. Hence
|φ| = |R(z)φ| ≤ R|φ| and since R(Bα) ⊂ L∞(N0), the function |φ| is bounded on
N0, thus constant on Sr .

Without loss of generality, we may assume |φ| = 1 on Sr , i.e φ(x) = eiϕ(x) for
any x ∈ Sr , with ϕ : Sr → R. Equality R(z)φ = eiθφ may be rewritten as: for any
x ∈ Sr , ∑

n≥1

∑
y∈Sr

zneiϕ(y)Px(r1 = n; X(n) = y) = eiθeiϕ(x).

By convexity, since
∑

n≥1
∑

y∈Sr Px(r1 = n; X(n) = y) = 1, we obtain: for all n ≥ 1
and x, y ∈ Sr ,

zneiϕ(y) = eiθeiϕ(x).

Setting x = y, it yields zn = eiθ , so that zn does not depend on n. Finally z = 1.
Thus, ρz < 1 when z ∈ D \ {1}.

By (R5), for |z | < 1, the operator T(z) := (I − R(z))−1 is well defined in Bα;
a direct formal computation yields T(z) =

∑+∞
n=0 Tnzn, where the Tn are bounded

operators on Bα defined by:

T0 = I and Tn =

+∞∑
k=1

∑
j1+· · ·+jk=n

Rj1 · · · Rjk for n ≥ 1.

The so-called renewal equationT(z) := (I−R(z))−1 is of fundamental importance
to understand the asymptotics of the Tn, several functional analytic tools can be
brought into play. Such sequences of operators (Rn)n≥0 and (Tn)n≥0 have been the
object of many studies, related to renewal theory in a non-commutative setting. We
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refer to the paper [9], which fits perfectly here. The following statement is analogous
of the last assertion of Corollary 1 for the reflected random walk.

Corollary 2 The sequence (
√

nTn)n≥1 converges inBα towards the operator 1
πc1ν(h)

Π.

Proof Apply Theorem 1.4 in [9] with β = 1/2 and `(n) = c = c1ν(h). �

As a direct consequence, by equality (3), it holds

lim
n→+∞

√
nΣn(x, y) =

ν(y)

πc1ν(h)
.

In the next section, we have to consider and study some modifications of the
Σn(x, y) which we introduce now. For any x ≥ 0 and 0 < s < t < 1,

Σ̂n(x, t, s) := n
∑
l≥0
Px[rl = [ns],rl+1 > [nt]],

and

Σ̃n(x, t, s) := n2
+∞∑
l=0
Px [rl = [ns],rl+1 = [nt]] .

These quantities appear in a natural way to control the finite distribution of the
process (Xn(t))n≥0.

4 Proof of Theorem 1

From now on, we fix α = 1; this implies that h ∈ Bα, which is necessary from now
on (see Lemmas 7 and 9).

4.1 One-dimensional distribution

We fix a bounded and Lispchitz continuous function φ : R→ R.

Lemma 6 For any t ∈ [0,1] and x ≥ 0, it holds

lim
n→+∞

Ex [φ (Xn(t))] =
∫ +∞

0
φ(u)

2e−u
2/2t

√
2πt

du = E[φ(|Bt |)],

where B is a standard Brownian motion.

Proof We fix t ∈ (0,1) and decompose the expectation E
[
φ

(
X([nt])
σ
√

n

)]
as follows:
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Ex

[
φ

(
X([nt])
σ
√

n

)]
≈

[nt]−1∑
k=0

∑
l≥0
Ex

[
φ

(
X([nt])
σ
√

n

)
;

rl = k,X(k) + ξk+1 ≥ 0, . . . ,X(k) + ξk+1 + · · · + ξ[nt] ≥ 0
]

=

[nt]−1∑
k=0

∑
y≥0
Σk(x, y)E

[
φ

(
y + ξk+1 + . . . + ξ[nt]

σ
√

n

)
;

y + ξk+1 ≥ 0, . . . , y + ξk+1 + · · · + ξ[nt] ≥ 0
]

=

[nt]−1∑
k=0

∑
y≥0
Σk(x, y)E

[
φ

(
y + S([nt] − k)

σ
√

n

)
|τS(y) > [nt] − k

]
× P

[
τS(y) > [nt] − k

]
.

