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Abstract

Search patterns of randomly oriented steps of different lengths have been observed on all
scales of the biological world, ranging from the microscopic to the ecological, including in
protein motors, bacteria, T-cells, honeybees, marine predators, and more, see e.g., [21, 22, 34,
36, 37, 38, 39]. Through different models, it has been demonstrated that adopting a variety
in the magnitude of the step lengths can greatly improve the search efficiency. However,
the precise connection between the search efficiency and the number of step lengths in the
repertoire of the searcher has not been identified.

Motivated by biological examples in one-dimensional terrains, a recent paper studied the
best cover time on an n-node cycle that can be achieved by a random walk process that
uses k step lengths [8]. By tuning the lengths and corresponding probabilities the authors
therein showed that the best cover time is roughly n1+Θ(1/k). While this bound is useful for
large values of k, it is hardly informative for small k values, which are of interest in biology
[2, 4, 27, 33]. In this paper, we provide a tight bound for the cover time of such a walk, for
every integer k > 1. Specifically, up to lower order polylogarithmic factors, the cover time

is n1+ 1
2k−1 . For k = 2, 3, 4 and 5 the bound is thus n4/3, n6/5, n8/7, and n10/9, respectively.

Informally, our result implies that, as long as the number of step lengths k is not too large,
incorporating an additional step length to the repertoire of the process enables to improve
the cover time by a polynomial factor, but the extent of the improvement gradually decreases
with k.

∗This work has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No 648032).
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1 Introduction

This paper follows the “Natural Algorithms” line of research, aiming to contribute to biological
studies from an algorithmic perspective [6, 10, 17, 29]. In particular, we follow a similar approach
to Chazelle [10, 11], considering a process that has been extensively studied by physicists and
biologists, and offering a more uniform algorithmic analysis based on techniques from probability
theory. Our subject of interest is random walks with heterogeneous step lengths, a family of
processes that during the last two decades has become a central model for biological movement,
see e.g., [12, 21, 22, 27, 30, 32, 34, 35, 37, 38, 39]. Our approach is to quantify by how much can
the search efficiency improve when the searcher is allowed to use more steps. Specifically, our goal
is to analyze, for every integer k, the best cover time achievable by a random walk that utilizes
k step-lengths, and identify the parameters that achieve the optimal cover time. Hence, in some
sense, we view the number of steps as a “hardware” constraint on the searcher, and ask what is
the best “software” to utilize them, that is, the best way to set the lengths, and the probabilities
of taking the corresponding steps. We focus on the one-dimensional terrain (an n-node cycle)
as it is both biologically relevant, and, among other Euclidean spaces, it is the most sensitive to
step-length variations (e.g., the simple random walk on the two-dimensional plain already enjoys
a quasi-linear cover time). A preliminary investigation of this question was recently done by
the authors of the current paper together with collaborating researchers [8], yielding asymptotic
bounds with respect to k. Unfortunately, these bounds are not very informative for small values
of k, which are of particular interest in biology [2, 4, 27, 33]. For example, for processes that can
use a small number of step-lengths, say k = 2 or k = 3, the bound in [8] merely says that the
cover time is polynomial in n, which does not even imply that such a process can outperform the
simple random walk— whose cover time is known to be Θ(n2). In this paper we improve both
the lower bound and the upper bound in [8], identifying the tight cover time for every integer k.

1.1 Background and Motivation

The exploration-exploitation dilemma is fundamental to almost all search or foraging processes
in biology [19]. An efficient search strategy needs to strike a proper balance between the need
to explore new areas and the need to exploit the more promising ones found. At an intuitive
level, this is often perceived as a tradeoff between two scales: the global scale of exploration and
the local scale of exploitation. This paper studies the benefits of incorporating a hierarchy of
multiple scales, where lower scales serve to exploit the exploration made by higher scales. We
demonstrate this concept by focusing on random walk search patterns with heterogeneous step
lengths, viewing the usage of steps of a given length as searching on a particular scale.

In the last two decades, random walks with heterogeneous step lengths have been used by
biologists and physicists to model biological processes across scales, from microscopic to macro-
scopic, including in DNA binding proteins [5, 14], immune cells [18], crawling amoeba [36],
locomotion mode in mussels [15, 22], snails [34], marine predators [21, 37], albatrosses [38, 39],
and even in humans [9, 35, 32]. Most of these biological examples concern search contexts, e.g.,
searching for pathogens or food. Indeed, from a search efficiency perspective, it has been argued
that the heterogeneity of step lengths in such processes allows to reduce oversample, effectively
improving the balance between global exploration and local exploitation [4, 39]. However, the
precise connection between the search efficiency and the number of step lengths in the repertoire
of the searcher has not been identified.

Due to possible cognitive conflicts between motion and perception, in some of the afore-
mentioned search contexts it was argued that biological entities are essentially unable to detect
targets while moving fast, and hence targets are effectively found only between jumps, see e.g.,
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[4, 27] and the references therein. Those models are often called intermittent. When the search
is intermittent, we say that a site is visited whenever the searcher completes a jump landing on
this site. It is also typically assumed that the searcher has some radius of visibility r, and a
target can only be detected if it is in the r-vicinity of a site currently visited by the searcher.
Discretizing the space, one may view a Euclidian space as a grid of the appropriate dimension,
in which each edge is of length r. In this discretization, sites are nodes, and the searcher can
detect a target at a node, only if it makes a random jump that lands on it.

In general, two families of processes with heterogeneous step lengths have been extensively
studied in Euclidean spaces: Lévy Flights (named after the mathematician Paul Lévy), and
Composite Correlated Random Walks (CCRW), see e.g., [2, 4, 27]. Both have been claimed to
be optimal under certain conditions and both have certain empirical support. In the Lévy Flight
process, step lengths have a probability distribution that is heavy-tailed: at each step a direction
is chosen uniformly at random, and the probability to perform a step of length d is proportional
to d−µ, for some fixed parameter 1 < µ < 3.

Searchers employing a CCRW can potentially alternate between multiple modes of search1,
but apart for few exceptions [33], such patterns have mostly been studied when assuming that the
number of search modes is 2. Specifically, a diffusive phase in which targets can be detected and
a ballistic phase in which the searcher moves in a random direction in a straight line whose length
is exponentially distributed with some mean L. This CCRW with 2 modes can be approximated
as a discrete random walk with two step lengths, hereafter called 2-scales search: first, choose a
direction uniformly at random. Then, with some probability p take a step of unit length, and
otherwise, with probability 1− p, take a step of some predetermined length L.

Lévy Flights and 2-Scales searches have been studied extensively using differential equation
techniques and computer simulations. These studies aimed to both compare the performances of
these processes as well as to identify the parameters that maximize the rate of target detection
or minimize the hitting time under various target distributions [4, 12, 27, 30, 39].

Most of the literature on the subject has concentrated on either one or two dimensional
Euclidian spaces. In particular, the one-dimensional case has attracted attention due to several
reasons. First, it finds relevance in several biological contexts, including in the reaction pathway
of DNA binding proteins [5, 14]. One-dimension can also serve as an approximation to general
narrow and long topologies, which can be found for example in blood veins or other organs.
Second, from a computational perspective, the one-dimension is the only dimension where the
simple random walk has a large cover time, namely, quadratic, whereas in all higher dimensions
the cover time is nearly linear. This implies that in terms of the cover time, heterogeneous
random walks can potentially play a much more significant role in one-dimension than in higher
dimensions.

1.2 Definitions

We model the one-dimension space as an n-node cycle, termed Cn. For an integer k, we define
the random walks process with k step lengths as follows.

Definition 1 (k-scales search). A random walk processX is called a k-scales search on Cn if there
exists a probability distribution p = (pi)

k−1
i=0 , where

∑
i pi = 1, and integers L0, L1, . . . , Lk−1 such

that, on each step, X makes a jump {0,−Li,+Li} with probability respectively pi/2, pi/4, pi/4.

1CCRW have also been classified as either cue-sensitive, i.e., they can change their mode of operation upon
detecting a target [3], or internally-driven, i.e., their movement pattern depends only on the mechanism internal
to the searcher [24]. However, when targets are extremely rare and there is no a-priori knowledge about their
distribution, one must cover a large portion of the terrain before finding a target, and hence the aforementioned
distinction becomes irrelevant.
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Overall, with probability 1/2, the process X stays in place2. The numbers (pi) and (Li) are
called the parameters of the search process X. The speed is assumed to be a unitary constant,
that is, it takes L time to do a step of length L.

Our goal is to show upper and lower bounds on the cover time of a k-scales search, that is, the
expected time to visit every node of the ambient graph Cn, where it is assumed that a jump
from some point x to y visits only the endpoint y, and not any of the intermediate nodes. We
denote by E(tcov(n, k)) the smallest cover time achievable by a k-scales search over the n-node
cycle. The parameters n and k are omitted when clear from the context.

We also define the following k-scales search which is often referred to in the mathematical
literature as a Weierstrassian random walk [20]. In the biology literature, it has been used as a
model for the movement strategy of snails [34] and mussels [33].

Definition 2 (Weierstrassian random walk). Let b ≥ 2 and k be integers such that bk−1 < n ≤
bk. The Weierstrassian random walk with parameter b is the k-scales search defined by: Li = bi

and pi = cbb
−i, for every 0 ≤ i ≤ k − 1, with the normalizing constant cb = b−1

b−b1−k .

Note that cb is an increasing function of b > 1, and so cb ≥ c2 ≥ 1/2 for b ≥ 2. Hence,
p0 = cb ≥ 1/2. Also p0 = cb ≤ 1, hence cb = Θ(1) is indeed a constant.

1.3 Previous Bounds on the Cover Time of k-scales search

The work of Lomholt et al. [27] considered intermittent search on the one-dimensional cycle of
length n, and compared the performances of the best 2-scales search to the best Lévy Flight.
With the best parameters, they showed that the best 2-scales search can find a target in roughly
n4/3 expected time, but introducing Lévy distributed relocations with exponent µ close to 2 can
reduce the search time to quasi linear.

Taking a more unified computational approach, a recent paper [8] analyzed the impact of
having k heterogeneous step lengths on the cover time (or hitting time3) of the n-node cycle Cn.
Specifically, the following bounds were established in [8].

Theorem (Upper bound on the cover time of Weierstrassian random walk from [8]). Let b, n
be integers such that 2 ≤ b < n and set k = log n/ log b. The cover time of the Weierstrassian
random walk with parameter b on the n-cycle is at most poly(k) · poly(b) · n log n.

Taking b = dn1/ke yields the following corollary.

Corollary (Upper bound from [8]). For any k ≤ logn
log logn , there exists a k-scales search with

cover time n1+O( 1
k ) log n.

Note that for small values of k, this bound is not very informative. For example, for k = 2, 3
the bound merely says that the cover time is polynomial in n, which is known already for k = 1,
i.e., the simple random walk, whose cover time is Θ(n2).

2This laziness assumption is used for technical reasons, as is common in many other contexts of random walks.
Note that this assumption does not affect the time performance of the process, as we consider it takes time 0 to
stay in place.

3Note that in connected graphs, the notion of cover time, namely the expected time until all sites (of a finite
domain) are visited when starting the search from the worst case site, is highly related to the hitting time, namely,
the expected time to visit a node x starting from node y, taken on the worst case pair x and y; the cover time
is always at least the hitting time, and in connected graphs it is at most a logarithmic multiplicative factor more
than the hitting time, see [26][Matthews method, Theorem 11.2].
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Theorem (Lower bound from [8]). For every ε > 0, there exist sufficiently small constants
c, c′ > 0 such that for k ≤ c′ logn

log logn , any k-scales search cannot achieve a cover time better than

c · n1+
1/2−ε
k+1 .

