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Limit theorem for reflected random walks

Hoang-Long Ngo∗ Marc Peigné †

October 2, 2019

Abstract

Let ξn, n ∈ N be a sequence of i.i.d. random variables with values in Z. The associated random

walk on Z is S(n) = ξ1+ · · ·+ ξn+1 and the corresponding “reflected walk” on N0 is the Markov chain

X(n), n ∈ N, given by X(0) = x ∈ N0 and X(n+ 1) = |X(n) + ξn+1| for n ≥ 0. It is well know that the

reflected walk (X(n))n≥0 is null-recurrent when the ξn are square integrable and centered. In this

paper, we prove that the process (X(n))n≥0, properly rescaled, converges in distribution towards

the reflected Brownian motion on R
+, when E[ξ2n] < +∞,E[(max(0,−ξn)

3] < +∞ and the ξn are

aperiodic and centered.

2010 Mathematics Subject Classification: 60F17, 60M50

Keywords: Invariance principle · Reflected Brownian motion · Renewal function

1 Introduction and notations

Let (ξn)n≥1 be a sequence of Z-valued, independent and identically distributed random variables,

with common law µ defined on a probability space (Ω,F ,P). We denote S = (S(n))n≥0 the classical

random walks with steps ξk defined by S(0) = 0 and S(n) = ξ1 + . . .+ ξn for any n ≥ 1.

Throughout this paper, we denote N0 the set of non-negative integers and we consider the re-

flected random walk (X(n))n≥0 on N0 defined by

X(n+ 1) = |X(n) + ξn+1|, for n ≥ 0, (1)

where X(0) is a N0-valued random variables. When X(0) = x P-a.s., with x ∈ N0, the process

(X(n))n≥0 is also denoted by (Xx(n))n≥0. It evolves as the random walk x + S(n) as long as it stays

non negative. When x+ S(n) enters the set of negative integers, the sign of its value is changed; the

same construction thus applies starting from |x+ S(n)|, . . . and so on.

The process (Xx(n))n≥0 is a Markov chain on N0 starting from x. Several papers describing its

stochastic behavior have been published; we refer to [16] where the recurrence of the reflected ran-

dom walk is studied under some conditions which are nearly to be optimal. The reader may find

also several references therein.

Firstly, (Xx(n))n≥0 has some similarities with the classical random walk on R; for instance, a

strong law of large numbers holds, namely

lim
n→+∞

Xx
n

n
= 0 P-a.s.
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when E[|ξn|] < +∞ and E[ξn ] = 0 (see Lemma 3.1 in section 3). Nevertheless, in contrast to what

holds for the classical random walk on R, this does not yield to the recurrence of (Xx(n))n≥0. In [16],

it is proved that the process (Xx(n))n≥0 is null-recurrent when E[|ξn|3/2] < +∞ and E[ξn] = 0 and

that (Xx(n))n≥0 may be transient when E[|ξn|3/2] = +∞, even if E[|ξn|3/2−ǫ] < +∞ for any ǫ > 0.

In [12] is stated a necessary and sufficient condition for the recurrence of (Xx(n))n≥0 (see Theorem

4.6) but this condition cannot be reduced to the existence of some moments.

Once the strong law of large number holds, it is natural to study the oscillations of the process

around its mean. Let us state our result.

Theorem 1.1. Let (ξn)n≥1 be a sequence of Z-valued i.i.d. random variables such that

A1. E[ξ2n] = σ2 < +∞ and E[max(0,−ξn)
3] < +∞;

A2. E[ξn] = 0;

A3. The distribution of the ξn is strongly aperiodic, i.e. the support of the distribution of ξn is not

included in the coset of a proper subgroup of Z.

Let (Xn(t))t≥0 be the continuous time process constructed from the sequence (X(n))n≥0 by linear in-

terpolation between the values at integer points. Then, as n → +∞, the sequence of stochastic pro-

cesses (Xn(t))n≥1, defined by

Xn(t) :=
1

σ
√
n
X(nt), n ≥ 1, 0 ≤ t ≤ 1,

weakly converges in the space of continuous functions on [0, 1] to the absolute value (|B(t)|)t≥0 of the

Brownian motion on R.

Let us insist on the fact that Xx(n) coincides with x + S(n) as long as it stays non-negative, but

after it may differ drastically. The sequence of successive reflection times of (Xx(n))n≥0 introduces

some strong inhomogeneity on time and makes it necessary to adopt a totally different approach to

prove an invariance principle as stated above.

A model which is very similar to (Xn(x))n≥0 is the queuing process (W x(n))n≥0, also called the

Lindley process, corresponding to the waiting times in a single server queue. We think to (W x(n))n≥0

as an absorbing random walk on N0; as W x(n), it evolves as the random walk x + S(n) as long as it

stays non-negative and, when it attempts to cross 0 and become negative, the new value is reset to 0

before continuing. We refer to [15] for precise descriptions and variations on this process and follow

the same strategy to obtain the invariance principle.

The excursions of (W x(n))n≥0 and (Xx(n))n≥0 between two consecutively times of absorption-

reflection coincide with some parts of the trajectory of (S(n))n≥0, up to a translation; thus, their

study is related to the fluctuations of (S(n))n≥0. Hence, as in [15], we introduce the sequence of

strictly descending ladder epochs (ℓl)l≥0 of the random walk (S(n))n≥0 defined inductively by ℓ0 = 0

and, for any l ≥ 1,

ℓl+1 := min{n > ℓl | S(n) < S(ℓl)}.

When E[|ξn|] < +∞ and E[ξn] = 0, the random variables ℓ1, ℓ2 − ℓ1, ℓ3 − ℓ2, . . . are P-a.s. finite and

i.i.d. and the same property holds for the random variables S(ℓ1), S(ℓ2) − S(ℓ1), S(ℓ3) − S(ℓ2), . . ..

In other words, the processes (ℓl)l≥0 and (S(ℓl))l≥0 are random walks on N0 and Z with respective

distribution L(ℓ1) and L(S(ℓ1)).
Let us explain briefly the main difference between (W x(n))n≥0 and (X(n))n≥0. At an absorption

time, the value of the process W x(n) is reset to 0 before continuing as a classical random walk for a

while: there is a total loss of memory of the past after each absorption. Rather, at a reflection time,

the process Xx(n) equals the absolute value of x + S(n). This value is the “new” starting point of
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the process, for a while, and has a great influence on the next reflection time; in other words, the

process always captures some memory of the past at any time of reflection. This phenomenon has

to be taken into account and requires a precise study of the sub-process (X(rk))k≥0 of (X(n))n≥0

corresponding to these successive times (rk)k≥0 of reflection; our strategy consists in studying the

spectrum of the transition probabilities matrix R of (Xrk)k≥0, acting on some Banach space B =

Bα of functions from N0 to C with growth less than xα at infinity, for some α > 0 to be fixed. In

particular, in order to apply recent results on renewal sequences [9], we need precise estimates on

the tail of distribution of the reflection times; this is the main reason of the restrictive assumption

E[max(0,−ξn)
3] < +∞ instead of moment of order 2, as we could expect. More precisely, throughout

the paper, we need the following properties to be satisfied:

(i) The operator R acts on Bα; this holds when E[|S(ℓ1)|1+α] < +∞ and yields to the condition

E[max(0,−ξn)
2+α] < +∞ (see Proposition 3.2).