For each k = 2, . . . , [nt] − 4 and any s ∈ [ kn ,
k+1
n ),

fn(s) = n
∑
y≥0
Σ[ns](x, y)E

[
φ

(
y + S([nt] − [ns])

σ
√

n

)
|τS(y) > [nt] − [ns]

]

× P
[
τS(y) > [nt] − [ns]

]
,

and fn(s) = 0 on [0, 2
n ) and [

[nt]−1
n , t). Hence,

Ex

[
φ

(
X([nt])
σ
√

n

)]
=

∫ t

0
fn(s)ds + O

(
1
√

n

)
.

Now, let us set : for n ≥ 1 and any y ∈ N0,

an(y) = Σ[ns](x, y)P
[
τS(y) > [nt] − [ns]

]
,

bn(y) = E
[
φ

(
y + S([nt] − [ns])

σ
√

n

)
|τS(y) > [nt] − [ns]

]
.

For any n ≥ 1, it holds∑
y≥0

an(y) = n
∑
l≥0
Px[rl = [ns],rl+1 > [nt]] =: Σ̂n(x, t, s),

and |bn(y)| ≤ |φ|∞. The two following lemmas allow us to control the behavior as

n→ +∞ of the integral
∫ t

0
fn(s)ds; the proof of Lemma 7 is postponed to the last

section, the one of 8 is straightforward.
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Lemma 7 For each 0 < s < t < 1,

lim
n→+∞

Σ̂n(x, t, s) =
1

π
√

s(t − s)
.

Moreover, there exists a positive constant C5 such that

Σ̂n(x, t, s) ≤ C5
1 + x√
s(t − s)

for all 0 < s < t < 1 and x ∈ N.

Lemma 8 Let (an(y))y∈Nk
0
, (bn(y))y∈Nk

0
be arrays of real numbers for some integer

k ≥ 1. Suppose that

• an(y) ≥ 0;
• lim

n→+∞

∑
y∈Nk

0

an(y) = A;

• lim
n→+∞

bn(y) = B for all y ∈ Nk
0 ;

• sup
n≥1,y∈Nk

0

|bn(y)| < +∞. �

Then
lim

n→+∞

∑
y≥0

an(y)bn(y) = AB.

Lemmas 2, 7 and 8 combined altogether yield: for any s ∈ (0, t),

lim
n→+∞

fn(s) =
1
π

1√
s(t − s)

∫ +∞

0
φ(z
√

t − s)ze−z
2/2dz.

Moreover,
sup
n
| fn(s)| ≤ C5

1 + x√
s(t − s)

|φ|∞ =: f̂ (s).

Since f̂ ∈ L1[0, t], the Lebesgue dominated convergence theorem yields

lim
n→+∞

E

[
φ

(
X([nt])
σ
√

n

)]
= lim

n→+∞

∫ t

0
fn(s)ds

=
1
π

∫ t

0

1√
s(t − s)

(∫ +∞

0
φ(z
√

t − s)ze−z
2/2dz

)
ds

=

∫ +∞

0
φ(u)

2e−u
2/2t

√
2πt

du,

where the last equation follows from the identity ([11], p. 17)∫ +∞

0

1
√

t
exp

(
− αt −

β

t

)
dt =

√
π

α
e−2
√
αβ (α, β > 0) (4)
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and some change of variable computation. We achieve the proof of Lemma 6 by
noting that, since φ is Lipschitz continuous (with Lipschitz coefficient [φ]),����Ex [

φ

(
X([nt])
σ
√

n

)]
− Ex [φ (Xn(t))]

���� ≤ [φ]Ex [���� X([nt])
σ
√

n
− Xn(t)

����]
≤

1
σ
√

n
[φ]E

[
|ξ[nt]+1 |

]
→ 0 as n→ +∞.