The aforementioned lower bound of [8] is more precise than the upper bound, but still not
tight, as we show in the next subsection. For example, for k = 2, the lower bound in [8] gives
n7/6 instead of n4/3, which is the tight bound.

1.4 Our Results

This paper provides tight bounds for the cover times of k-scales searches, for any integer k > 1.
Specifically, we prove that the optimal cover (or hitting) time achievable by a k-scales search

is n1+
1

2k−1 , up to lower order polylogarithmic factors. Our bound implies that for small k, the
improvement in the cover time incurred by employing one more step length is polynomial, but
the extent of the improvement gradually decreases with k.

In order to establish the tight bound, we first had to understand what should be a good
candidate for the tight bound to aim to. This was not a trivial task, as the precise bound
takes an unusual form. After identifying the candidate for the bound, we had to improve both
the upper and the lower bounds from [8], which required us to overcome some key technical
difficulties. For the lower bound, [8] established that the cover time is bounded from below by
a function (specifically the square-root) of the ratio Li+1/Li, for every i. As it turns out, what
was required to tighten the analysis is a better understanding about the relationships between
the cover time and the extreme step-lengths, namely, L0, L1 and Lk−1. Specifically, in proving
the precise lower bound we have two components, one for the “local” part (exploitation) and the
other for the “global” part (exploration). We showed that in order to be efficient on the local
part, the small step-lengths need to be small, whereas in order to be efficient on the global part
(traversing large distances fast), the largest step-length needs to be large. This allowed us to
widen the ratios between consecutive step-lengths, consequently increasing the lower bound.

In order to obtain the precise upper bound, we improved the analysis in [8] of the Weier-
strassian random walk process. This, in particular, required overcoming non-trivial issues con-
cerning dependencies between variables that were overlooked in [8]. By doing this, we also refined
the estimates on the order of magnitude of other dependencies. In addition, we had to incor-
porate short-time probability bounds for each step-length used by the process, and perform a
tighter analysis of the part of the walk that corresponds to the largest step length Lk−1.

We next describe our contribution in more details.

1.4.1 The Lower Bound

We begin with the statement of the lower bound. The formal proof is given in Section 2.

Theorem 1. Let k and n be positive integers. The cover time of any k-scales search X on Cn
is:

E(tcov(n, k)) = n1+
1

2k−1 · Ω(1/k).

1.4.2 The Upper Bound

The following theorem implies that up to lower order terms, the cover time of the Weierstrassian
random walk matches the lower bound of the cover time of any k-scales search, as given by
Theorem 1, for 2 ≤ k ≤ log n, i.e., for all potential scales.
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Theorem 2. Let k be an integer such that 2 ≤ k ≤ log2 n. The Weierstrassian random walk

with parameter b = bn
2

2k−1 c is a k-scales search that achieves a cover time of:

n1+
1

2k−1 ·O
(
k2 log2 n

)
.

Observe that combining Theorems 1 and 2 we obtain the best cover time Covk,n achievable

by a k-scales search on Cn, which is Θ̃
(
n1+

1
2k−1

)
for any 2 ≤ k ≤ log n. For particular values of

k, we thus have:

k 1 2 3 4 5 . . . log n

E(tcov(n, k)) Θ(n2) Θ̃(n
4
3 ) Θ̃(n

6
5 ) Θ̃(n

8
7 ) Θ̃(n

10
9 ) . . . O(n log3 n)

Theorem 2 follows immediately from the following more general theorem, by taking b = n
2

2k−1 .

Theorem 3. Let b, k, n be integers such that bk−1 < n ≤ bk. The cover time of the Weier-
strassian random walk on Cn with parameter b is

O

(
nmax

{
bk

n
,
n

bk−1

}
· k2 · log b · log n

)
= Õ

(
max

{
bk,

n2

bk−1

})
.

The formal proof of Theorem 3 is deferred to Appendix B. In Section 3 we provide a sketch
of the proof.

As mentioned, Theorem 3 using the particular value b = n
2

2k−1 gives a tight upper bound
for k-scales search. However, since the Weierstrassian random walk is of independent interest
as it is used in biology, it might be useful to understand its cover time also for other values
of b. Note that Lemmas 4 and 5 below, when applied to the Weierstrassian random walk on

Cn, show that the cover time is at least Ω
(

max{n
√
b, n2

bk−1 }
)
. This is quite close to the bound

Õ
(

max
{
bk, n2

bk−1

})
of the theorem. Indeed if n ≥ bk− 1

2 , both bounds match, up to logarithmic

terms. If n ≤ bk− 1
2 , the ratio of the bounds is bk−

1
2

n .

2 The Lower Bound Proof

The goal of this section is to establish the lower bound in Theorem 1. For this purpose, consider
a k-scales search X on the cycle Cn and denote (Li)

k−1
i=0 its step lengths with Li < Li+1 for all

i ∈ [k−2]. For convenience of writing we also set Lk = n, but it should be clear that it is actually
not a step length of the walk. Let pi denote the probability of taking the step length Li.

The theorem will follow from the combination of two lemmas. The first one, Lemma 4, stems
from the analysis of the number of nodes that can be visited during Li+1 time steps. It forces
L0L1 as well as the ratios Li+1/Li for all 1 ≤ i ≤ k − 1 to be small enough in order to have a
small cover time. The second one, Lemma 5, comes from bounding the cover time by the time it
takes to go to a distance of at least n/3. It forces Lk−1 to be big enough to have a small cover
time.

Lemma 4. The cover time of X is at least

• E(tcov) = Ω(n
√
L0L1).

• E(tcov) = Ω
(
n
k

√
Li+1

Li

)
for any 1 ≤ i ≤ k − 1.
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The second part of Lemma 4 was already given in [8]. We sketch here the ideas behind the
proof of the first part, namely, that the cover time is at least of order n

√
L0L1. Essentially,

we count the expected number of nodes that can be visited in a time duration of L1, which we
call a phase. A jump of length Li ≥ L1 will not contribute to visiting a new node during this
time duration. Thus, we may suppose that there are only jumps of length L0. Since L1 ≤ n,
the process does not do a turn of the cycle and, therefore, it can be viewed as a walk on Z.
Furthermore, since every jump has length L0, we can couple this walk by a corresponding simple
random walk, that does steps of length 1, during a time duration of L1/L0. The expected
number of nodes visited during a phase is thus of order

√
L1/L0. It follows that we need at least

n/(
√
L1/L0) such phases before covering the cycle. Since a phase lasts for L1 time, the cover

time is at least of order n
√
L0L1. The full proof of Lemma 4, including the part that was proven

in [8], appears, for completeness, in Appendix A.

Lemma 5. The cover time of X is at least Ω(n2 µ
σ2 ), where µ = 1

2

∑
i≤k−1 piLi and σ2 =

1
2

∑
i≤k−1 piL

2
i are the mean and variance of the jump lengths, respectively. In particular, the

cover time is:

E(tcov) = Ω

(
n2

Lk−1

)
.

Proof. Let mcov denote the random number of steps before all nodes of Cn are covered, and let
tcov be the random cover time of the process. By Wald’s identity, we have:

E(tcov) = E(mcov) · µ, (1)

where µ = 1
2

∑k−1
i=0 piLi is the expected length, and hence the expected time, of a jump (the

factor 1
2 comes from the laziness). By Markov’s inequality, we have:

Pr (mcov < 2E(mcov)) ≥ 1/2.

Let Nm be the (random) number of nodes visited by step m. We have:

E(N2E(mcov)) ≥ E
(
N2E(mcov) | mcov < 2E(mcov)

)
· Pr (mcov < 2E(mcov)) ≥ n ·

1

2
.

Define Dm as the maximal distance of the process from step 0 up to step m, i.e., Dm =
maxs≤m|X(s)|. Since Nm ≤ 2Dm + 1, we have:

2E(D2E(mcov)) + 1 ≥ E(N2E(mcov)) ≥ n/2.

As shown in [13] for general one-dimensional random walks, we have E(Dm) = O (σ
√
m), where

σ is the standard deviation of the length distribution, i.e., σ2 = 1
2

∑
i piL

2
i . Thus, we have:√

E(mcov)σ = Ω(n),

and so:

E(mcov) = Ω

(
n2

σ2

)
,

and by Eq. (1), we get:

E(tcov) = Ω
(
n2

µ

σ2

)
= Ω

(
n2
∑k−1
i=0 Lipi∑k−1
i=0 L

2
i pi

)
,
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which proves the first part of the lemma.
In order to prove the second part, note that since Lk−1 is the biggest step length, we have∑k−1
i=0 piLi(1−

Li

Lk−1
) ≥ 0, and so

∑k−1
i=0 Lipi∑k−1
i=0 L

2
ipi
≥ 1

Lk−1
. Therefore,

E(tcov) = Ω

(
n2

Lk−1

)
,

which completes the proof of Lemma 5.

Next, it remains to show how Theorem 1 follows by combining Lemma 4 and Lemma 5. First,

consider the lower bound of Ω(n2/Lk−1) in Lemma 5. If Lk−1 ≤ n1−
1

2k−1 then the bound in

Theorem 1 immediately follows. Let us therefore assume that Lk−1 > n1−
1

2k−1 .

Define α0 = L0L1 and αi = Li+1

Li
for i ∈ {1, 2, . . . , k − 2}. As

k−2∏
i=0

αi = L0Lk−1,

there must exists an index 0 ≤ i ≤ k − 2 such that αi ≥ (L0Lk−1)
1

k−1 . Thus, by Lemma 4, the
cover time is at least

Ω
(n
k

(L0Lk−1)
1

2(k−1)

)
.

Since Lk−1 > n1−
1

2k−1 = n
2k−2
2k−1 and L0 ≥ 1, we conclude that the cover time is at least

E(tcov) = Ω
(n
k
· n

1
2k−1

)
,

as desired. This completes the proof of Theorem 1.

3 Upper Bound Proof (Sketch)

Let us give the key ideas of the proof of Theorem 3. Some of the initial steps in the proof follow
the technique in [8] (by doing so, we also corrected some mistakes in [8]). These parts are clearly
mentioned below. Our main technical contribution that allowed us to obtain the precise upper
bound, is the use of short-time probability bounds (see Eq. (6)), and a tighter analysis of the
part of the walk that corresponds to the largest step length Lk−1.

In more details, let us consider the Weierstrassian walk on Cn, termed X. The following
lemma establishes a link between the cover time of X and the point-wise probabilities of X. For
completeness, we provide a formal proof of it in Appendix B, although it is not hard to obtain
it using the technique in [8].

Lemma 6. If p > 0 and m0 > 0 are such that, for any x ∈ {0, . . . , n− 1},∑2m0

m=m0
Pr(X(m) = x)∑m0

m=0 Pr(X(m) = 0)
≥ p, (2)

then the cover time of the Weierstrassian random walk X on the cycle Cn is O
(
m0p

−1k log n
)
.

Using Lemma 6, the bound of Theorem 3 can be established by proving bounds on the
probability to visit node x ∈ [0, n) at step m.