(ii) The function N0 → N0, x 7→ x, belongs to Bα; this imposes the condition α ≥ 1 (see Proposition

3.4).

Eventually, we fix α = 1 from Section 1.1 on.

Notations. Throughout the text, we use the following notations. Let u = (un)n≥0 and v = (vn)n≥0 be

two sequences of positive reals; we write

• u
c
� v (or simply u � v) when un ≤ cvn for some constant c > 0 and n large enough;

• un ∼ vn when limn→+∞
un

vn
= 1.

• un ≈ vn when limn→+∞(un − vn) = 0.

2 Fluctuations of random walks and auxiliary estimates

2.1 On the fluctuation of random walks

Let h be the Green function of the random walk (S(ℓl))l≥0, called sometimes the “descending re-

newal function” of S, defined by

h(x) =





+∞∑

l=0

P[S(ℓl) ≥ −x] if x ≥ 0,

0 otherwise.

(2)

The function h is harmonic for the random walk (S(n))n≥0 killed when it reaches the negative

half line (−∞; 0]; namely, for any x ≥ 0,

E[h(x + ξ1);x+ ξ1 > 0] = h(x).

This holds for any oscillating random walk, possible without finite second moment.

Similarly, we denote h̃ the ascending renewal function of the random walk (S(n))n≥0 (i.e the

descending renewal function of (−S(n))n≥0).

Both functions h and h̃ are increasing, h(0) = h̃(0) = 1 and h(x) = O(x), h̃(x) = O(x) as x → +∞
(see [2], p. 648).

We have also to take into account that the random walk S may start from another point than the

origin; hence, for any x ≥ 0, we set τS(x) := inf{n ≥ 1 : x+ S(n) < 0}; it holds

[τS(x) > n] = [Ln ≥ −x],

where Ln = min(S(1), . . . , S(n)). The following result is a combination of Theorem 2 and Proposi-

tion 11 in [7] and Theorem A in [13] (see also Theorems II.6 and II.7 in [14]).
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Lemma 2.1. For any x ≥ 0,

1.

P[τS(x) > n] ∼ c1
h(x)√

n
as n → +∞, (3)

where

c1 =
1√
π
exp

(
+∞∑

k=1

1

k

(
P[S(k) ≥ 0]− 1

2

))
.

Moreover, there exists a constant C1 > 0 such that for any x ≥ 0 and n ≥ 1,

P[τS(x) > n] ≤ C1
h(x)√

n
. (4)

2. There exist constants c2, C2 > 0 such that, for any x, y ≥ 0,

P[τS(x) > n, x+ S(n) = y] ∼ c2
h(x)h̃(y)

n3/2
as n → +∞, (5)

and, for any n ≥ 1,

P[τS(x) > n, x+ S(n) = y] ≤ C2
h(x)h̃(y)

n3/2
. (6)

Constants c1 and c2 are linked by the following relation [15]

c1 = 2c2
∑

y≥1

h̃(y)P[y + ξ1 < 0]. (7)

Assertions (5) and (6) yield a precise estimate of the probability P[τS(x) = n] itself, and not only

the tail of the distribution of τS as in (3). As a direct consequence, the sequence of descending

ladder epochs (ℓl)l≥1 of the random walk (S(n))n≥0 satisfies some renewal theorem [7]. Let us state

these two consequences which enlighten the next section where similar statements concerning the

successive epochs of reflections of the reflected random are proved.

Corollary 2.2. For any x ≥ 0,

P[τS(x) = n] ∼ c1
2

h(x)
1

n3/2
as n → +∞,

and there exists a constant C3 > 0 such that, for any x ≥ 0 and n ≥ 1,

P[τS(x) = n] ≤ C3
h(x)

n3/2
.

Furthermore,
+∞∑

l=0

P[ℓl = n] ∼ 1

c1π

1√
n

as n → +∞.

2.2 Conditional limit theorems

We recall the following result, which is a consequence of Lemma 2.3 in [2]. The symbol “ ⇒ ” means

“weak convergence”.

Lemma 2.3. Assume E[ξ2i ] < +∞ and E[ξi] = 0. Then, for any x ≥ 0, and any bounded and Lipschitz

continuous function φ : R → R,

lim
n→+∞

E

[
φ

(
x+ S(n)

σ
√
n

) ∣∣∣τS(x) > n

]
=

∫ +∞

0

φ(z)ze−z2/2dz.

4



This Lemma is useful in the sequel to control the fluctuations of the excursions of the process

(X(n))n≥0 between two successive times of reflection. In order to control also the higher dimen-

sional distributions of these excursions, we need the following statement which corresponds in our

setting to Corollary 2.5 in [5].

Lemma 2.4. For any bounded, Lipschitz continuous function φ : R → R, any x, y ≥ 0, and any

t > s > 0,

lim
n→+∞

E

[
φ

(
x+ S([ns])

σ
√
n

) ∣∣∣τS(x) > [nt], x+ S([nt]) = y

]

=

∫ +∞

0

2φ(u
√
s) exp

(
− u2

2 s
t
t−s
t

)
u2

√
2π s3

t3
(t−s)3

t3

du.

3 On the sub-process of reflections

We present briefly some results from [8] and [16]. The reflected times rn, n ≥ 0, of the random walk

(X(n))n≥0 are defined by: for any x ≥ 0,

r0 = r0(x) = 0 and rn+1 = inf{m > rn | X(rn) + ξrn+1 + · · ·+ ξm < 0}.

Notice that these random variables are N0 ∪ {+∞}-valued stopping times with respect to the filtra-

tion (Gn)n≥0.

When E[|ξn|] < +∞ and E[ξn] = 0, the random walk (S(n))n≥0 is oscillating, hence the rn, n ≥ 0,

are all finite P-a.s. and S(n)/n converges P-a.s. towards 0. Notice that 0 ≤ |S(n)| ≤ Xx
n holds for any

x ∈ N0 so that the strong law of large number for S(n) does not yield directly the same statement for

Xx
n . Nevertheless, the strong law of large numbers is still true for the reflected random walk on N0:

Lemma 3.1. If E[|ξn|] < +∞ and E[ξn] = 0, then, for any x ∈ N0,

lim
n→+∞

Xx
n

n
= 0 P-a.s.