(5)

4.2 Two-dimensional distributions

The convergence of the finite-dimensional distributions of (Xn(t))n≥1 is more del-
icate. We detail the argument for two-dimensional ones, the general case may be
treated in a similar way.

Let us fix 0 < s < t,n ≥ 1 and denote

κ = κ(n, s) = min{k > [ns] : X(k − 1) + ξk < 0}.

We decompose Ex
[
φ1

(
X([ns])
σ
√

n

)
φ2

(
X([nt])
σ
√

n

)]
as

[nt]∑
k=[ns]+1

Ex

[
φ1

(
X([ns])
σ
√

n

)
φ2

(
X([nt])
σ
√

n

)
1{κ=k }

]
︸                                                         ︷︷                                                         ︸

A1(n)

+ Ex

[
φ1

(
X([ns])
σ
√

n

)
φ2

(
X([nt])
σ
√

n

)
1{κ>[nt]}

]
︸                                                 ︷︷                                                 ︸

A2(n)

.

The term A1(n) deals with the trajectories of the process X which reflect between
[ns] + 1 and [nt] while A2(n) concerns the others trajectories.

4.2.1 Estimate of A1(n)

As in the previous section, we decompose A1(n) as
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A1(n) =
[ns]−1∑
k1=0

[nt]∑
k2=[ns]

+∞∑
l=0

∑
y≥1

∑
z≥1

∑
w≥0

Ex

[
φ1

(
X([ns])
σ
√

n

)
φ2

(
X([nt])
σ
√

n

)
;

rl = k1,X(k1) = z, z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · · + ξk2−2 ≥ 0,

z + ξk1+1 + · · · + ξk2−1 = w,w + ξk2 = −y

]
=

[ns]−1∑
k1=0

[nt]∑
k2=[ns]

+∞∑
l=0

∑
y≥1

∑
z≥1

∑
w≥0
Ex

[
φ1

(
z + ξk1+1 + · · · + ξ[ns]

σ
√

n

)
× φ2

(
y + ξk2+1 + · · · + ξ[nt]

σ
√

n

)
;

rl = k1,X(k1) = z, z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · · + ξk2−2 ≥ 0,

z + ξk1+1 + · · · + ξk2−1 = w,w + ξk2 = −y

]
=

[ns]−1∑
k1=0

[nt]∑
k2=[ns]

+∞∑
l=0

∑
y≥1

∑
z≥1

∑
w≥0

Ex

[
φ2

(
y + ξk2+1 + · · · + ξ[nt]

σ
√

n

) ]
Px[rl = k1,X(k1) = z]

× Ex

[
φ1

(
z + ξk1+1 + · · · + ξ[ns]

σ
√

n

)
,

z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · · + ξk2−2 ≥ 0,

z + ξk1+1 + · · · + ξk2−1 = w,w + ξk2 = −y

]
.

Using the fact that the ξk are i. i. d., we obtain

A1(n) =
[ns]−1∑
k1=0

∑
z≥1
Σk1 (x, z)

[nt]∑
k2=[ns]

∑
y≥1

∑
w≥0
Ey

[
φ2

(
X([nt] − k2)

σ
√

n

) ]
× E

[
φ1

(
z + S([ns] − k1)

σ
√

n

)
|τS(z) > k2 − k1 − 1, z + S(k2 − k1 − 1) = w

]
× P[τS(z) > k2 − k1 − 1, z + S(k2 − k1 − 1) = w]P[ξ1 = −w − y].

For any 2 ≤ k1 < [ns] − 6 and [ns] ≤ k2 ≤ [nt] and any s1 ∈ [
k1
n ,

k1+1
n ) and

s2 ∈ [
k2
n ,

k2+1
n ), we write
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fn(s1, s2) = n2
∑
z≥1
Σ[ns1](x, z)

∑
y≥1

∑
w≥0
Ey

[
φ2

(
X([nt] − [ns2])

σ
√

n

) ]
× E

[
φ1

(
z + S([ns] − [ns1])

σ
√

n

)
|τS(z) > [ns2] − [ns1] − 1,

z + S([ns2] − [ns1] − 1) = w

]
× P

[
τS(z) > [ns2] − [ns1] − 1, z + S([ns2] − [ns1] − 1) = w

]
P[ξ1 = −w − y],

and fn(s1, s2) = 0 for the others values of k1, such that 0 ≤ k1 ≤ [ns]. Hence,

A1(n) =
∫ s

0
ds1

∫ t

s

ds2 fn(s1, s2) + O

(
1
√

n

)
.