In order to simplify the presentation, assume first that n = bk. Proceeding first as in [8], we
view the k-lengths Weierstrassian random walks as k (dependent) random walks, by grouping
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Figure 1: The first two graphs represent, in different node disposition, the Weierstrassian walk
on C12 with parameter b = 4. There are k = 2 jump lengths, L0 = 1 (blue edges) and L1 = b = 4
(red, dotted edges). To the right, we show the decomposition of C12 as C4 × C3. For instance
the node x = 7 ∈ C12 will be represented by x0 = 3 ∈ C4 and x1 = 1 ∈ C3.

together the jumps of the same length (see Figure 1). Define Si(m) as the algebraic count of the
jumps of lengths bi. E.g., if, by step m, there are exactly four positive jumps of length bi, and
one negative, then Si(m) = 3. We have:

X(m) =

k−1∑
i=0

Si(m)bi.

Define also the following decomposition of Cn.

Definition 3 (Base b decomposition). For any x ∈ Cn, we may decompose x in base b as

x =

k−1∑
i=0

xib
i,

with 0 ≤ xi < b. We call xi the i-th coordinate of x (in base b).

It follows from Euclidean division, and the fact that n = bk, that the base b decomposition is
well-defined and unique for every x ∈ Cn. This decomposition is illustrated in Figure 1 (where
we have taken n = n̂bk−1 to anticipate the more general case to follow).

Note that X(m) = x in Cn if and only if∑
i

(Si(m)− xi)bi = 0 mod n. (3)

By taking Eq. (3) modulo bi, for i ≤ k − 1, it is easy to show that Eq. (3) is equivalent to

Si(m) = yi mod b,

for yi := xi − b−i
∑
j<i(Sj(m)− xj)bj mod b.

Thus, X(m) = x is equivalent to Ri(m) = yi for all i, where Ri = Si mod b is a random walk
on Cb that moves with probability pi

2 . This process is illustrated in Figure 1, where X(m) = 7
is equivalent to R0(m) = 3 and R1(m) = 2.

Unfortunately, the Ri’s and the yi’s are not independent, due to the fact that only one of the
Ri can change between steps m and m + 1, however, let us overlook this issue in this informal
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outline. We then have:

Pr(X(m) = x) ≈
k−1∏
i=0

Pr(Ri(m) = yi). (4)

Recall that Ri is a random walk over Cb that moves with probability pi. The following is a
well-known property of the random walk a cycle (see, e.g., Example 5.7 and Proposition 6.18 in
[1]):

Claim 7. For a simple random walk R on Cb that moves with probability 1
2 , and any y ∈ Cb,

Pr (R(m) = y) =

{
O (1/

√
m) if m < b2

b−1(1± εm) if m ≥ b2,
(5)

with εm = O(e−cmb
−2

) where c > 0.

Considering that Ri moves with probability pi
2 = Θ(b−i), we can expect that, at step m,

Ri(m) has the same distribution as the lazy random walk with mpi steps that moves with
probability 1

2 . This is proved formally in Appendix B. Hence, by substituting m with mpi in
Claim 7, we obtain:

Pr (Ri(m) = yi) =

{
O
(
1/
√
mpi

)
if m < bi+2

b−1(1± εmpi) if m ≥ bi+2.
(6)

Theorem 3 then follows from Eq. (4), Eq. (6) and Lemma 6. Essentially, to cover Cn, we need
that each Ri(m) is mixed, i.e., has some significant probability to visit any node yi in Cb, which
happens, as shown by Eq. (6), for m > bk−1+2 = bk+1. Let us apply Lemma 6 with

m0 := bk+1.

We first establish a lower bound on
∑2m0

m=m0
Pr(X(m) = x). By Eq. (4) and Eq. (6), we have,

for m > m0,

Pr(X(m) = x) ≈
∏

0≤i≤k−1

b−1 (1− εmpi) = Θ
(
b−k
)
,

where the last equality is justified in the appendix. Thus,

2m0∑
m=m0

Pr(X(m) = x) = Ω
(
m0b

−k) = Ω (b) .

We need also to upper bound
∑m0

m=0 Pr(X(m) = 0), which is the expected number of returns to
the origin up to step m0. To do this, we shall use the short-time bounds of Eq. (6).

Let us decompose the aforementioned sum as follows.

m0∑
m=0

Pr(X(m) = 0) = 1 +
1

2
+

k−1∑
j=0

bj+1∑
m=1+bj

Pr(X(m) = 0) +

m0∑
m=1+bk

Pr(X(m) = 0). (7)

Fix j, such that 1 ≤ j ≤ k − 1 and let m ∈ (bj , bj+1]. By Eq. (4), in order to upper bound
Pr(X(m) = 0) it is enough to bound Pr(Ri(m) = yi) for every i ≤ k − 1. For i > j, we
bound Pr(Ri(m) = yi) by 1. For i ≤ j − 2, we use Eq. (6) to upper bound Pr(Ri(m) = yi)
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by b−1(1 + εmpj ). For i = j − 1 and i = j, we bound Pr(Ri(m) = yi) by O
(
1/
√
mpj−1

)
and

O
(
1/
√
mpj

)
, respectively. We thus obtain, by Eq. (4),

Pr(X(m) = x) = O

 1
√
mpj−1

· 1
√
mpj

·
∏

0≤i≤j−2

b−1
(
1 + εmpj

)
= O

(
b−(j−1) ·

√
bbj−1

m

)
= O

(√
b

m

)
,

where we justify in the appendix that
∏

0≤i≤j−2(1 + εmpj ) = O(1). Hence, we get:

bj+1∑
m=1+bj

Pr(X(m) = 0) = O(
√
b log b), (8)

by using that
∑bj+1

m=1+bj m
−1 = Θ

(∫ bj+1

m=bj
u−1du

)
= Θ(log b). For the case j = 0, we bound

Pr(Ri(m) = yi) by 1 for i > 1 and Pr(R0(m) = y0) by O(m−
1
2 ), so that, by Eq. (4), Pr(X(m) =

0) = O( 1√
m

). Hence, we get:

b∑
m=2

Pr(X(m) = 0) = O
(√

b
)
. (9)

Similarly, for m ∈ (bk, bk+1], Pr(Ri(m) = yi) is bounded by b−1(1 + εmpi) for i ≤ k − 2, and by
1√

mpk−1
for i = k − 1. Thus, for m ∈ (bk, bk+1],

Pr(X(m) = 0) = O

(
1

√
m
√
bk−1

)

and, since
∑bk+1

m=1+bk
1√
m

= O
(∫ bk+1

bk
1√
u
du
)

= O
(√

bk+1
)

, we get:

bk+1∑
m=1+bk

Pr(X(m) = x) = O

(√
bk+1

√
bk−1

)
= O(b). (10)

In total, by Eq. (7), combining Eqs. (8), (9) and (10), we find that the expected number of
returns to the origin up to step bk+1 is

m0∑
m=0

Pr(X(m) = 0) = O
(
k
√
b log b+ b

)
= O (kb log b) .

So that all together we have:∑2m0

m=m0
Pr(X(m) = x)∑m0

m=0 Pr(X(m) = 0)
= Ω

(
b

kb log b

)
= Ω

(
1

k log b

)
.

Thus, by Lemma 6, the cover time of X is at most:

O(m0 · k log b · k log n) = O(bk+1k2 log b log n) = O(nbk2 log b log n), (11)
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as claimed by Theorem 3, for the case where n = bk.
Consider now a more general case, in which n is a multiple of bk−1. Here, we can write

n = n̂bk−1, where n̂ ∈ (0, b] is an integer. What changes in this case is that the last coordinate,
Rk−1, is now a random walk over Cn̂ instead of over Cb, as depicted in Figure 1. Rk−1 is thus
mixed after number of steps:

n̂2p−1k−1 = Θ(bk−1n̂2) = Θ(n2/bk−1).

On the other hand, after Θ(bk−2+2) = Θ(bk) steps, the other coordinates are mixed. Thus, the
number of steps needed before every coordinate Ri is mixed is:

m0 = Θ
(
max{bk, n2/bk−1}

)
, (12)

which is again the order of magnitude of the cover time of X, up to polylogarithmic factors.
Note that when n = bk, Eq. (12) recovers the cover time of order Θ̃(bk+1). Furthermore, the

ratio of the cover time for n = bk and n = n̂bk−1 is of order bk+1

max{bk,bk−1n̂2} = min{b, b
2

n̂2 }. When

b is large (which corresponds to k being small), this can be significant. Hence, naively bounding
n̂ from above by b would not suffice to yield an optimal bound.

The general case, when n is not necessarily a multiple of bk−1, needs to be treated with more
care. What changes in this case is that we can no longer decompose X as k dependent random
walks on Cb× · · · ×Cb×C n

bk−1
, since n

bk−1 is not an integer. Instead, we define Z as the process

that does the same jumps as X, but on the infinite line Z, and we also define

n̂ := bn/bk−1c.

Then, we use almost the same decomposition, where Z is viewed as k dependent random walks
over Cb×· · ·×Cb×Z. The process corresponding to the last coordinate, Rk−1, is now a random
walk on Z, and we are interested especially on the probability of the event Rk−1(m) = xk−1 for
xk−1 ∈ [0, n̂]. As the coordinate Rk−1 is not restricted to [0, n̂], we need to pay attention that
the walk does not go too far.

4 Discussion

The upper bound in Theorem 2 implies that almost linear time performances, as those obtained
by Lévy Flights, can be achieved with a number of step lengths that ranges from logarithmic
to linear. This further suggests that cover time performances similar to those of Lévy Flights
can be seen by a large number of different processes. In practice, if one aims to fit empirical
statistics of an observed process to a theoretical model of a particular heterogeneous step length
distribution, the large degree of freedom can make this task extremely difficult, if not impossible.
On the other hand, the fact that so many processes yield similar cover times may justify viewing
all of them as essentially equivalent. This interpretation may also be relevant to the current
debate regarding whether animals’ movement is better represented by Lévy Flights or by CCRW
distributions with 2 or 3 scales [31, 15, 22, 33]. Moreover, the fact that many heterogeneous step
processes yield similar performances to Lévy Flights may imply that limiting the empirical fit
to either Lévy Flights or CCRW searches with 2 or 3 scales may be too restrictive. Our work
may suggest that instead, the focus could shift to identifying the number of scales involved in
the search.

When combined with appropriate empirical measurements, our lower bound can potentially
be used to indirectly show that a given intermittent process uses strictly more than a certain
number of step lengths. For example, if the process is empirically shown as a heterogeneous
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random walk whose cover time is almost linear, then Theorem 1 implies that it must use roughly
logarithmic number of step lengths. From a methodological perspective, such a result would be
of particular appeal as demonstrating lower bounds in biology through mathematical arguments
is extremely rare [7, 16].

Finally, we note that most of the theoretical research on heterogeneous search processes
which is based on differential equation techniques and computer simulations. In contrast, and
similarly to [8], our methodology relies on algorithmic analysis techniques and discrete probability
arguments, which are more commonly used in theoretical computer science. We believe that the
computational approach presented here can contribute to a more fundamental understanding of
these search processes.
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[32] D. A. Raichlen et al. Evidence of Lévy walk foraging patterns in human hunter-gatherers.
Proceedings of the National Academy of Science, 111:728–733, January 2014.

13



[33] A. Reynolds. Mussels realize Weierstrassian Lévy walks as composite correlated random
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Appendix

A Proof of Lemma 4

Our goal in this section is to prove Lemma 4.
In what follows we stress that we count the time and not the number of moves. Fix an index

0 ≤ i < k. We divide time into consecutive i-phases, each of time-duration precisely Li+1 (the
last one may be shorter). We next prove the following.

Claim 8. The expected number of nodes visited during the `’th i-phase is

• For i = 0, E(N`) = O
(√

L1

L0

)
.

• For 0 < i < k, E(N`) = O
(
k
√
Li · Li+1

)
.