Proof. For any n ≥ 1, there exits a (random) integer kn ≥ 1 such that rkn ≤ n < rkn+1. It holds

Xx
n = Xrkn +

(
ξrkn+1 + · · ·+ ξn

)
= Xrkn + S(n)− S(rkn), so that

0 ≤ Xx
n

n
=

Xx
rkn

n
+

S(n)

n
− S(rkn)

n
≤ max{|ξ1|, . . . , |ξn|}

n
+

S(n)

n
− S(rkn)

n
.

The first term on the right hand side converges P-a.s. towards 0 since E[|ξn|] < +∞. By the strong

law of large number, the second term tends P-a.s. to 0. At last, the same property holds for the last

term, since
∣∣∣S(rkn)

n

∣∣∣ =
∣∣∣S(rkn)

rkn

∣∣∣× rkn

n
≤
∣∣∣S(rkn)

rkn

∣∣∣.

The sub-process of reflections is the sequence (X(rk))k≥0: this is a Markov chain on N0 with

transition probability R given by: for all x, y ∈ N0,

R(x, y) =




0 if y = 0
∑x

w=0 U
∗(−w)µ∗(w − x− y) if y ≥ 1,

(8)

where µ∗ is the distribution of S(ℓ1) and U∗ =
+∞∑

n=0

(µ∗)⋆n denotes its potential.

Set C := sup{y ≥ 1 : µ(−y) > 0}. The support of µ∗ equals Z− = Z ∩ (−∞, 0) when C = +∞,

otherwise it is {−C, . . . ,−1}; furthermore, U∗(−w) > 0 for any w ≥ 0. Then, R(x, y) > 0 if and only

5



if y ∈ Sr, where Sr = N0 when C = +∞ and Sr = {1, . . . , C} otherwise. Consequently, the set Sr is

the unique irreducible and ergodic class of the Markov chain (X(rk))k≥0 and this chain is aperiodic

on Sr.

The measure ν on N0 defined by

ν(x) =

+∞∑

y=1

(1
2
µ∗(−x) + µ∗((−x− y,−x)

)
+

1

2
µ∗(−x− y)

)
µ∗(−y),

is, up to a multiplicative constant, the unique stationary measure for (X(rk))k≥0; its support equals

Sr.

When ν is finite, we normalize it in such a way it is a probability measure. It holds in particular

when E
[
|S(ℓ1)|1/2

]
< ∞ and E[ξn] = 0, in which case the process of reflections is positive recurrent

on Sr.

3.1 On the spectrum of the transition probabilities matrix R
Let us recall some spectral properties of the matrix R = (R(x, y))x,y∈N0 . By Property 2.3 in [8], the

matrix R is quasi-compact on the space L∞(N0) of bounded functions on N0, with 1 as the unique

(and simple) dominant eigenvalue; in particular, the rest of the spectrum of R is included in a disc

with radius < 1.

It is of interest in the next section to let R act on a bigger space than L∞(N0).

For instance, following [8], we may fix K > 1 and consider the Banach space

LK(N0) := {φ : N0 → C : ‖φ‖K := sup
x≥0

|φ(x)|/Kx < +∞}

endowed with the norm ‖ · ‖K . By Property 2.3 in [8], if
∑

x≥0

Kxµ(x) < +∞ then R acts as a compact

operator on LK(N0).

In this article, we only assume that µ has a finite moment of order 2 and its negative part has mo-

ment of order 3. Consequently, we consider a smaller Banach space Bα adapted to these hypotheses

and defined by: for α > 0 fixed,

Bα :=
{
φ : N0 → C : |φ|α := sup

x≥0

|φ(x)|
1 + xα

< +∞
}
.

Endowed with the norm | · |α, the space Bα is a Banach space on C.

Proposition 3.2. Fix α > 0 and assume E[ξ2n] + E[max(0,−ξn)
2+α] < +∞ and E[ξn] = 0. Then, the

operator R acts on Bα and R(Bα) ⊂ L∞(N0). Furthermore,

1. R is compact on Bα with spectral radius 1;

2. 1 is the unique eigenvalue of R with modulus 1, it is simple with corresponding eigenspace C1;

3. the rest of the spectrum of R on Bα is included in a disc with radius < 1.

Let Π be the projection from Bα onto the eigenspace C1 corresponding to this spectral decom-

position, i.e. such that ΠR = RΠ = Π. In other words, there exists a bounded operator Q on Bα with

spectral radius < 1 such that R may be decomposed as follows:

R = Π+Q, ΠQ = QΠ = 0 with Π(·) = ν(·)1. (9)

In the next section, we require that Bα does contain the descending and ascending renewal func-

tions h and h̃ of the random walk S. This imposes in particular that α is greater or equal to 1.
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Proof. (1) By (8), for any φ ∈ Bα and x ≥ 0,

Rφ(x) =
∑

y≥1

x∑

w=0

U∗(−w)µ∗(w − x− y)φ(y)

with U∗(−w) =

+∞∑

n=0

P[S(ln) = −w] = P

[
∪n≥0[S(ln) = −w]

]
≤ 1. Therefore,

|Rφ(x)| ≤
∑

y≥1

x∑

w=0

µ∗(w − x− y)|φ(y)|

≤
∑

y≥1

µ∗((−∞,−y))|φ(y)|

≤



∑

y≥1

(1 + yα)µ∗((−∞,−y))


 |φ|α.

By Theorem 1 in [6], the condition E[max(0,−ξn)
2+α] < +∞ implies E

[
|S(ℓ1)|1+α

]
< +∞; hence,

∑

y≥1

(1 + yα)µ∗((−∞,−y)) = E [|S(ℓ1)|] + E
[
|S(ℓ1)|1+α

]
< +∞.

Consequently,

|Rφ|α ≤ |Rφ|∞ ≤
(
E [|S(ℓ1)|] + E

[
|S(ℓ1)|1+α

])
|φ|α (10)

which proves that R acts on Bα when E[max(0,−ξn)
2+α] < +∞. More precisely, the operator R

is bounded from Bα into L∞(N0) and since the canonical injection L∞(N0) →֒ Bα is compact, the

operator R is compact on Bα.

Let us now check that R has spectral radius ρα = 1 on Bα. On the one hand, the equality R1 = 1,

with 1 ∈ Bα, yields ρα ≥ 1. On the other hands, R is a power bounded operator on Bα, which readily

implies ρα ≤ 1; indeed, for any n ≥ 1,

|Rnφ(x)| ≤
+∞∑

z=0

Rn−1(x, z)|Rφ(z)| ≤ |Rφ|∞
+∞∑

z=0

Rn−1(x, z) = |Rφ|∞,

which yields, combining with (10),

|Rnφ|α ≤ |Rnφ|∞ ≤
(
E [|S(ℓ1)|] + E

[
|S(ℓ1)|1+α

])
|φ|α.