It follows from Lemma 3 that, for each z,w ≥ 0,

lim
n→+∞

E
[
φ1

(
z + S([ns] − [ns1])

σ
√

n

)
|τS(z) > [ns2] − [ns1] − 1,

z + S([ns2] − [ns1] − 1) = w
]

=

∫ +∞

0
2φ1(u

√
s2 − s1) exp

(
−

u2

2 s−s1
s2−s1

s2−s
s2−s1

)
u2√

2π (s−s1)3

(s2−s1)3
(s2−s)3

(s2−s1)3

du

=
2
√

2π

∫ +∞

0
φ1(v) exp

(
−

v2

2 (s−s1)(s2−s)
s2−s1

)
v2√

(s−s1)3(s2−s)3

(s2−s1)3

dv.

By Lemma 6,

lim
n→+∞

Ey

[
φ2

(
X([nt] − [ns2])

σ
√

n

)]
=

∫ +∞

0
φ2(u)

2e−u
2/2(t−s2)√

2π(t − s2)
du.

We set
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an(x, y, z,w) = n2
Σ[ns1](x, z)

× P
[
τS(z) > [ns2] − [ns1] − 1, z + S([ns2] − [ns1] − 1) = w

]
× P[ξ1 = −w − y],

bn(y, z,w) = Ey

[
φ2

(
X([nt] − [ns2])

σ
√

n

) ]
× E

[
φ1

(
z + S([ns] − [ns1])

σ
√

n

)
|τS(z) > [ns2] − [ns1] − 1,

z + S([ns2] − [ns1] − 1) = w

]
Note that

∑
z≥1

∑
y≥1

∑
w≥0 an(x, y, z,w) = Σ̃n(x, s2, s1). The behavior as n→ +∞ of

the quantity Σ̃n(x, s2, s1) is given by the following Lemma, whose proof is postponed
to the last section.

Lemma 9 For all 0 < s < t < 1, it holds

lim
n→+∞

Σ̃n(x, t, s) =
1

2π
√

s(t − s)3
.

Moreover, there exists a positive constant C6 such that, for all 0 < s < t < 1 and
n ≥ 0,

Σ̃n(x, t, s) ≤ C6
1 + x

π
√

s(t − s)3
.

By Lemmas 9 and 8, we get limn→+∞ fn(s1, s2) = f (s1, s2) where

f (s1, s2) =
1

π2√s1

∫ +∞

0
φ1(v) exp

(
−

v2

2 (s2−s)(s−s1)
s2−s1

)
v2√

(s − s1)3(s2 − s)3
dv

×

∫ +∞

0
φ2(u)

e−u
2/2(t−s2)

√
t − s2

du.

Moreover, following the argument in the proof of Lemma 6, we can show that the
sequence (| fn |)n≥1 is uniformly bounded by a function which is integrable with
respect to Lebesgue measure on [0, s] × [s, t]. Hence, using again the Lebesgue
dominated convergence theorem, we get
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lim
n→+∞

A1(n) =
∫ s

0
ds1

∫ t

s

ds2 f (s1, s2)

=
1
π2

∫ s

0

ds1
√

s1

∫ t

s

ds2

∫ +∞

0
φ1(v) exp

(
−

v2

2 (s2−s)(s−s1)
s2−s1

)
v2√

(s − s1)3(s2 − s)3

×

∫ +∞

0
φ2(u)

e−u
2/2(t−s2)

√
t − s2

dudv,

which yields, using again (4),

lim
n→+∞

A1(n) =
2

π
√

s(t − s)