Proof of Claim 8. Fix an index i and consider the i-phases. As the last i-phase may be
shorter and intermediate i-phases may start when the process is executing a jump, the value of
E(N`) is at most E(N1), namely, the expected number of nodes that are visited during the first
i-phase. Let us therefore concentrate on upper bounding E(N1). The first i-phases lasts during
the time period [0, Li+1). Since only endpoints of jumps are visited, if during the i-phase the
process starts any jump of length at least Li+1, then the number of nodes does not increase.
Thus, to get an upper bound on E(N1), we may consider only trajectories that do not use such
large jumps, i.e., we may restrict the process to jumps of length Lj , for j ≤ i.

Denote by D the maximal distance achieved by the process in the time interval [0, Li+1).

We have N1 ≤ 2D + 1. In this phase of duration Li+1, there are at most Li+1

Lj
steps of length

Lj that can be made, for j ≤ i, because a jump of length Lj takes Lj time. Let Dj be the
maximal distance travelled by the jumps of length Lj (when ignoring jumps of length different
than Lj). We have D ≤

∑
j≤iDj . Furthermore, by the Kolmogorov’s inequality, we know that

the maximal distance achieved by taking m random walk steps with unitary length each is of
order

√
m, in expectation. Therefore, when the walk does steps of length L the expectation of

the maximal distance after m steps is O(
√
mL). Thus,

E(Dj) = O

(√
Li+1

Lj
· Lj

)

and

E(N1) ≤ 2E(D) + 1 = O

∑
j≤i

√
Li+1Lj

 = O
(
k
√
LiLi+1

)
.

This establishes the second item in the claim.
Bounding the number of visited nodes N1 by the distance D, as was done above, is not very

precise, since there may be non-visited points between jumps. In order to establish the first item
in the claim, i.e., the case where i = 0, let us be more precise. In this case, we may replace the
equation N1 ≤ 2D + 1 by the more precise inequality

N1 ≤ 2
D

L0
+ 1.
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Indeed, since there are only jumps of length L0, and there is no time to do a full turn of the
cycle in the duration L1, we visit only multiples of L0. Thus, when i = 0, we have:

E(N1) = O

(√
L1L0

L0

)
= O

(√
L1

L0

)
,

as desired. This completes the proof of Claim 8. �
Let us end the proof of Lemma 4. By Claim 8, the number of nodes visited during the s first

i-phases is

E

(
s∑
`=1

N`

)
≤ s ·O (Ei) .

where E0 =
√

L1

L0
and Ei =

√
LiLi+1 for 1 ≤ i ≤ k − 1. Next, let us set s1 := n · c

·Ei
for

a sufficiently small constant c, such that the previous bound becomes less than n/2. Using
Markov’s inequality, we get

Pr

(
s1∑
`=1

N` ≥ n

)
<

1

2
.

Therefore, with probability at least 1/2, the process needs at least s1 phases before visiting all
nodes. Since the duration of a phase is Li+1, the cover time is at least

s1 · Li+1 = Ω

(
n · Li+1

Ei

)
,

which is Ω(n ·
√
L1L0) if i = 0 and Ω(n ·

√
Li+1

Li
) otherwise. This completes the proof of

Lemma 4.

B Proof of the upper bound

In this section, we prove the following theorem, for which we presented the intuition of the proof
in the main text, in the case n = bk and, briefly, n = n̂bk−1.

Theorem 3. Let b, k, n be integers such that bk−1 < n ≤ bk. The cover time of the Weier-
strassian random walk on Cn with parameter b is

O

(
nmax

{
bk

n
,
n

bk−1

}
· k2 · log b · log n

)
= Õ

(
max

{
bk,

n2

bk−1

})
.

B.1 Notations

Let Vs and ξs be, respectively, the length and the sign of the s-th jump. More precisely, Vs
is a random variable taking value Li = bi with probability pi = cbb

−i for every i ≤ k − 1,
ξs takes value 0, 1 or −1, with probabilities 1

2 ,
1
4 ,

1
4 , and the variables (Vs)s∈N and (ξs)s∈N are

independent. We define the Weierstrassian random walk Z(m) on Z and X(m) on the cycle Cn,
after m moves, as

Z(m) =

m∑
s=1

ξs · Vs, X(m) = Z(m) mod n. (13)
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As we consider it takes one unit of time to travel a distance 1, the time it takes to accomplish
the first m moves, denoted T (m), is defined as

T (m) :=

m∑
s=1

|ξs| · Vs. (14)

On the finite graph Cn, we denote by mcov the (random) number of moves needed before X
has visited every node of Cn. The quantity we want to bound is E(T (mcov)), the expected time
needed to visit all nodes, which is called the cover time.

We also denote by mhit(x) the random number of moves before hitting a point x for the first
time. If necessary, we precise mCn

hit(x) or mZ
hit(x) to indicate the underlying topology.

Finally, the subscript x in Prx or Ex indicates that we consider the process starting at x.
When this subscript is absent, it means that the process starts at 0.

B.2 Bounding the Cover Time using Pointwise Probabilities

In this section, we prove a few remarks that, together, establish the following lemma, that
appears as Lemma 6 in the main text. Both Lemmas differ slightly (here we study the pointwise
probabilities of Z instead of X) as the main text presents the intuition in a simplified context.

Lemma 9. If p > 0 and m0 > 0 are such that, for any x ∈ {0, . . . , n− 1},∑2m0

m=m0
Pr(Z(m) = x)∑m0

m=0 Pr(Z(m) = 0)
≥ p, (15)

then the cover time of the Weierstrassian random walk X on the cycle Cn is O
(
m0p

−1k log n
)
.

Proof. First, we note that E(V1), namely, the average time taken by each non-lazy step, is roughly
k. Specifically:

E(V1) =

k−1∑
i=0

bipi =

k−1∑
i=0

cb(b/b)
i = cbk = Θ(k), (16)

since cb = 1−bk
1−b = Θ(1), as b ≥ 2.

We next give a claim that reminds Wald’s identity, but we formally prove it using the Mar-
tingale Stopping Theorem. Note that the factor 1

2 in the middle expression of the claim comes

from the laziness, and hence E(|ξ1V1|) = E(V1)
2 .

Claim 10. E(T (mcov)) = E(mcov) · E(V1)
2 = Θ(kE(mcov)).

Proof. Define

Zm :=
∑
s≤m

(Vs − E(V1)).

The claim is proven by showing first that (Zm)m is a martingale with respect to (Xm)m. Then, as
the cover time is a stopping time for (Xm)m (i.e., the event {mcov = m} does not depend on Xs,
for s > m), we can apply the Martingale Stopping Theorem which gives

∑
s≤mcov

(Vs−E(V1)) = 0.
In more details, recall (e.g., [28][Definition 12.1]) that a sequence of random variables (Zm)m

is a martingale with respect to the sequence (Xm)m if, for all m ≥ 0, the following conditions
hold:

• Zm is a function of X0, X1, . . . , Xm;
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• E(|Zm|) <∞;

• E(Zm+1 | X0, . . . , Xm) = Zm.

We first claim that Zm =
∑
s≤m(Vs − E(V1)) is a martingale with respect to X0, X1, . . ..

Indeed, since Vs = |Xs−Xs−1|, the first condition holds. Since E(|Zt|) ≤
∑
s≤t E(|Vs−E(V1)|) ≤

2tE(V1) < ∞, the second condition holds. Finally, since Zm+1 = Zm + Vm+1 − E(V1), we have
E(Zm+1 | X0, . . . , Xm) = Zm + E(Vm+1)− E(V1) = Zm, and hence the third condition holds as
well.

Next, recall the Martingale Stopping Theorem (e.g., [28][Theorem 12.2]) which implies that
E(Z(T )) = E(Z0), whenever the following three conditions hold:

• Z0, Z1, . . . is a martingale with respect to X0, X1, . . . ,

• T is a stopping time for X0, X1, . . . such that E(T ) <∞, and

• there is a constant c such that E(|Zt+1 − Zt| | X0, . . . , Xt) < c.

Let us prove that the conditions of the Martingale Stopping theorem hold. We have already
seen that the first condition holds. Second, we need to prove that E(mcov) < ∞. This is, in
fact, a general claim for an irreducible Markov chain on a discrete space (see [1][Theorem 6.1]
for a precise bound). Finally, we need to prove that E(|Zt+1 − Zt| | X0, . . . , Xt) < c for some
c independent of t. Since Zt+1 − Zt = Vt+1 − E(V1), we have E(|Zt+1 − Zt| | X0, . . . , Xt) =
E(|Vt+1 − E(V1)|) ≤ 2E(V1). Hence the conditions hold and the theorem gives:

E(Z(mcov)) = E(Z0) = 0.

Hence,

0 = E(Z(mcov)) = E

−mcovE(V1) +
∑

s≤mcov

Vs

 = −E(mcov)E(V1)) + E

 ∑
s≤mcov

Vs

 ,

which establishes the claim. �

Claim 11. Fix a positive integer m and p. If, for any x in Cn, Pr(mhit(x) ≤ m) ≥ p, then
E(mcov) ≤ mp−1 log n.

This is standard in the theory of Markov chains and stems from basic properties, but, for the
sake of completeness, let us recall the proof. Proof. By hypothesis, we have that Pr(mhit(x) >
m) ≤ 1− p for any x in the cycle. Thus:

Pr(mhit(x) > 2m) = Pr(mhit(x) > 2m | mhit(x) > m) · Pr(mhit(x) > m). (17)

Furthermore,

Pr(mhit(x) > 2m | mhit(x) > m) =
∑
x0∈Cn

Pr(mhit(x) > 2m | Xm = x0) Pr(X(m) = x0)

≥ min
x0∈Cn

Pr(mhit(x) > 2m | Xm = x0)

= min
x0∈Cn

Pr x0
(mhit(x) > m),

where we used the Markov property in the last equality. Since we are on the cycle, and the
process is symmetric, starting from x0 to get to x is the same as starting from 0 to get to x− x0
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and therefore we have Prx0(mhit(x) > m) = Pr(mhit(x − x0) > m). Since, by hypothesis, for
any x ∈ Cn, Pr(mhit(x) > m) is at most 1− p, we have, by Eq. (17),

Pr(mhit(x) > 2m) ≤ (1− p)2.

By a similar inductive reasoning, we obtain Pr(mhit(x) > sm) ≤ (1 − p)s for any node x and
any integer s ≥ 0. Thus, using the definition of the expectation, we have

E(mhit(x)) =

∞∑
s=0

Pr(mhit(x) > s) =

∞∑
s=0

m−1∑
j=0

Pr(mhit(x) > sm+ j)

≤
∞∑
s=0

mPr(mhit(x) > sm) ≤
∞∑
s=0

m(1− p)s ≤ m/p.

Finally, remember that Matthew’s upper bound (see, e.g., [26][Thm 11.2]) states that:

E (mcov) ≤ log n ·max
x

E (mhit(x)) ,

and thus, E(mcov) is at most mp−1 log n, which concludes the proof of Claim 11. �
To conclude the proof of Lemma 9, it is enough to prove that, for any x ∈ [0, n− 1],

Pr(mhit(x) ≤ 2m0) ≥
∑2m0

m=m0
Pr(Z(m) = x)∑m0

m=0 Pr(Z(m) = 0)
≥ p, (18)

where the latter inequality is in fact the condition in the lemma. Lemma 9 is then obtained by
using Claim 11.