Consequently, denoting ‖Rn‖α the norm of Rn on Bα, it holds

sup
n≥0

‖Rn‖α ≤
(
E [|S(ℓ1)|] + E

[
|S(ℓ1)|1+α

])
< +∞.

This achieves the proof of assertion 1.

(2) Let us control the peripherical spectrum of R in Bα. Let θ ∈ R and φ ∈ Bα such that Rφ = eiθφ.

By (10), the function Rφ is bounded, so is φ. Furthermore, the operator R being positive, it

holds |φ| ≤ R|φ|. Consequently, the function |φ|∞ − |φ| is super-harmonic and non-negative, hence

constant since the Markov chain (Xrn)n≥0 is irreducible and recurrent on this set.

Without loss of generality, we may assume |φ| = 1 on Sr, i.e φ(x) = eiϕ(x) for any x ∈ Sr, with

ϕ : Sr → R. Equality Rφ = eiθφ may be rewritten as: for any x ∈ Sr,

∑

y∈Sr

ei(ϕ(y)−ϕ(x))R(x, y) = eiθ.

7



Recall that R(x, y) > 0 for any x, y ∈ Sr; thus, by convexity, ei(ϕ(y)−ϕ(x)) = eiθ for any x, y ∈ Sr. Thus,

eiθ = 1 and the function φ is harmonic on Sr, hence constant. Eventually, the function φ is constant

on N0: this is the consequence of equality Rφ(x) = eiθφ(x) = φ(x), valid for any x ∈ N0, combined

with the facts that R(x, y) > 0 if and only if y ∈ Sr and that φ is constant on Sr.

(3) Assertion 3 is a consequence of assertion 2 and the compactness of R on Bα.

3.2 A Renewal limit theorem for the times of reflections

In this section, we prove the analogous of Corollary 2.2 for the process (rn)n≥0. Let us introduce

some notations and conventions.

From now on, we focus on the process (X(n))n≥0 and denote

((N0)⊗N, (P(N0))⊗N, (X(n))n≥0, (Px)x∈N0 , θ)

the canonical space associated to this process, that is the space of trajectories of the Markov chain

(X(n))n≥0. In particular, Px, x ∈ N0, denotes the conditional probability with respect to the event

[X0 = x] and Ex the corresponding conditional expectation. The operator θ is the classical shift

transformation defined by: for any (xk)k≥0 ∈ (N0)⊗N,

θ((xk)k≥0) = ((xk+1)k≥0.

For n, x, y ≥ 0, set

Rn(x, y) := Px[r1 = n,X(n) = y],

and

Σn(x, y) :=
+∞∑

k=1

Px[rk = n,X(n) = y].

We are interested in the behavior as n → +∞ of these quantities. It has been already studied in

[15] (see Lemma 7) for the Lindley process. For the reflected random walk, the argument is more

complicated since the position at time rk may vary, which implies that the excursions of the random

walk (X(n))n≥0 between two successive reflection times are not independent. This explain why we

focus here on the reflection process and it is of interest to express quantities Rn(x, y) and Σn(x, y) in

terms of operators and product of operators related to this sub-process.

We consider the linear operators Rn : L∞(N0) → L∞(N0), n ≥ 0, defined by: for any φ ∈ L∞(N0)

and x ≥ 0,

Rnφ(x) =
∑

y≥1

Rn(x, y)φ(y) = Ex[r1 = n;φ(X(n))]. (11)

In particular, Rn(x, y) = Rn1{y}(x). The quantity Σn(x, y) is also expressed in terms of the Rk as

follows:

Σn(x, y) =

+∞∑

k=1

Px[rk = n,X(n) = y]

=

+∞∑

k=1

∑

j1+···+jk=n

Px[r1 = j1, r2 − r1 = j2, . . . , rk − rk−1 = jk, X(n) = y]

=
+∞∑

k=1

∑

j1+···+jk=n

Rj1 . . . Rjk1{y}(x) (12)

Firstly, let us check that the Rn act on Bα.
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Lemma 3.3. There exists a positive constant C4 such that, for any α > 0,

|Rn|α ≤ C4

E
[
max(0,−ξn)

2+α
]

n3/2
. (13)

Proof. For any φ ∈ Bα and x ≥ 0,

|Rnφ(x)| ≤
∑

y≥1

|φ(y)|Px[r1 = n,X(n) = y]

=
∑

y≥1

∑

z≥0

|φ(y)|P[τS(x) ≥ n− 1, x+ S(n− 1) = z, z + ξn = −y]

=
∑

y≥1

∑

z≥0

|φ(y)|P[τS(x) ≥ n− 1, x+ S(n− 1) = z]P[ξn = −y − z].

Hence, by Lemma 2.1,

|Rnφ(x)|
1 + xα

� 1

n3/2

∑

y≥1

∑

z≥0

|φ(y)| h(x)

1 + xα
h̃(z)P[ξ1 = −y − z].

Since h(x) = O(x) and h̃(z) = O(z),

|Rnφ(x)|
1 + xα

� |φ|α
n3/2

∑

y≥1

∑

z≥0

(1 + yα)h̃(z)P[ξ1 = −y − z]

� |φ|α
n3/2

∑

y≥1

∑

z≥0

(1 + yα)zP[ξ1 = −y − z]

=
|φ|α
n3/2

∑

t≥1

t∑

y=1

(1 + yα)(t− y)P[ξ1 = −t]

� |φ|α
n3/2

∑

t≥1

t2+α
P[ξ1 = −t],

which yields (13).

Hence,
∑

n≥0

|Rn|α < +∞; in particular, the sequence (
∑N

n=1 Rn)N≥1 converges towards R in Bα.

We write R =
∑

n≥1 Rn and, for any z ∈ D := {z ∈ C : |z| ≤ 1}, we set

R(z) =
∑

n≥1

znRn.

Proposition 3.4. Fix α > 0 and assume E[ξ2n]+E[max(0,−ξn)
2+α] < +∞ and E[ξn] = 0. The sequence

(Rn)n≥0 is an aperiodic renewal sequence of operators, i.e. it satisfies the following properties (see

[9]):

(R1). The operator R = R(1) has a simple eigenvalue at 1 and the rest of its spectrum is contained

in a disk of radius < 1.

(R2). For any n ≥ 1, set rn := νRn1 =
∑

x≥1 ν(x)Px(r1 = n); hence,

ΠRnΠ = rnΠ,

where Π denotes the eigenprojection of R for the eigenvalue 1.

(R3). There exists a constant C > 0 such that |Rn|α ≤ C

n3/2 .

(R4).
∑

j>n rj ∼ c√
n

with c = c1ν(h), where c1 is the positive constant given by Lemma 2.1 and h is

the descending renewal function of the random walk S.