∫ +∞

0

∫ +∞

0
φ1(v)φ2(u)e−v

2/2se−
(u+v)2
2(t−s) dudv. (6)

4.2.2 Estimate of A2(n)

We decompose A2(n) as

+∞∑
y=0

∑
k≤[ns]

∑
l≥0
Ex

[
φ1

( X([ns])
σ
√

n

)
φ2

( X([nt])
σ
√

n

)
;

rl = k,X(k) = y, y + ξk+1 ≥ 0, . . . , y + ξk+1 + · · · + ξ[nt] ≥ 0

]
=

+∞∑
y=0

∑
k≤[ns]

Ex

[
φ1

( y + ξk+1 + · · · + ξ[ns]

σ
√

n

)
φ2

( y + ξk+1 + · · · + ξ[nt]

σ
√

n

)
;

y + ξk+1 ≥ 0, . . . , y + ξk+1 + · · · + ξ[nt] ≥ 0

]
×

∑
l≥0
Px[rl = k,X(k) = y].

Since (ξk) is a i.i.d. sequence,

A2(n) =
+∞∑
y=0

∑
k≤[ns]

Σk(x, y)E

[
φ1

( y + S([ns] − k)
σ
√

n

)
φ2

( y + S([nt] − k)
σ
√

n

)
;

τS(y) > [nt] − k

]
.

For u ∈ (0, s], we denote
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gn(u) = n
+∞∑
y=0
Σ[nu](x, y)E

[
φ1

( y + S([ns] − [nu])
σ
√

n

)
φ2

( y + S([nt] − [nu])
σ
√

n

)
;

τS(y) > [nt] − [nu]

]
.

Now, let us compute the pointwise limit on (0, s] of the sequence (gn)n≥1. We write
gn(u) as

gn(u) =n
+∞∑
y=0
Σ[nu](x, y)

× E

[
φ1

( y + S([ns] − [nu])
σ
√

n

)
φ2

( y + S([nt] − [nu])
σ
√

n

) ���τS(y) > [nt] − [nu]

]
× Py

[
τS(y) > [nt] − [nu]

]
.

We set
an(x, y) = nΣ[nu](x, y)Py

[
τS(y) > [nt] − [nu]

]
,

and

bn(y) = E
[
φ1

( y + S([ns] − [nu])
σ
√

n

)
φ2

( y + S([nt] − [nu])
σ
√

n

) ���τS(y) > [nt] − [nu]
]
.

Note that
+∞∑
y=0

an(y) = Σ̂[nu](x, t,u). Since φ1, φ2 are bounded and continuous on R,

it follows from Theorem 3.2 in [4] and Theorems 2.23 and 3.4 in [10] that

lim
n→+∞

bn(y) = lim
n→+∞

E
[
φ1

(
y + S([ns] − [nu])

σ
√
[nt] − [nu]

√
[nt] − [nu]
√

n

)
× φ2

(
y + S([nt] − [nu])

σ
√
[nt] − [nu]

√
[nt] − [nu]
√

n

) ���τS(y) > [nt] − [nu]
]

=

∫ +∞

0

∫ +∞

0
φ1(y
√

t − u)φ2(z
√

t − u)
( t − u

s − u

)3/2
ye−

t−u
2(s−u) y

2

×
e−

1
2
t−u
t−s (z−y)

2
− e−

1
2
t−u
t−s (z+y)

2√
2π

(
1 − s−u

t−u

) dydz

=
1√

2π(t − s)

∫ +∞

0

∫ +∞

0
φ1(y

′)φ2(z′)
√

t − u
(s − u)3/2

y′e−
y′2

2(s−u)

×

(
e−
(z′−y′)2
2(t−s) − e−

(z′+y′)2
2(t−s)

)
dy′dz′.
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Again, we can use the argument in the proof of Lemma 6 to show that the sequence
(gn) converges point wise to g with

g(u) =
1

π3/2
√

2(t − s)

1√
u(s − u)3

×

∫ +∞

0

∫ +∞

0
φ1(y

′)φ2(z′)y′e
−

y′2
2(s−u)