To establish the first inequality in Eq. (18), note first that for any x ∈ [0, n − 1], we have
mCn

hit(x) ≤ mZ
hit(x). Indeed, if x is visited by Z, then it is visited by X = Z mod n. In particular,

we have Pr(mCn

hit(x) ≤ m0) ≥ Pr(mZ
hit(x) ≤ m0). Hence to prove Eq. (18), it is enough to prove

Pr(mZ
hit(x) ≤ 2m0) ≥

∑2m0

m=m0
Pr(Z(m) = x)∑m0

m=0 Pr(Z(m) = 0)
. (19)

For this, we rely on the following identity (see also [23]). If N is a non-negative random variable
then:

Pr(N ≥ 1) =
E(N)

E(N | N ≥ 1)
. (20)

We employ this identity for the random variable Nx(m0, 2m0) which is the number of times Z
hits x ∈ Z between moves m0 and 2m0 included, for m0 as in the statement of Lemma 9. Note
that this quantity is positive if and only if x is visited during this interval, so that

Pr(mZ
hit ≤ 2m0) ≥ Pr (Nx(m0, 2m0) ≥ 1) . (21)

Note that Nx(m0, 2m0) =
∑2m0

m=m0
1Z(m)=x. Therefore,

E(Nx(m0, 2m0)) =

2m0∑
m=m0

Pr(Z(m) = x). (22)
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Note also that the denominator in Eq. (20) applied to Nx(m0, 2m0) verifies

E0 (Nx(m0, 2m0) | Nx(m0, 2m0) ≥ 1) ≤ Ex (Nx(0,m0)) ,

as a consequence of the Markov property, because the number of returns to x is maximized when-
ever the first hit of x is at the beginning of the time interval. Finally we have Ex (Nx(0,m0)) =
E0 (N0(0,m0)) because, on the line, all nodes are equivalent. Now, we have E0(N0(0,m0)) =∑m0

m=0 Pr(Z(m) = 0), so that

E0 (Nx(m0, 2m0) | Nx(m0, 2m0) ≥ 1) ≤
m0∑
m=0

Pr(Z(m) = 0) (23)

Therefore, when applied to Nx(m0, 2m0), Eq. (20), combined with Eqs. (21) (22) and (23),
implies that

Pr0(mZ
hit(x) ≤ 2m0) ≥

∑2m0

m=m0
Pr0(Z(m) = x)∑m0

m=0 Pr0(Z(m) = 0)
,

as desired. This establishes Eq. (19), and thus completes the proof of Lemma 9.

B.3 From k-scales search on Z to k (dependent) random walks on Cb×
· · · × Cb × Z

This section is the conceptual core of the proof. We show how the Weierstrassian walk with k
scales Z can be studied as k dependent random walks on the space Cb × · · · × Cb × Z. For this
we first define in Section B.3.1 the k random walks Z0, . . . , Zk−1 on Cb × · · · ×Cb ×Z. Then, in
Section B.3.2, we establish how the pointwise probabilities of Z can be obtained by the pointwise
probabilities of the Zi.

B.3.1 Definitions and Notations

Definitions. We define, for any i ∈ [k − 1]:

Si(m) :=

m∑
s=1

ξs · 1(Vs=bi),

the simple (unitary) random walk on the line corresponding to the steps of length bi, and

Ji(m) := biSi(m),

the sum of the steps of length bi. Note that

Z(m) =
∑
i≤k−1

Ji(m) =
∑
i≤k−1

Si(m)bi. (24)

We also define

J ′i(m) :=

i−1∑
j=0

Jj ,

the sum of the steps of length at most bi−1.
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Base b decomposition. We define, for any x ∈ Z, the (truncated) base b decomposition of x
as:

x =

k−1∑
i=0

xib
i,

with xi ∈ [0, b− 1] for any i ∈ [0, k − 2] and xk−1 ∈ Z. This decomposition exists for any x ∈ Z
and is unique.

Remark 12. For any x ∈ Z, and any i ∈ [0, k − 2], we have xi = bxb−ic mod b. We have
also xk−1 = bxb−(k−1)c. To see why, note that for any i ∈ [0, k − 2], xb−i =

∑
j≤k−1 xjb

j−i =∑
j≤i−1 xjb

j−i+xi+
∑
j∈[i+1,k−1] xjb

j−i, so that bxb−ic mod b = xi+b
∑
j≤i−1 xjb

j−ic mod b.

Since 0 ≤ xj ≤ b−1, we have 0 ≤
∑
j≤i−1 xjb

j ≤ bi−1, hence bxb−ic mod b = xi. For i = k−1,
the proof is similar, except we do not need to take modulo b (as xk−1 ∈ Z).

Decomposition of Z in the base b. In this base, let us denote by Zi the i-th coordinate of
Z, so that:

Z(m) =

k−1∑
i=0

Zi(m)bi.

By Remark 12 and Eq. (24), we have, for i ≤ k − 2,

Zi(m) = Z(m)b−i mod b =
∑
j≤k−1

Si(m)bj−i mod b =
∑
j≤i

Si(m)bj−i mod b

= Ri(m) +Ni(m) mod b

where we define, for i ≤ k − 2,
Ri(m) := Si(m) mod b,

and

Ni(m) :=

 ∑
j≤i−1

Sj(m)bj

 b−i

 mod b = bJ ′i(m)b−ic mod b.

Similary, we decompose Zk−1(m) as the sum of Rk−1(m) = Sk−1(m) and

Nk−1(m) = bJ ′k−1(m)b−(k−1)c. (25)

Ri corresponds to the steps of length bi and is a lazy random walk on Cb that moves with
probability pi

2 . Ni can be thought of as the noise from smaller coordinates. For instance, if
Zi−1(m) is b− 1 and a step of length bi−1 is done, then Ni(m) will be incremented of one. Note
that N0(m) = 0 always, and that the k − 1’st coordinate is defined on Z, thus Rk−1 and Nk−1
are not defined modulo b.

So far, we have decomposed Z as a linear combination of k − 1 simple, dependent, random
walks. Now we will define additional variables that will allow to control the dependencies between
the Zi.

Number of steps of length bi. We denote by Mi(m) the number of steps of length bi done
up to move m, i.e.,

Mi(m) =
∑
s≤m

1Vs=bi .
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This random variable follows a binomial distribution with parameter pi = cbb
−i, and is thus

concentrated around its mean:

µi := mpi = cbmb
−i = Θ(mb−i).

Precisely, we will show that Mi(m) is likely to belong to the interval:

Qi :=

{
[ 12µi,

3
2µi], for i > 0, and

[ 14m,m] for i = 0.
(26)

B.3.2 From Z to the Zi

Fixing the number of steps Mi(m). Here, we look at what happens when we fix the number
of steps of length bi, Mi(m), to be qi. We start with the following important remark.

Remark 13. In general, the variables Ri(m) and Ni(m) are dependent. For example if M1(1) = 1,
then M0(1) = 0, since we choose only one step-length between 0 and 1. However, once we
condition on Mi(m) = qi, Ri(m) and Ni(m) become independent and Ri(m) has then the law
of a lazy (with parameter 1

2 ) random walk after qi steps. I.e., we have, for any y ∈ Cb, or y ∈ Z
if i = k − 1, and any qi ≤ m,

Pr (Ri(m) = y |Mi(m) = qi) = pGi
qi (y) (27)

where

Gi =

{
Cb if i ∈ [0, k − 2]

Z if i = k − 1,

and pGqi(y) is the law of a lazy (with parameter 1
2 ) random walk on G ∈ {Z, Cb}, that starts at

0, to visit the node y at step qi.

Considering this remark, we write, with m ≥ 0 and x =
∑k−1
j=0 xjb

j ∈ Z,

Pr(Z(m) = x) =
∑

q0+···+qk−1=m

Px,q · Mq, (28)

where q = (q0, . . . , qk−1),

Px,q = Pr (Z(m) = x | ∀t ≤ k − 1,Mt(m) = qt) ,

and
Mq = Pr (∀t ≤ k − 1,Mt(m) = qt) .

Since the base b decomposition is unique, we have Z(m) = x if and only if Zs(m) = xs for all
s ≤ k − 1. Hence,

Px,q =

k−1∏
s=0

Pr (Zs(m) = xs | As,x,q) ,

where As,x,q denotes the event (∀j < s, Zj(m) = xj) ∩ (∀t ≤ k − 1,Mt(m) = qt).
Since Zi(m) = Ri(m) + Ni(m) = xi if and only if Ri(m) = xi − y and Ni(m) = y for some

y ∈ Cb (Z if i = k − 1), using Remark 13, we have:

Px,q =

k−1∏
s=0

∑
y

Pr (Rs(m) = xs − y | As,x,q) · Pr (Ns(m) = y | As,x,q.) . (29)
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Using Eq. (27), we have:

Pr (Rs(m) = xs − y | As,x,q) = pGs
qs (xs − y).

Inserting this in Eq. (29), we obtain that

Px,q =

k−1∏
s=0

∑
y

pGs
qs (xs − y) · Pr (Ns(m) = y | As,x,q) . (30)

Hence, in Eq. (28), we have:

Pr(Z(m) = x) =
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

∑
y

pGs
qs (xs − y) · Pr (Ns(m) = y | As,x,q) . (31)

Bounds on pointwise probabilities of Z taking dependencies between the coordi-
nates into account. Recall, with Lemma 9, that we need only bounds on Pr(Z(m) = 0) and
Pr(Z(m) = x) for x ∈ [n] to estimate the cover time of the Weierstrassian random walk on Cn.
In the following two lemmas, we show how such bounds can be obtained by the independent
study of:

• the distributions of Mi(m), studied in Section B.4.2

• the probability pGi
q (y). It is given in Section B.4.3, and

• the noise in the last coordinate, Nk−1(m), studied in Section B.4.4.

Note that, when neglecting the dependencies between the coordinates, and assuming that
Mi(m) is exactly its expected value mpi, we have, as detailed in the main text,

Pr(Z(m) = x) =

k−1∏
s=0

Pr(Rs(m) = xs) =

k−1∏
s=0

pGs
mps(xs).

Note also that we have
∏k−1
s=0 p

Gs
mps(xs) ≤

∏i
s=0 p

Gs
mps(xs) for any i ≤ k − 1. This is useful in

particular when mpi+1 ≤ 1 ≤ mpi, i.e. when m ∈ [cbb
i, cbb

i+1]. The following two lemmas
provide the additional components that appear when taking into account the noise and the fact
that the number of steps Mi(m) does not always equal its expected mean mpi. We shall first
prove the following upper bound.

Lemma 14. For any m ≥ 0 and any i ≤ k − 1,

Pr(Z(m) = 0) ≤
i∏

s=0

max
y,qs∈Qs

pGs
q (y) +

i∑
j=0

(
Pr(Mj(m) /∈ Qj)

j−1∏
s=0

max
y,qs∈Qs

pGs
q (y)

)
(32)

We will prove in Section B.5.2, that the dominating term of this upper bound is

i∏
s=0

max
y,qs∈Qs

pGs
q (y),

as is hinted by the intuition. We will also prove the following lower bound. It uses the event
Ak−1,x,q that we recall as (∀j ≤ k − 2, Zj(m) = xj) ∩ (∀t ≤ k − 1,Mt(m) = qt).
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Lemma 15. For any m ≥ 0, any x ∈ Z, and any I interval of Z,

Pr(Z(m) = x) ≥ min
∀i,qi∈Qi

Pr(Nk−1(m) ∈ I | Ak−1,x,q) (33)

· min
y∈I,q∈Qk−1

pZq (xk−1 − y) ·
k−2∏
s=0

min
y∈Cb,q∈Qs

pCb
q (y)

· Pr(∀j ≤ k − 1,Mj(m) ∈ Qj).