(R5). The spectral radius of R(z) is strictly less than 1 for z ∈ D \ {1}.
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Proof. (R1) is a direct consequence of Proposition 3.2.

(R2) Recall that Πφ = ν(φ)1 for any φ ∈ Bα. Hence, setting gn(x) := Px(R1 = n), it holds

RnΠφ(x) = ν(φ)gn(x), thus ΠRnΠφ(x) = ν(φ)Π(gn) =
∑

x≥1

ν(x)Px(r1 = n)ν(φ)1,

which is the expected result.

(R3) follows from Lemma 3.3.

(R4) Thanks to Lemma 2.1,

∑

j≥n

rj =
∑

x≥1

∑

j≥n

ν(x)Px[r1 = j] =
∑

x≥1

ν(x)Px[r1 ≥ n] ∼ c1
ν(h)√

n
as n → +∞.

Notice that 0 < ν(h) < +∞ since E[|S(ℓ1)|] < +∞; indeed, 1 ≤ h(x) = O(x) and

∑

x≥1

xν(x) �
∑

x≥1

∑

y≥1

x+y∑

w=x

µ∗(−w)µ∗(−y)x =
∑

y≥1

∑

w≥1

µ∗(−w)µ∗(−y)

w∑

x=(w−y)∨0

x

≤
∑

y≥1

∑

w≥1

ywµ∗(−w)µ∗(−y) =



∑

y≥1

yµ∗(−y)




2

= (E[|S(ℓ1)|])2 < +∞.

(R5) The argument is the same as the one used to control the peripherical spectrum of R in Propo-

sition 3.2. For any z ∈ D \ {1}, the operators R(z) are compact on Bα, with spectral radius ρz ≤ 1.

If ρz = 1, there exist θ ∈ R and φ ∈ Bα such that R(z)φ = eiθφ. Hence |φ| = |R(z)φ| ≤ R|φ| and

since R(Bα) ⊂ L∞(N0), the function |φ| is bounded on N0, thus constant on Sr.

Without loss of generality, we may assume |φ| = 1 on Sr, i.e φ(x) = eiϕ(x) for any x ∈ Sr, with

ϕ : Sr → R. Equality R(z)φ = eiθφ may be rewritten as: for any x ∈ Sr,

∑

n≥1

∑

y∈Sr

zneiϕ(y)
Px(r1 = n;X(n) = y) = eiθeiϕ(x).

By convexity, since
∑

n≥1

∑
y∈Sr

Px(r1 = n;X(n) = y) = 1, we obtain: for all n ≥ 1 and x, y ∈ Sr,

zneiϕ(y) = eiθeiϕ(x).

Setting x = y, it yields zn = eiθ, so that zn does not depend on n. Finally z = 1. Thus, ρz < 1 when

z ∈ D \ {1}.

By (R5), for |z| < 1, the operator T (z) := (I − R(z))−1 is well defined in Bα; a direct formal

computation yields T (z) =
∑+∞

n=0 Tnz
n, where the Tn are bounded operators on Bα defined by:

T0 = I and Tn =

+∞∑

k=1

∑

j1+···+jk=n

Rj1 · · ·Rjk for n ≥ 1.

The so-called renewal equation T (z) := (I−R(z))−1 is of fundamental importance to understand

the asymptotics of the Tn, several functional analytic tools can be brought into play. Such sequences

of operators (Rn)n≥0 and (Tn)n≥0 have been the object of many studies, related to renewal theory

in a non-commutative setting. We refer to the paper [9], which fits perfectly here. The following

statement is analogous of the last assertion of Corollary 2.2 for the reflected random walk.

Corollary 3.5. The sequence (
√
nTn)n≥1 converges in Bα towards the operator 1

πc1ν(h)
Π.

Proof. Apply Theorem 1.4 in [9] with β = 1/2 and ℓ(n) = c = c1ν(h).
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As a direct consequence, by equality (12), it holds

lim
n→+∞

√
nΣn(x, y) =

ν(y)

πc1ν(h)
.

In the next section, we have to consider and study some variations of the Σn(x, y) which we

introduce now. For any x ≥ 0 and 0 < s < t < 1,

Σ̂n(x, t, s) := n
∑

l≥0

Px[rl = [ns], rl+1 > [nt]],

and

Σ̃n(x, t, s) := n2
+∞∑

l=0

Px [rl = [ns], rl+1 = [nt]] .

These quantities appear in a natural way to control the finite distribution of the process (Xn(t))n≥0.

4 Proof of Theorem 1.1

From now on, we fix α = 1; this implies that h ∈ Bα, which is necessary from now on (see Lemmas

4.2 and 4.4).

4.1 One-dimensional distribution

We fix a bounded and Lispchitz continuous function φ : R → R.

Lemma 4.1. For any t ∈ [0, 1], it holds

lim
n→+∞

Ex [φ (Xn(t))] =

∫ +∞

0

φ(u)
2e−u2/2t

√
2πt

du = E[φ(|Bt|)],

where B is a standard Brownian motion.

Proof. We fix t ∈ (0, 1) and decompose the expectation E

[
φ

(
X([nt])

σ
√
n

)]
as follows:

Ex

[
φ

(
X([nt])

σ
√
n

)]

≈
[nt]−1∑

k=0

∑

l≥0

Ex

[
φ

(
X([nt])

σ
√
n

)
; rl = k,X(k) + ξk+1 ≥ 0, . . . , X(k) + ξk+1 + · · ·+ ξ[nt] ≥ 0

]

=

[nt]−1∑

k=0

∑

y≥0

Σk(x, y)E

[
φ

(
y + ξk+1 + . . .+ ξ[nt]

σ
√
n

)
; y + ξk+1 ≥ 0, . . . , y + ξk+1 + · · ·+ ξ[nt] ≥ 0

]

=

[nt]−1∑

k=0

∑

y≥0

Σk(x, y)E

[
φ

(
y + S([nt]− k)

σ
√
n

)
|τS(y) > [nt]− k

]
P
[
τS(y) > [nt]− k

]
.

For each k = 2, . . . , [nt]− 4 and any s ∈ [ kn ,
k+1
n ),

fn(s) = n
∑

y≥0

Σ[ns](x, y)E

[
φ

(
y + S([nt]− [ns])

σ
√
n

)
|τS(y) > [nt]− [ns]

]
P
[
τS(y) > [nt]− [ns]

]
,
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and fn(s) = 0 on [0, 2
n ) and [ [nt]−1

n , t). Hence,

Ex

[
φ

(
X([nt])

σ
√
n

)]
=

∫ t

0

fn(s)ds+O
(

1√
n

)
.

Now, let us set : for n ≥ 1 and any y ∈ N0,

an(y) = Σ[ns](x, y)P
[
τS(y) > [nt]− [ns]

]
,

bn(y) = E

[
φ

(
y + S([nt]− [ns])

σ
√
n

)
|τS(y) > [nt]− [ns]

]
.