(
e−
(z′−y′)2
2(t−s) − e−

(z′+y′)2
2(t−s)

)
dy′dz′,

and (gn) is also dominated by a function which is integrable on [0, s] with respect to
the Lebesgue measure. Lebesgue’s dominated convergence theorem yields

lim
n→+∞

A2(n) = lim
n→+∞

1
n

∑
k≤[ns]

gn(k/n) =
∫ s

0
g(u)du

=
1

π3/2
√

2 (t − s)

∫ s

0
du

∫ +∞

0
dy′

∫ +∞

0
dz′

× φ1(y
′)φ2(z′)

e−
y′2

2(s−u)√
u(s − u)3

y′√
2π(t − s)

(
e−
(z′−y′)2
2(t−s) − e−

(z′+y′)2
2(t−s)

)
=

1
π3/2s

√
2 (t − s)

∫ +∞

0
dy′

∫ +∞

0
dz′φ1(y

′)φ2(z′)
(
e−
(z′−y′)2
2(t−s) − e−

(z′+y′)2
2(t−s)

)
×

(∫ 1

0

y′√
v(1 − v)3

e−
y′2

2s(1−v) dv

)

=
1

π
√

s(t − s)

∫ +∞

0
dy′

∫ +∞

0
dz′φ1(y

′)φ2(z′)e−y
′2/2s

(
e−
(z′−y′)2
2(t−s) − e−

(z′+y′)2
2(t−s)

)
.

(7)

4.2.3 Conclusion

Combining (6) and (7), we may write

lim
n→+∞

E

[
φ1

(
X([ns])
σ
√

n

)
φ2

(
X([nt])
σ
√

n

)]
=

1
π
√

s(t − s)

∫ +∞

0
dy′

∫ +∞

0
dz′φ1(y

′)φ2(z′)e−y
′2/2s

(
e−
(z′−y′)2
2(t−s) + e−

(z′+y′)2
2(t−s)

)
= E[φ1(|Bs |)φ2(|Bt |)].

Using a similar estimate as the one in (5), we get
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lim
n→+∞

E [φ1 (Xn(s)) φ2 (Xn(t))] = E[φ1(|Bs |)φ2(|Bt |)],

which concludes the convergence of (Xn) in two-dimensional marginal distribution
to a reflected Brownian motion.

4.3 Finite dimensional distributions

The convergence of d-dimensionalmarginal distributions of (Xn(t))n≥1 for any d ≥ 2
may be done by induction on d. Let us fix n ≥ 1, d ≥ 3, then reals 0 < s1 < · · · < sd
and φ1, . . . , φd bounded and Lipschitz continuous real valued functions defined on
R.

Let κ denote the first reflection time after [ns1], i.e., κ = κ(n, s1) = min{k >

[ns1] : X(k − 1) + ξk < 0}. We decompose Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)]
as

d−1∑
j=1

[nsj+1]∑
k=[nsj ]+1

Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)
; κ = k

]
+ Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)
; κ > [nsd]

]
.

Then we can deal with the terms

Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)
; κ = k

]
and Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)
; κ > [nsd]

]
in the same ways as we do for A1 and A2, respectively.

More precisely, for each 1 ≤ j ≤ d − 1 and k ∈ {[nsj]+ 1, . . . , [nsj+1]}, we write



Limit theorem for reflected random walks 25

Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)
; κ = k

]
=

[ns1]−1∑
k1=0

∑
l≥0

∑
y≥1

∑
z≥1

∑
w≥0
Ex

[
d∏
i=1

φi

(
X([nsi])
σ
√

n

)
; rl = k1,X(k1) = z,

z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · · + ξk−2 ≥ 0, z + ξk1+1 + · · · + ξk−1 = w,w + ξk = −y
]

=

[ns1]−1∑
k1=0

∑
l≥0

∑
y≥1

∑
z≥1

∑
w≥0
Ex

[
j∏

i1=1
φi1

( z + ξk1+1 + · · · + ξ[nsj ]