We will prove in Section B.5.1, that the dominating term of this lower bound, when m ≥ bk,
is the second one, namely, miny∈I,q∈Qk−1

pZq (xk−1− y) ·
∏k−2
s=0 miny∈Cb,q∈Qs

pGs
q (y). Indeed, with

I well-chosen, and for m ≥ bk, we will prove that the first and last factors are Ω(1), in Sections
B.4.4 and B.4.2, respectively.

Proof of Lemma 14. We start with Eq. (31)

Pr(Z(m) = x) =
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

∑
y

pGs
qs (xs − y) · Pr (Ns(m) = y | As,x,q)

≤
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

max
y

pGs
qs (y)

∑
y

Pr (Ns(m) = y | As,x,q)

≤
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

max
y

pGs
qs (y), (34)

where we used in the last inequality that
∑
y ·Pr (Ns(m) = y | As,x,q) = 1. As the number of

steps of length bj , Mj(m), is likely to belong to Qj (defined by Eq. (26)), we make the following
decomposition of the sum in Eq. (34), for any i ≤ k − 1:

∑
q0+···+qk−1=m

=
∑

q0+···+qk−1=m
q0∈Q0,...,qi∈Qi

+

i∑
j=0

∑
q0+···+qk−1=m

q0∈Q0,...,qj−1∈Qj−1,qj /∈Qj

(35)

The intuition behind this decomposition is that when q0, . . . , qi ∈ Q0 × · · · ×Qi, we may obtain
a good bound on the pointwise probability of the coordinates 0 to i, giving an upper bound
on
∏k−1
s=0 maxy p

Gs
qs (y) (bounding the factors for s > i by 1). When for some j ≤ i, q0 ∈

Q0, . . . , qj−1 ∈ Qj−1, qj /∈ Qj , we have such a bound for the coordinates 0 to j − 1, yielding a

(weaker) bound on
∏k−1
s=0 maxy p

Gs
qs (y). To compensate for this weaker bound, we use that the

event Mj(m) /∈ Qj is unlikely, to get a bound on Mq.
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Let us first consider the inner sum in the second sum of Eq. (35). We have:

∑
q0+···+qk−1=m

q0∈Q0,...,qj−1∈Qj−1,qj /∈Qj

Mq ·
k−1∏
s=0

max
y

pGs
qs (y)

≤

(
j−1∏
s=0

max
y,qj∈Qs

pGs
qs (y)

)
·

∑
q0+···+qk−1=m

q0∈Q0,...,qj−1∈Qj−1,qj /∈Qj

Mq

≤

(
j−1∏
s=0

max
y,qs∈Qs

pGs
qs (y)

)
· Pr (M0(m) ∈ Q0, . . . ,Mj−1(m) ∈ Qj−1,Mj(m) /∈ Qj)

≤

(
j−1∏
s=0

max
y,qs∈Qs

pGs
qs (y)

)
· Pr (Mj(m) /∈ Qj) .

By similar computations, we bound the first sum:

∑
q0+···+qk−1=m
q0∈Q0,...,qi∈Qi

Px,q · Mq ≤
i∏

s=0

max
y,qs∈Qs

pGs
qs (y).

Inserting into Eq. (34), we get:

Pr(Z(m) = x) ≤
i∏

s=0

max
y,qs∈Qs

pGs
q (y) +

i∑
j=0

Pr(Mj(m) /∈ Qj)
j−1∏
s=0

max
y,qs∈Qs

pGs
qs (y),

as desired.

Proof of Lemma 15. Let us recall Eq. (31):

Pr(Z(m) = x) =
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

∑
y

pGs
qs (xs − y) · Pr (Ns(m) = y | As,x,q)

≥
∑

q0+···+qk−1=m
q0∈Q0,...,qk−1∈Qk−1

Mq ·
k−1∏
s=0

∑
y∈Is

pGs
qs (xs − y) · Pr (Ns(m) = y | As,x,q) ,

where Is = Cb for s ≤ k− 2 and Ik−1 = I is any interval of Z. We then lower bound pGs
qs (xs− y)

by miny∈Is p
Gs
qs (xs − y), and use that

∑
y∈Is Pr (Ns(m) = y | As,x,q) = Pr(Ns(m) ∈ Is | As,x,q),

which is 1 for s ≤ k − 2, and Pr(Nk−1(m) ∈ I | Ak−1,x,q) for s = k − 1, to get:

Pr(Z(m) = x) ≥
∑

q0+···+qk−1=m
q0∈Q0,...,qk−1∈Qk−1

Mq · Pr (Nk−1(m) ∈ I | Ak−1,x,q) ·
k−1∏
s=0

min
y∈Is

pGs
qs (xs − y)

≥ min
∀i,qi∈Qi

{
Pr (Nk−1(m) ∈ I | Ak−1,x,q) ·

k−1∏
s=0

min
y∈Is

pGs
qs (xs − y)

}
·

∑
q0+···+qk−1=m

q0∈Q0,...,qk−1∈Qk−1

Mq
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To conclude, we use the definition of Mq to see that∑
q0+···+qk−1=m

q0∈Q0,...,qk−1∈Qk−1

Mq = Pr (M0(m) ∈ Q0, . . . ,Mk−1(m) ∈ Qk−1) .

B.4 Estimating the terms in Lemmas 14 and 15

In order to estimate the terms in Lemmas 14 and 15, we need to understand

• the distribution of Mi(m),

• the distribution of pGs
q .

• the distribution of the noise Nk−1(m),

They will be studied in Sections B.4.2, B.4.3, and B.4.4, respectively. But first, let us start with
a very technical claim.

B.4.1 Preliminary technical computations

In what follows, we will use several times the following technical claim.

Claim 16. For any i ≥ 0, and any constants c ∈ (0, 1) and c′ > 0, we have

i∏
s=0

(
1− ce−c

′bi−s
)

= Θ(1), and

i∏
s=0

(
1 + ce−c

′bi−s
)

= Θ(1).

Proof. Let us consider the first product. Remark that it is upper bounded by 1. For the
lower bound, as c < 1 all terms are positive and we can take its logarithm,

i∑
s=0

log
(

1− ce−c
′bi−s

)
,

which is negative as c > 0. To lower bound it, we upper bound its absolute value. For this, we
use that e−c

′bi−s ≤ e−c′ < 1 and − log(1− t) = O(t) for t ∈ (0, e−c
′
) to get:

−
i∑

s=0

log
(

1− ce−c
′bi−s

)
= O

(
i∑

s=0

e−c
′bi−s

)
.

Then, use that e−c
′t = O(t−1) for any t > 0 to get:

−
i∑

s=0

log
(

1− ce−c
′bi−s

)
= O

(
i∑

s=0

bs−i

)
= O

(
i∑

s=0

b−s

)
= O(1).

Taking the opposite of this, and then the exponential, proves the first part of Claim 16. The
second part is done similarly. �
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B.4.2 Concentration of Mi(m) around its mean mpi

For any i ≤ k− 1, and any m ≥ 1, Mi(m) follows a binomial distribution with parameter pi and
is thus concentrated around its mean mpi. Since Qi = [ 12mpi,

3
2mpi] for i > 0 and Q0 = [ 14m,m],

we can use Chernoff’s bound (Theorems 4.4 and 4.5 in [28]) to obtain:

Pr (Mi(m) /∈ Qi) ≤ e−cmpi = e−ccbmb
−i

, (36)

for some constant c > 0. This is the basis for the following lemma, which will essentially ensure
that, for m ≥ bk, we can suppose that, for all i ≤ k − 1, Mi(m) ∈ Qi

Lemma 17. There are positive constants c′ and c′′ such that for m ≥ c′bk,

Pr(∀i ≤ k − 1,Mi(m) ∈ Qi) > c′′.

Proof of Lemma 17. Using the union bound and Eq. (36), we get:

Pr(∃i ≤ k − 1,Mi(m) /∈ Qi) ≤
∑
i≤k−1

Pr(Mi(m) /∈ Qi)

≤
∑
i≤k−1

e−ccbmb
−i

≤
∑
i≤k−1

e−ccbc
′bk−i

≤ 1

ecc′cb

∑
i≤k−1

1

bk−i

≤ 1

ecc′cb

1− b−k

b− 1
≤ 2

ecc′
,

where we used that m ≥ c′bk and e−t = O( 1
t ) for t > 0. For c′ well-chosen, this is less than

1− c′′ with c′′ > 0. Hence, we have:

Pr(∀i ≤ k − 1,Mi(m) ∈ Qi) = 1− Pr(∃i ≤ k − 1,Mi(m) /∈ Qi) ≥ c′′,

as claimed by Lemma 17.

B.4.3 Random walks distributions

We need to recall estimations for the distribution of a random walk over the infinite line, and
over the cycle Cb. Since the random walk over the cycle is obtained by projecting the random
walk on Z modulo b, let us first state the results on Z.

Claim 18. For a 1
2 -lazy random walk on Z that begins at 0, we have, for any q ≥ 1, and any

y ∈ Z, the probability to visit y at step q is:

pZq (y) ≤ cq− 1
2 ,

with c > 0 some constant. Furthermore, for any constant c′′ > 0, there is a constant c′ > 0 such
that for any y ∈ [−c′′√q, c′′√q], we have

pZq (y) ≥ c′q− 1
2 .
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Proof. It is easy to prove that, due to the laziness of parameter 1
2 , we have pZq (y) ≥ pZq (y+ 1)

for any y ≥ 0. Hence we can restrict what follows to y = O(
√
q). In this case, the bounds in

[25][Proposition 2.5.3] show that the distribution of a non-lazy random walk on Z is of order

Θ(q−
1
2 ). Going from there to a lazy random walk that moves with probability 1

2 , we just need to
apply again a concentration argument for a Bernoulli variable. This allows to link the behaviour
of the lazy random walk with m steps with that of the non-lazy random walk with Θ(m) steps.
�

Claim 19. For a 1
2 -lazy random walk on Cb that begins at 0, we have, for any q ≥ 1, and any

y ∈ Cb:

pCb
q (y) ≤

{
cq−

1
2 , q ≤ b2

b−1(1 + ce−c
′qb−2

), q ≥ b2

where c and c′ are positive constants. Furthermore there are constants c′′ ∈ (0, 1) and c′′′ > 0
such that for any q ≥ b2,

pCb
q (y) ≥ b−1(1− c′′e−c

′′′qb−2

).

Note that c′′ < 1 ensures that this lower bound (which holds for all q ≥ b2) is at least Ω( 1
b ).

Proof. First, the upper bound simply follows as a particular case of the distribution of a random
walk in regular graphs [1][Prop 6.18].

The lower bound requires more explanation. Informally, it stems from the mixing properties
of the cycle. Recall that the mixing time of the cycle is Θ(b2), which means that after this time,
the nodes have probability roughly 1

b to be visited. In what follows, we make this statement
more precise.

Define the separation distance as:

s(q) = min
y∈Cb

{1− b · pCb
q (y)} = inf{s : pCb

q (y) ≥ 1− s
b

,∀y ∈ Cb},

and the total variation distance as:

d(q) =
1

2

∑
y∈Cb

|pCb
q (y)− 1

b
|.