For any n ≥ 1, it holds
∑

y≥0

an(y) = n
∑

l≥0

Px[rl = [ns], rl+1 > [nt]] =: Σ̂n(x, t, s),

and |bn(y)| ≤ |φ|∞. The 2 following lemmas allowsus to control the behavior as n → +∞ of the inte-

gral

∫ t

0

fn(s)ds; the proof of Lemma 4.2 is postponed to the last section, the one of 4.3 is straightfor-

ward.

Lemma 4.2. For each 0 < s < t < 1,

lim
n→+∞

Σ̂n(x, t, s) =
1

π
√

s(t− s)
. (14)

Moreover, there exists a positive constant C5 such that

Σ̂n(x, t, s) ≤ C5
1 + x√
s(t− s)

for all 0 < s < t < 1 and x ∈ N. (15)

Lemma 4.3. Let (an(y))y∈Nk
0
, (bn(y))y∈Nk

0
be arrays of real numbers for some integer k ≥ 1. Suppose

that

• an(y) ≥ 0;

• lim
n→+∞

∑

y∈Nk
0

an(y) = A;

• lim
n→+∞

bn(y) = B for all y ∈ Nk
0 ;

• sup
n≥1,y∈Nk

0

|bn(y)| < +∞.

Then

lim
n→+∞

∑

y≥0

an(y)bn(y) = AB.

Lemmas 2.3, 4.2 and 4.3 combined altogether yield: for any s ∈ (0, t),

lim
n→+∞

fn(s) =
1

π

1√
s(t− s)

∫ +∞

0

φ(z
√
t− s)ze−z2/2dz.

Moreover, it follows from (15) that

sup
n

|fn(s)| ≤ C5
1 + x√
s(t− s)

|φ|∞ =: f̂(s).

Since f̂ ∈ L1[0, t], the Lebesgue dominated convergence theorem yields

lim
n→+∞

E

[
φ

(
X([nt])

σ
√
n

)]
= lim

n→+∞

∫ t

0

fn(s)ds

=
1

π

∫ t

0

1√
s(t− s)

(∫ +∞

0

φ(z
√
t− s)ze−z2/2dz

)
ds

=

∫ +∞

0

φ(u)
2e−u2/2t

√
2πt

du,
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where the last equation follows from the identity ([11], p. 17)

∫ +∞

0

1√
t
exp

(
− αt− β

t

)
dt =

√
π

α
e−2

√
αβ (α, β > 0) (16)

and some change of variable computation. We achieve the proof of Lemma 4.1 by noting that, since

φ is Lipschitz continuous (with Lipschitz coefficient [φ]),

∣∣∣∣Ex

[
φ

(
X([nt])

σ
√
n

)]
− Ex [φ (Xn(t))]

∣∣∣∣ ≤ [φ]Ex

[∣∣∣∣
X([nt])

σ
√
n

−Xn(t)

∣∣∣∣
]

≤ 1

σ
√
n
[φ]E

[
|ξ[nt]+1|

]
→ 0 as n → +∞. (17)

4.2 Two-dimensional distribution

The convergence of the finite-dimensional distributions of (Xn(t))n≥1 is more delicate. We detail

the argument for two-dimensional ones, the general case may be treated in a similar way.

Let us fix 0 < s < t, n ≥ 1 and denote

κ = κ(n, s) = min{k > [ns] : X(k − 1) + ξk < 0}.

We write

Ex

[
φ1

(
X([ns])

σ
√
n

)
φ2

(
X([nt])

σ
√
n

)]
= A1(n) +A2(n),

where

A1(n) =

[nt]∑

k=[ns]+1

Ex

[
φ1

(
X([ns])

σ
√
n

)
φ2

(
X([nt])

σ
√
n

)
1{κ=k}

]
,

A2(n) = Ex

[
φ1

(
X([ns])

σ
√
n

)
φ2

(
X([nt])

σ
√
n

)
1{κ>[nt]}

]
.

The term A1(n) deals with the trajectories of Xk, 0 ≤ k ≤ n, which reflect between [ns] + 1 and [nt]

while A2(n) concerns the others trajectories.
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4.2.1 Estimate of A1(n)

As in the previous section, we decompose A1(n) as

A1(n) =

[ns]−1∑

k1=0

[nt]∑

k2=[ns]

+∞∑

l=0

∑

y≥1

∑

z≥1

∑

w≥0

Ex

[
φ1

(
X([ns])

σ
√
n

)
φ2

(
X([nt])

σ
√
n

)
; rl = k1, X(k1) = z,

z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · ·+ ξk2−2 ≥ 0, z + ξk1+1 + · · ·+ ξk2−1 = w,w + ξk2 = −y

]

=

[ns]−1∑

k1=0

[nt]∑

k2=[ns]

+∞∑

l=0

∑

y≥1

∑

z≥1

∑

w≥0

Ex

[
φ1

(
z + ξk1+1 + · · ·+ ξ[ns]

σ
√
n

)
φ2

(
y + ξk2+1 + · · ·+ ξ[nt]

σ
√
n

)
;

rl = k1, X(k1) = z, z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · ·+ ξk2−2 ≥ 0,

z + ξk1+1 + · · ·+ ξk2−1 = w,w + ξk2 = −y

]

=

[ns]−1∑

k1=0

[nt]∑

k2=[ns]

+∞∑

l=0

∑

y≥1

∑

z≥1

∑

w≥0

Ex

[
φ2

(
y + ξk2+1 + · · ·+ ξ[nt]

σ
√
n

)]
Px[rl = k1, X(k1) = z]

× Ex

[
φ1

(
z + ξk1+1 + · · ·+ ξ[ns]

σ
√
n

)
, z + ξk1+1 ≥ 0, . . . , z + ξk1+1 + · · ·+ ξk2−2 ≥ 0,

z + ξk1+1 + · · ·+ ξk2−1 = w,w + ξk2 = −y

]
.

Using the i.i.d. property of the sequence (ξk)k≥1, we obtain

A1(n) =

[ns]−1∑

k1=0

∑

z≥1

Σk1(x, z)

[nt]∑

k2=[ns]

∑

y≥1

∑

w≥0

Ey

[
φ2

(
X([nt]− k2)

σ
√
n

)]

× E

[
φ1

(
z + S([ns]− k1)

σ
√
n

)
|τS(z) > k2 − k1 − 1, z + S(k2 − k1 − 1) = w

]

× P[τS(z) > k2 − k1 − 1, z + S(k2 − k1 − 1) = w]P[ξ1 = −w − y].