σ
√

n

)
×

d∏
i2=j+1

φi2

(
y + ξk+1 + · · · + ξ[nsj ]

σ
√

n

)
; rl = k1,X(k1) = z, z + ξk1+1 ≥ 0, . . . ,

z + ξk1+1 + · · · + ξk−2 ≥ 0, z + ξk1+1 + · · · + ξk−1 = w,w + ξk = −y
]

=

[ns1]−1∑
k1=0

∑
z≥1
Σk1 (x, z)

∑
y≥1

∑
w≥0
Ey


d∏

i2=j+1
φi2

(
X([nsj] − k2)

σ
√

n

)
× E

[
j∏

i1=1
φi1

(
z + S([nsj] − k1)

σ
√

n

) ���τS(z) > k − k1 − 1, z + S(k − k1 − 1) = w

]
× P[τS(z) > k − k1 − 1, z + S(k − k1 − 1) = w]P[ξ1 = −w − y].

Now we can use the induction hypothesis and Corollary 2.5 in [5] to deal with the
first and the second expectations.

4.4 Tightness

Recall that the modulus of continuity of a function f : [0,1] → R is defined by

w f (δ) = sup
t ,s∈[0,1], |t−s |<δ

| f (t) − f (s)|.

It is clear that wX (δ) ≤ wS(δ). Using Theorem 7.3 in [3], the tightness of X follows
directly from the one of the classical random walk (S(n))n≥0. We achieve the proof
of Theorem 1, applying Theorem 7.1 in [3].

5 Auxiliary proofs

Proof of Lemma 7. By setting hn(y) =
√

nPy[r1 > n], the Markov property yields



26 Hoang-Long Ngo and Marc Peigné

Σ̂n(x, t, s) = n
∑
l≥0
Ex

[
PX(rl )[r1 ◦ θ

rl > [nt] − [ns]]; rl = [ns]
]

=

√
n√

[nt] − [ns]

√
n
∑
l≥0
Ex

[
h[nt]−[ns](X(rl)); rl = [ns]

]
=

1 + o(n)√
s(t − s)

√
[ns]T[ns](h[nt]−[ns])(x).

Let us prove that
√
[ns]T[ns](h[nt]−[ns])(x) → 1

π as n→ +∞. Indeed,����√[ns]T[ns](h[nt]−[ns])(x) −
1
π

���� ≤ B1(n) + B2(n),

with

B1(n) =
����√[ns]T[ns](h[nt]−[ns])(x) −

1
πν(h)

ν(h[nt]−[ns])
���� , and

B2(n) =
1

πν(h)

��ν(h[nt]−[ns]) − ν(h)�� .
By Lemma 1, it holds 0 ≤ hn(y) ≤ C1h(y), with h(y) = O(y), so that the sequence
(hn)n≥1 is bounded in Bα. Thus, Corollary 2 yields

B1(n) ≤ (1 + x)
����√[ns]T[ns] −

1
πν(h)

Π

����
α

|h[nt]−[ns] |α −→ 0 as n→ +∞.

Similarly, by Lemma 1 and the dominated convergence theorem,

lim
n→+∞

��ν(h[nt]−[ns]) − ν(h)�� = 0,

so that B2(n) −→ 0 as n→ +∞.
�

Proof of Lemma 9. By setting h̃n(y) = n3/2Py[r1 = n], the Markov property yields

Σ̃n(x, s, t) = n2
∑
l≥0
Ex

[
PX(rl )[r1 ◦ θ

rl = [nt] − [ns]]; rl = [ns]
]

=
n3/2

([nt] − [ns])3/2
√

n
∑
l≥0
Ex

[
h̃[nt]−[ns](X(rl)); rl = [ns]

]
=

1 + o(n)
√

s(t − s)3/2
√
[ns]T[ns](h̃[nt]−[ns])(x).

By Corollary 1, it holds 0 ≤ h̃n(y) ≤ C3h(y), with h(y) = O(y), so that the sequence
(h̃n)n≥1 is bounded in Bα. We conclude as above to prove Lemma 7.

�
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