We have, as a consequence of the mixing time of the cycle being less than b2, that d(q) ≤ ε
for q ≥ b2 log(ε−1) (see [26][5.3.1 and Eq. (4.36)]). Furthermore, by [26][Lemma 19.3 and
Eq. (4.24)], we have s(2q) ≤ 1− (1− 2d(q))2 for any q ≥ 1. Hence, for q ≥ 2b2 log(ε−1), we have
s(q) ≤ 1− (1− 2ε)2 = 4ε− 4ε2 < 4ε. That is, when q ≥ 2b2 log(ε−1), we have, for any y ∈ Cb:

pCb
q (y) ≥ 1

b
(1− 4ε).

With the change of variable ε = exp (− q
2b2 ), we have

pCb
q (y) ≥ 1

b
(1− 4 exp (− q

2b2
)),

which is not meaningful (as the bound is negative) when q ≤ 2b2. In fact, we will use this bound
only for q ≥ Cb2, with C = 2 log(8) > 1. This ensures that 1 − 4 exp (− q

2b2 ) ≥ 1
2 which makes

for a more useful lower bound.

28



Now, for b2 ≤ q ≤ Cb2, we can lower bound pCb
q (y) by pZq (y), and use Claim 18, to show that

pCb
q (y) ≥ C ′ 1b for some C ′ ∈ (0, 1). Altogether, we have pCb

q (y) ≥ 1
bF (q) for any q ≥ b2, where:

F (q) :=

{
C ′ for q ∈ [b2, Cb2]

1− 4 exp (− q
2b2 ) for q ≥ Cb2.

To conclude, we need to show that we can bound F (q) from below, for all q ≥ b2, by (1 −
c′′e−c

′′′qb−2

), for a good choice of c′′ ∈ (0, 1) and c′′′ > 0. This is equivalent to: establishing that:{
c′′e−c

′′′qb−2 ≥ 1− C ′ for q ∈ [b2, Cb2]

c′′e−c
′′′qb−2 ≥ 4 exp (− q

2b2 ) for q ≥ Cb2,

which is in turn equivalent to:{
c′′e−c

′′′qb−2 ≥ 1− C ′ for q ∈ [b2, Cb2]

c′′eqb
−2( 1

2−c
′′′) ≥ 4 for q ≥ Cb2.

Since we are looking for c′′ < 1, for the second condition to be true, we need that c′′′ < 1
2

(otherwise, it is obvious that the condition will not hold for q → ∞). Given c′′′ < 1
2 , the left

hand side of the second equation is increasing with q ≥ Cb2 and thus it is enough to verify the
condition at q = Cb2. Similarly, the left hand side of the first equation is decreasing with q and
thus it is enough to verify the condition at q = Cb2. The system is thus equivalent to:{

c′′e−c
′′′C ≥ 1− C ′

c′′eC( 1
2−c

′′′) ≥ 4
,

which is in turn equivalent to the condition c′′e−c
′′′C ≥ M for M := max{1− C ′, 4e−C

2 }. Since
C = 2 log 8, we have M := max{1− C ′, 12}. Since M < 1, we may take c′′ = 1+M

2 < 1. Then it
suffices to take c′′′ small enough, e.g., c′′′ = 1

C log( 1
2 + 1

2M ) > 0. With these parameters, we have
proved:

pCb
q (y) ≥ 1

b
F (q) ≥ 1

b
(1− c′′e−c

′′′qb−2

),

for any q ≥ b2, and with c′′ < 1. This concludes the proof of Claim 19. �
With Claims 18 and 19, we can obtain the following Lemma. Intuitively, Lemma 20 gives the

distribution of (R0, . . . , Rk−1) when they are approximated as independent. As we will show,
the bounds of Lemma 20 are good approximations of the distributions of Pr(Z(m) = 0).

Lemma 20. We have, for any m ≥ bk, any x ∈ Z,

k−2∏
s=0

min
y∈Cb,q∈Qs

pGs
q (xs) = Ω(b−(k−1)). (37)

We have also, for any i ≤ k − 1, m ∈ (bi, bi+1],

j∏
s=0

max
y,q∈Qs

pGs
q (y) =


O(b−j−1) if j ≤ i− 2,

O
(

1√
mbi−1

)
if j = i− 1,

O(
√
b
m ) if j = i,

(38)

and, for any m ≥ bk,
k−1∏
s=0

max
y,q∈Qs

pGs
q (y) = O

(
1√

mbk−1

)
. (39)
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Proof. Let us show first Eq. (37). For j ≤ k − 2, q ∈ Qj and m ≥ bk, we have q = Θ(mpi) =
Θ(mb−i) = Ω(b2). Applying the lower bound in Claim 19, we have, for some constants c ∈ (0, 1)
and c′,

k−2∏
j=0

min
y∈Cb,q∈Qj

pGj
q (xj) ≥

k−2∏
j=0

min
q∈Qj

(
b−1(1− ce−c

′qb−2

)
)

≥ b−(k−1)
k−2∏
j=0

(
(1− ce−c

′cbmb
i−2

)
)
≥ b−(k−1)

k−2∏
j=0

(
(1− ce−c

′cbb
k−2−i

).
)

We conclude by applying Lemma 16 to show that
∏k−2
j=0 (1− ce−c′cbbk−2−i

) = Ω(1).

To prove Eq. (38), we proceed similarly. Let i ≤ k − 1 and m ∈ (bi, bi+1]. Using this time
the upper bound from Claim 19, we have, for j ≤ i− 2,

j∏
s=0

max
y∈Cb,q∈Qs

pGs
q (y) ≤

j∏
s=0

max
q∈Qs

(
b−1(1 + c′′e−c

′′′qb−2

)
)

= O(b−j−1) (40)

where the last equality is justified as above. For the cases j = i − 1, by the upper bound in

Claim 19, for q ∈ Qi−1, we have maxy p
(i−1)
q (y) = O(

√
bi−1

m ). Using Eq. (40), we then have

i−1∏
s=0

max
y∈Cb,q∈Qs

pGs
q (y) = O

(
b−(i−1)

√
bi−1

m

)
= O

(
1√

mbi−1

)
. (41)

For j = i, with the upper bound in Claim 19 (or Claim 18 if i = k−1), we have maxy p
(i−1)
q (y) =

O(
√

bi

m ), which, gives, with Eq. (41):

i∏
s=0

max
y∈Cb,q∈Qs

pGs
q (y) = O

(√
bi

m
· 1√

mbi−1

)
= O

(√
b

m

)
.

Finally, for m ≥ bk, we use again Claims 18 and 19 to show that

max
y,q∈Qs

pGs
q (y) ≤ b−1 max

q∈Qs

(1 + c′′e−c
′′′qb−2

),

for s ≤ k − 2, and

max
y,q∈Qk−1

pZq (y) = O

(
max

qk−1∈Qk−1

1
√
qk−1

)
= O

(√
bk−1

m

)
.

Hence, we have with Lemma 16,

k−1∏
s=0

max
y,q∈Qs

pGs
q (y) = O

(
b−(k−1)

√
bk−1

m

)
= O

(
1√

bk−1m

)
.

This concludes the proof of Lemma 20.
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B.4.4 Noise in the last coordinate

Recall that the last coordinate Zk−1 of Z verifies Zk−1(m) = Rk−1(m) +Nk−1(m). Since Rk−1
is a walk on Z that moves with probability pk−1/2 = Θ(bk−1), we can expect that |Rk−1(m)| ≈√

m
bk−1 .
With the following Lemma, we show that, when considering that the variables Mi(m) are

close to their mean, we have Nk−1(m) = O(
√

m
bk

) with at least constant probability, and hence
the noise Nk−1(m) is of lesser order than Rk−1(m), at least with constant probability.

Lemma 21. There is a constant c′ > 0 such that, for any m ≥ bk, with I = (−u, u) and
u = c′

√
m
bk

,
min
∀i,qi∈Qi

Pr(Nk−1(m) ∈ I | Ak−1,x,q) = Ω(1). (42)

Proof. It is enough to prove that there is a constant c′′ > 0 such that, for any u > 0, and any
q = (q0, . . . , qk−1) ∈ Q0 × · · · ×Qk−1,

Nx,q := Pr (|Nk−1(m)| < u | Ak−1,x,q) ≥ 1− c′′
√

m
bk

u− 1
. (43)

Since, by Eq. (25), Nk−1(m) = bJ ′k−1(m)b−(k−1)c, we have |Nk−1(m)| ≤ 1 + |J ′k−1(m)|b−k+1.

Thus, defining u′ = (u− 1)bk−1, we have:

Nx,q ≥ Pr
(
|J ′k−1(m)| < u′ | Ak−1,x,q

)
By Markov’s inequality, we have Pr

(
|J ′k−1(m)| ≥ u′ | Ak−1,x,q

)
≤ E

(
|J ′k−1(m)| | Ak−1,x,q

)
· 1
u′

and hence:

Nx,q ≥ 1− E
(
|J ′k−1(m)| | Ak−1,x,q

) 1

u′
.

Since J ′k−1(m) =
∑
i≤k−2 b

iSi(m), we have |J ′k−1(m)| ≤
∑
i≤k−2 b

i|Si(m)|, therefore:

E
(
|J ′k−1(m)| | Ak−1,x,q

)
≤
∑
i≤k−2

biE (|Si(m)| | Ak−1,x,q) .

Hence,

Nx,q ≥ 1−
∑
i≤k−2 b

iE (|Si(m)| | Ak−1,x,q)

u′
. (44)

Our next goal is to bound E (|Si(m)| | Ak−1,x,q). Recall that conditioning on Ak−1,x,q, Si(m) is a
lazy (with parameter 1

2 ) random walk on Z with qi (possibly lazy) steps, and we have Zi(m) = xi
for every i ≤ k−2. Thus, for every i ≤ k−2, Si(m)+Ni(m) mod b = Zi(m) = xi. Conditioning
on the value yi ∈ Cb taken by Ni(m), we have Si(m) = xi − yi mod b and are in the setting of
the following claim.

Claim 22. Let Sq be a lazy (with parameter 1
2 ) random walk on Z at step q ≥ b2, and x ∈ [b].

Then there is a constant c > 0 such that:

E(|Sq| | Sq = x mod b) ≤ c√q.

The claim essentially says that the conditioning on Sq = x mod b, for any x ∈ [0, b−1], does
not change significantly the distance travelled by the walk up to step q. Let us delay the proof
of Claim 22 and assume it for now. Then, by Claim 22, for any yi ∈ Cb,

E(|Si(m)| | Ak−1,x,q ∩Ni(m) = yi) ≤ c
√
qi.
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Hence, E(|Si(m)| | Ak−1,x,q) ≤ c√qi, and thus, by Eq. (44):

Nx,q ≥ 1− c

u′

∑
i≤k−2

bi
√
qi.

Since qi ∈ Qi, we have qi = Θ(mb−i). Hence∑
i≤k−2

bi
√
qi = Θ(

√
m
∑
i≤k−2

√
b
i
) = Θ(

√
m
√
b
k−2

).

Thus, for some constant c′′ > 0, we have

Nx,q ≥ 1− c′′

u′
√
m
√
b
k−2

.

Replacing u′ yields Eq. (43) and thus establishes Lemma 21, assuming Claim 22.