For any 2 ≤ k1 < [ns]− 6 and [ns] ≤ k2 ≤ [nt] and any s1 ∈ [k1

n , k1+1
n ) and s2 ∈ [k2

n , k2+1
n ), we write

fn(s1, s2) = n2
∑

z≥1

Σ[ns1](x, z)
∑

y≥1

∑

w≥0

Ey

[
φ2

(
X([nt]− [ns2])

σ
√
n

)]

× E

[
φ1

(
z + S([ns]− [ns1])

σ
√
n

)
|τS(z) > [ns2]− [ns1]− 1, z + S([ns2]− [ns1]− 1) = w

]

× P
[
τS(z) > [ns2]− [ns1]− 1, z + S([ns2]− [ns1]− 1) = w

]
P[ξ1 = −w − y],

and fn(s1, s2) = 0 for the others values of k1, such that 0 ≤ k1 ≤ [ns]. Hence,

A1(n) =

∫ s

0

ds1

∫ t

s

ds2 fn(s1, s2) +O
(

1√
n

)
.
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It follows from Lemma 2.4 that, for each z, w ≥ 0,

lim
n→+∞

E

[
φ1

(
z + S([ns]− [ns1])

σ
√
n

)
|τS(z) > [ns2]− [ns1]− 1, z + S([ns2]− [ns1]− 1) = w

]

=

∫ +∞

0

2φ1(u
√
s2 − s1) exp

(
− u2

2 s−s1
s2−s1

s2−s
s2−s1

)
u2

√
2π (s−s1)3

(s2−s1)3
(s2−s)3

(s2−s1)3

du

=
2√
2π

∫ +∞

0

φ1(v) exp

(
− v2

2 (s−s1)(s2−s)
s2−s1

)
v2√

(s−s1)3(s2−s)3

(s2−s1)3

dv.

By Lemma 4.1,

lim
n→+∞

Ey

[
φ2

(
X([nt]− [ns2])

σ
√
n

)]
=

∫ +∞

0

φ2(u)
2e−u2/2(t−s2)

√
2π(t− s2)

du.

We set

an(x, y, z, w) = n2Σ[ns1](x, z)P
[
τS(z) > [ns2]− [ns1]− 1, z + S([ns2]− [ns1]− 1) = w

]
P[ξ1 = −w − y],

bn(y, z, w) = Ey

[
φ2

(
X([nt]− [ns2])

σ
√
n

)]

× E

[
φ1

(
z + S([ns]− [ns1])

σ
√
n

)
|τS(z) > [ns2]− [ns1]− 1, z + S([ns2]− [ns1]− 1) = w

]

Note that
∑

z≥1

∑
y≥1

∑
w≥0 an(x, y, z, w) = Σ̃n(x, s2, s1). The behavior as n → +∞ of the quantity

Σ̃n(x, s2, s1) is given by the following Lemma, whose proof is postponed to the last section.

Lemma 4.4. For all 0 < s < t < 1, it holds that

lim
n→+∞

Σ̃n(x, t, s) =
1

2π
√
s(t− s)3

. (18)

Moreover, there exists a positive constant C6 such that, for all 0 < s < t < 1 and n ≥ 0,

Σ̃n(x, t, s) ≤ C6
1 + x

π
√
s(t− s)3

. (19)

By Lemmas 4.4 and 4.3, we get limn→+∞ fn(s1, s2) = f(s1, s2) where

f(s1, s2) =
1

π2
√
s1

∫ +∞

0

φ1(v) exp

(
− v2

2 (s2−s)(s−s1)
s2−s1

)
v2√

(s− s1)3(s2 − s)3
dv

×
∫ +∞

0

φ2(u)
e−u2/2(t−s2)

√
t− s2

du.

Moreover, by using the estimate (19) and following the argument in the proof of Lemma 4.1, we

can show that the sequence (|fn|)n≥1 is uniformly bounded by a function which is integrable with

respect to Lebesgue measure on [0, s] × [s, t]. Hence, using again the Lebesgue dominated conver-

gence theorem, we get

lim
n→+∞

A1(n) =

∫ s

0

ds1

∫ t

s

ds2f(s1, s2)

=
1

π2

∫ s

0

ds1√
s1

∫ t

s

ds2

∫ +∞

0

φ1(v) exp

(
− v2

2 (s2−s)(s−s1)
s2−s1

)
v2√

(s− s1)3(s2 − s)3

×
∫ +∞

0

φ2(u)
e−u2/2(t−s2)

√
t− s2

dudv,
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which yields, using again (16),

lim
n→+∞

A1(n) =
2

π
√
s(t− s)

∫ +∞

0

∫ +∞

0

φ1(v)φ2(u)e
−v2/2se−

(u+v)2

2(t−s) dudv. (20)

4.2.2 Estimate of A2(n)

We decompose A2(n) as

+∞∑

y=0

∑

k≤[ns]

∑

l≥0

Ex

[
φ1

(X([ns])

σ
√
n

)
φ2

(X([nt])

σ
√
n

)
;

rl = k,X(k) = y, y + ξk+1 ≥ 0, . . . , y + ξk+1 + · · ·+ ξ[nt] ≥ 0

]

=
+∞∑

y=0

∑

k≤[ns]

Ex

[
φ1

(y + ξk+1 + · · ·+ ξ[ns]

σ
√
n

)
φ2

(y + ξk+1 + · · ·+ ξ[nt]

σ
√
n

)
;

y + ξk+1 ≥ 0, . . . , y + ξk+1 + · · ·+ ξ[nt] ≥ 0

]
∑

l≥0

Px[rl = k,X(k) = y].

Since (ξk) is a i.i.d. sequence,

A2(n) =
+∞∑

y=0

∑

k≤[ns]

Σk(x, y)E

[
φ1

(y + S([ns]− k)

σ
√
n

)
φ2

(y + S([nt]− k)

σ
√
n

)
; τS(y) > [nt]− k

]
.

For u ∈ (0, s], we denote

gn(u) = n

+∞∑

y=0

Σ[nu](x, y)E

[
φ1

(y + S([ns]− [nu])

σ
√
n

)
φ2

(y + S([nt]− [nu])

σ
√
n

)
; τS(y) > [nt]− [nu]

]

Now, let us compute the pointwise limit on (0, s] of the sequence (gn)n≥1. We write gn(u) as

gn(u) =n

+∞∑

y=0

Σ[nu](x, y)E

[
φ1

(y + S([ns]− [nu])

σ
√
n

)
φ2

(y + S([nt]− [nu])

σ
√
n

) ∣∣∣τS(y) > [nt]− [nu]

]

× Py

[
τS(y) > [nt]− [nu]

]

We set

an(x, y) = nΣ[nu](x, y)Py

[
τS(y) > [nt]− [nu]

]
,

and

bn(y) = E

[
φ1

(y + S([ns]− [nu])

σ
√
n

)
φ2

(y + S([nt]− [nu])

σ
√
n

) ∣∣∣τS(y) > [nt]− [nu]
]
.
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Note that