We next proceed to prove Claim 22. [. Proof of Claim 22] Let x ∈ {0, . . . , b − 1}. By
definition,

E(|Sq| | Sq = x mod b) =
1

Pr(Sq = x mod b)

∑
k≥1

kPr(|Sq| = k ∩ Sq = x mod b)

=
1

Pr(Sq = x mod b)

∑
k≥1

∑
l∈Z

kPr(|Sq| = k ∩ Sq = x+ lb)

=
1

Pr(Sq = x mod b)

∑
k≥1

∑
l∈Z

k(Pr(Sq = k = x+ lb) + Pr(Sq = −k = x+ lb))

=
1

Pr(Sq = x mod b)
(θx + γx) . (45)

where θx =
∑
l≥0(x+ lb) Pr(Sq = x+ lb) and γx =

∑
l≥1(lb−x) Pr(Sq = −lb+x). We will prove

that γx + θx is of order
√
q

b . For this, note that

b−1∑
y=0

θy + γy = E(|Sq|) = O(
√
q). (46)

Next, let us prove that θy + γy does not significantly depend on y ∈ [b], for q ≥ b2. First, by
symmetry of the process, for any y ∈ {0, . . . , b−1}, we have γy =

∑
l≥1(lb−y) Pr(Sq = lb−y) =∑

l≥0(lb+ b− y) Pr(Sq = lb+ b− y) = Θb−y. Thus,∑
y

θy + γy = 2
∑
y

θy = O(
√
q) (47)

Furthermore, as S is lazy with parameter 1
2 , we have Pr(Sq = z) ≥ Pr(Sq = z + 1) for any q > 0

and z ≥ 0. Hence,

θy ≤
∑
l≥0

(y + lb) Pr(Sq = lb) ≤
∑
l≥0

(b+ lb) Pr(Sq = lb) ≤ bPr(Sq = 0 mod b) + θ0. (48)

32



Using the same monotony property of the process, we have

θy ≥
∑
l≥0

lbPr(Sq = (l + 1)b) =
∑
l≥0

(l + 1)bPr(Sq = (l + 1)b)− b
∑
l≥0

Pr(Sq = (l + 1)b)

≥ θ0 − bPr(Sq = 0 mod b).

By Claim 19, we have, for q ≥ b2, Pr(Sq = 0 mod b) = Θ( 1
b ). Hence

θy = θ0 ±Θ(1)

and, by summing, we have ∑
y

θy = bθ0 ±Θ(b).

Since
∑
y θy = O(

√
q), and q ≥ b2, this implies θ0 = O(

√
q

b ), and hence, θy = O(
√
q

b ). Combined

with Eq. (45), we have, for q ≥ b2,

E(|Sq| | Sq = x mod b) = O

(
1

Pr(Sq = x mod b)

√
q

b

)
= O

(
b

√
q

b

)
= O (

√
q) ,

where in the last equality we use again Claim 19. This proves Claim 22. �

B.5 Estimating the number of visits to 0 and x

Recall, with Lemma 9, that we want to find p > 0 and m0 such that∑2m0

m=m0
Pr(Z(m) = x)∑m0

m=0 Pr(Z(m) = 0)

with m0p
−1 as small as possible, since the cover time is then Õ(m0p

−1), by Lemma 9.
Let us explain intuitively how we find the right m0. We want any x ∈ [0, n − 1] to have a

reasonable chance to be visited by Z(m0). As x = x0 + · · · + xk−1b
k−1 ≤ n, with nonnegative

xi, we have xk−1 ≤ n̂, where we define:

n̂ := b n

bk−1
c.

Hence, we are interested in the behaviour of Z0, . . . , Zk−2, Zk−1 on Cb×· · ·×Cb×[0, n̂]. To ensure
that any x ∈ [0, n − 1] has a reasonable chance to be visited, we require that every coordinate
Ri, for i ≤ k− 2, should be mixed. As Ri is a random walk on Cb which moves with probability
pi/2, this happens after Θ(p−1i b2) = O(p−1k−2b

2) steps. We also require that the coordinate Rk−1

has gone to distance at least n̂, which needs about n̂2p−1k−1 = Θ( n2

bk−1 ) steps. This leads us to
define:

m0 := max{p−1k−2b
2, n̂2p−1k−1} = c−1b bk−1 max{b, n̂2} = Θ

(
max{bk, n2

bk−1
}
)
,

as the minimal number of steps such that both of these conditions are satisfied. Note that
m0 ∈ [c−1b bk, c−1b bk+1], with c−1b = p−10 ∈ (1, 2) as is explicit in the definition of the Weierstrassian
process.
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B.5.1 Estimating the expected number of visits to x

Lemma 23. The expected number of visits to x in between steps m0 and 2m0 is:

2m0∑
m=m0

Pr(Z(m) = x) = Ω

(√
m0

bk−1

)
. (49)

Proof. To lower bound Pr(Z(m) = x), we use Eq. (33) with m ∈ [m0, 2m0], and I = (−u, u)
with u = m

bk−2 > 1. Let us write Eq. (33) as the product of four terms:

Pr(Z(m) = x) ≥ T1T2T3T4.

• The first term is:

T1 := min
∀i,qi∈Qi

Pr(Nk−1(m) ∈ I | ∀i(Zi(m) = xi) ∩ (Mi(m) = qi)) = Ω(1).

where the last inequality is by Lemma 21.

• The second term of Eq. (33) is

T2 := min
y∈I,q∈Qk−1

pZq (xk−1 − y),

in which, as q ∈ Qk−1, we have q = Θ(mpk−1) = Θ( m
bk−1 ). As |xk−1| ≤ n̂ = b n

bk−1 c and
|y| < u = 1 + c′m

bk
, we have |xk−1 − y| = O( n

bk−1 + m
bk

) = O( n
bk−1 ) where we verify the

last equality easily by using the fact that m ∈ [m0, 2m0]. Thus, |xk−1 − y| = O(n̂). As
in addition, q = Θ( m

bk−1 ) = Ω(n̂2) and pZq is the distribution of a lazy random walk on the
line, which is given by Claim 18, we have:

T2 = Ω

(
1
√
q

)
= Ω

√bk−1

m0

 .

• The third term of Eq. (33) verifies, by Lemma 20,

T3 :=

k−2∏
j=0

min
y∈Cb,q∈Qj

pjq(y) = Ω
(
b−(k−1)

)
.

• Finally, the fourth term of Eq. (33) verifies, by Lemma 17,

T4 := Pr(∀j ≤ k − 1,Mj(m) ∈ Qj) = Θ(1).

Altogether, we obtain:

Pr(Z(m) = x) = Ω(T1T2T3T4) = Ω

(
1√

bk−1m0

)
,

which implies that the total expected number of visits to x between steps m0 and 2m0 is

2m0∑
m=m0

Pr(Z(m) = x) = Ω

(√
m0

bk−1

)
,

as claimed by Lemma 23.
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B.5.2 Estimating the expected number of returns to the origin

To apply Lemma 9, we want to bound the expected number of returns to 0 up to step m0.
Ideally, we would like to match the upper bound, found in Lemma 23, on the expected number

of visits to x, which is O(
√
m0b−(k−1)). The following Lemma shows this is nearly the case, up

to a factor of k log b.

Lemma 24. The expected number of returns to 0 up to step m0 is

m0∑
m=0

Pr(Z(m) = 0) = O

(√
m0

bk−1
k log b

)
.

Proof. To estimate
∑m0

m=0 Pr(Z(m) = 0), the strategy, as presented in the main text, starts with
the following decomposition:

m0∑
m=0

Pr (Z(m) = 0) = 1 +
1

2
+

k−1∑
i=0

bi+1∑
m=1+bi

Pr (Z(m) = 0) +

m0∑
m=1+bk

Pr (Z(m) = 0) .

The main idea is to use that, for i ≤ k − 1, between the steps bi and bi+1, the coordinates 0 to
i− 2 are mixed, and that we know short-time probability bounds for the coordinates i− 1 and i.

Precisely, let i ∈ [1, k − 1] and m ∈ (bi, bi+1]. Recall that Lemma 14 states that:

Pr(Z(m) = 0) ≤
i∑

j=0

(
Pr(Mj(m) /∈ Qj)

j−1∏
s=0

max
qs∈Qs

pGs
q (0)

)
+

i∏
s=0

max
qs∈Qs

pGs
q (0). (50)

By Eq. (38) in Lemma 20 and Eq. (36), we have:

Pr(Z(m) = 0) = O

i−1∑
j=0

(
e−cmb

−j

b−j
)

+ e−cmb
−i 1
√
m ·
√
bi−1

+

√
b

m

 . (51)

Using that, for any t > 0, e−t ≤ 2t−2, we have

i−1∑
j=0

(
e−cmb

−j

b−j
)
≤

i−1∑
j=0

(
2

c2m2b−2j
b−j
)

= O

 1

m2

i−1∑
j=0

bj

 = O

(
bi

m2

)
= O

(
1

m

)
,

where we used in the last equality that m ≥ bi. For the middle term of Eq. (50), we use that

e−t ≤ t−1 for any t > 0. Hence, e−cmb
−i 1√

m·
√
bi−1

= O(
√
b
m ). Altogether, we have

Pr(Z(m) = 0) = O

(√
b

m

)
(52)

We now sum Eq. (52) for m between bi and bi+1:

bi+1∑
m=1+bi

Pr(Z(m) = 0) = O

 bi+1∑
m=1+bi

√
b

m

 = O

(∫ bi+1

bi

√
b

u
du

)

= O

(√
b log

(
bi+1

bi

))
= O

(√
b log b

)
. (53)
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Summing Eq. (53) for i = 1, . . . , k − 1, we have:

bk∑
m=1+b

Pr(Z(m) = 0) = O
(
k
√
b log b

)
. (54)

For m ∈ [2, b], by Lemma 14 and Eq. (36) applied with i = 0, and Claim 19, we have Pr(Z(m) =
0) = O(e−ccbm + 1√

m
) = O( 1√

m
). Thus,

b∑
m=2

Pr(Z(m) = 0) = O(

b∑
m=2

m−
1
2 ) = O(

√
b). (55)

Finally, let us bound the expected number of returns to the origin between steps bk and m0. We
use Eq. (32) (with i = k − 1), Eq. (36) and Lemma 20 to obtain, for m ≥ bk,

Pr(Z(m) = 0) = O

k−1∑
j=0

(
e−cmb

−j

b−j
)

+
1√

bk−1
√
m

 = O

(
1√

bk−1
√
m

)
,

where in the last equality, we use again that e−t ≤ t−2, and m ≥ bk. Summing this for m ∈
(bk,m0], we use again a comparison to an integral:

m0∑
m=1+bk

Pr(Z(m) = 0) = O

 m0∑
m=1+bk

1√
bk−1
√
m

 = O

(∫ m0

bk

1√
bk−1
√
u
du

)

= O

(√
m0

bk−1

)
. (56)

Combining Eqs. (54), (55) and (56), we have:

m0∑
m=0

Pr(Z(m) = 0) = O

(
k
√
b log b+

√
m0

bk−1

)
= O

(√
m0

bk−1
k log b

)
,

where we used in that last inequality that m0 ≥ bk and hence
√

m0

bk−1 ≥
√
b. This concludes the

proof of Lemma 24.

B.6 Concluding the Proof of Theorem 3

Now we have by Lemmas 23 and 24:∑2m0

m=m0
Pr(Z(m) = x)∑m0

m=0 Pr(Z(m) = 0)
= Ω

(√
m0

bk−1
· 1√

m0

bk−1 k log b

)
= Ω

(
1

k log b

)
,

and, by Lemma 6, the cover time of the Weierstrassian random walk with parameter b on Cn is:

O (m0 · k log b · k log n) = O
(
m0k

2 log b log n
)
.

Since we have defined

m0 = Θ
(
bk−1 max{b, n̂2}

)
= Θ

(
bk−1 max{b, n2

b2(k−1)
}
)

= Θ

(
nmax{b

k

n
,
n

bk−1
}
)
,

this concludes the proof of Theorem 3.
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