+∞∑

y=0

an(y) = Σ̂[nu](x, t, u). Since φ1, φ2 are bounded and continuous on R, it follows from

Theorem 3.2 in [4] and Theorems 2.23 and 3.4 in [10] that

lim
n→+∞

bn(y) = lim
n→+∞

E

[
φ1

(
y + S([ns]− [nu])

σ
√
[nt]− [nu]

√
[nt]− [nu]√

n

)

× φ2

(
y + S([nt]− [nu])

σ
√

[nt]− [nu]

√
[nt]− [nu]√

n

)∣∣∣τS(y) > [nt]− [nu]
]

=

∫ +∞

0

∫ +∞

0

φ1(y
√
t− u)φ2(z

√
t− u)

( t− u

s− u

)3/2
ye−

t−u
2(s−u) y

2

× e−
1
2

t−u
t−s (z−y)2 − e−

1
2

t−u
t−s (z+y)2

√
2π
(
1− s−u

t−u

) dydz

=
1√

2π(t− s)

∫ +∞

0

∫ +∞

0

φ1(y
′)φ2(z

′)

√
t− u

(s− u)3/2
y′e−

y′2

2(s−u)

×
(
e−

(z′−y′)2

2(t−s) − e−
(z′+y′)2

2(t−s)

)
dy′dz′.

Again, we can use the argument in the proof of Lemma 4.1 to show that the sequence (gn) converges

pointwise to g with

g(u) =
1

π3/2
√
2(t− s)

1√
u(s− u)3

×
∫ +∞

0

∫ +∞

0

φ1(y
′)φ2(z

′)y′e−
y′2

2(s−u)

(
e−

(z′−y′)2

2(t−s) − e−
(z′+y′)2

2(t−s)

)
dy′dz′,

and (gn) is also dominated by a function which is integrable on [0, s] with respect to the Lebesgue

measure. Lebesgue’s dominated convergence theorem yields

lim
n→+∞

A2(n)

= lim
n→+∞

1

n

∑

k≤[ns]

gn(k/n) =

∫ s

0

g(u)du

=
1

π3/2
√
2 (t− s)

∫ s

0

du

∫ +∞

0

dy′
∫ +∞

0

dz′

× φ1(y
′)φ2(z

′)
e−

y′2

2(s−u)

√
u(s− u)3

y′√
2π(t− s)

(
e−

(z′−y′)2

2(t−s) − e−
(z′+y′)2

2(t−s)

)

=
1

π3/2s
√
2 (t− s)

∫ +∞

0

dy′
∫ +∞

0

dz′φ1(y
′)φ2(z

′)

(
e−

(z′−y′)2

2(t−s) − e−
(z′+y′)2

2(t−s)

)

×
(∫ 1

0

y′√
v(1− v)3

e−
y′2

2s(1−v) dv

)

=
1

π
√
s(t− s)

∫ +∞

0

dy′
∫ +∞

0

dz′φ1(y
′)φ2(z

′)e−y′2/2s

(
e−

(z′−y′)2

2(t−s) − e−
(z′+y′)2

2(t−s)

)
. (21)

Therefore, it follows from (20) and (21) that

lim
n→+∞

E

[
φ1

(
X([ns])

σ
√
n

)
φ2

(
X([nt])

σ
√
n

)]
= E[φ1(|Bs|)φ2(|Bt|)].

Using a similar estimate as the one in (17), we get

lim
n→+∞

E [φ1 (Xn(s))φ2 (Xn(t))] = E[φ1(|Bs|)φ2(|Bt|)],
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which concludes the convergence of (Yn) in two-dimensional marginal distribution to a reflected

Brownian motion.

4.3 Tightness

Recall that the modulus of continuity of a function f : [0, 1] → R is defined by

wf (δ) = sup
t,s∈[0,1],|t−s|<δ

|f(t)− f(s)|.

It is clear that wX(δ) ≤ wS(δ). Using Theorem 7.3 in [3], the tightness of X follows directly from the

one of the classical random walk (S(n))n≥0. We achieve the proof of Theorem 1.1, applying Theorem

7.1 in [3].

5 Auxiliary proofs

Proof of Lemma 4.2.

By setting hn(y) =
√
nPy[r1 > n], the Markov property yields

Σ̂n(x, t, s) = n
∑

l≥0

Ex

[
PX(rl)[r1 ◦ θrl > [nt]− [ns]]; rl = [ns]

]

=

√
n√

[nt]− [ns]

√
n
∑

l≥0

Ex

[
h[nt]−[ns](X(rl)); rl = [ns]

]

=
1 + o(n)√
s(t− s)

√
[ns]T[ns](h[nt]−[ns])(x).

Let us prove that
√
[ns]T[ns](h[nt]−[ns])(x) → 1

π as n → +∞. Indeed,
∣∣∣∣
√
[ns]T[ns](h[nt]−[ns])(x) −

1

π

∣∣∣∣ ≤ B1(n) +B2(n),

with

B1(n) =

∣∣∣∣
√
[ns]T[ns](h[nt]−[ns])(x)−

1

πν(h)
ν(h[nt]−[ns])

∣∣∣∣ and B2(n) =
1

πν(h)

∣∣ν(h[nt]−[ns])− ν(h)
∣∣ .

By Lemma 2.1, it holds 0 ≤ hn(y) ≤ C1h(y), with h(y) = O(y), so that the sequence (hn)n≥1 is

bounded in Bα. Thus, Corollary 3.5 yields

B1(n) ≤ (1 + x)

∣∣∣∣
√
[ns]T[ns] −

1

πν(h)
Π

∣∣∣∣
α

|h[nt]−[ns]|α −→ 0 as n → +∞.

Similarly, by Lemma 2.1 and the dominated convergence theorem,

lim
n→+∞

∣∣ν(h[nt]−[ns])− ν(h)
∣∣ = 0,

so that B2(n) −→ 0 as n → +∞.

�

Proof of Lemma 4.4. By setting h̃n(y) = n3/2Py[r1 = n], the Markov property yields

Σ̃n(x, s, t) = n2
∑

l≥0

Ex

[
PX(rl)[r1 ◦ θrl = [nt]− [ns]]; rl = [ns]

]

=
n3/2

([nt]− [ns])3/2
√
n
∑

l≥0

Ex

[
h̃[nt]−[ns](X(rl)); rl = [ns]

]

=
1 + o(n)√
s(t− s)3/2

√
[ns]T[ns](h̃[nt]−[ns])(x).

18



By Corollary 2.2, it holds 0 ≤ h̃n(y) ≤ C3h(y), with h(y) = O(y), so that the sequence (h̃n)n≥1 is

bounded in Bα. We conclude as above to prove Lemma 4.2.

�
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[8] Essifi, R., Peigné, M.: Return Probabilities for the Reflected Random Walk on N0. Journal of

Theoretical Probability, 28(1), 231–258 (2015).
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