Bernard Brogliato 
  
Arturo Zavala 
  
On the Control of Complementary-Slackness Juggling Mechanical Systems

Keywords: Complementary slackness, feedback, hybrid, impact Poincaré mappings, nonsmooth, underactuated, viabililty

This paper studies the feedback control of a class of complementary-slackness hybrid mechanical systems. Roughly, the systems we study are composed of an uncontrollable part (the "object") and a controlled one (the "robot"), linked by a unilateral constraint and an impact rule. A systematic and general control design method for this class of systems is proposed. The approach is a nontrivial extension of the one degree-of-freedom (DOF) juggler control design. In addition to the robot control, it is also useful to study some intermediate controllability properties of the object's impact Poincaré mapping, which generally takes the form of a nonlinear discrete-time system. The force input mainly consists of a family of dead-beat feedback control laws, introduced via a recursive procedure, and exploiting the underlying discrete-time structure of the system. The main goal of this paper is to highlight the role of various physical and control properties characteristic of the system on its stabilizability properties and to propose solutions in certain cases.

I. INTRODUCTION

A. General Introduction R ECENT researches in the robotics and the systems and control communities on mechanical systems subject to unilateral constraints have focused on stabilization of manipulators during complete robotic tasks [START_REF] Huang | Time optimal control for a robotic contour following problem[END_REF], [START_REF] Brogliato | On the control of finite dimensional mechanical systems with unilateral constraints[END_REF], well-posedness and system theoretic issues [START_REF] Heemels | Linear complementarity systems[END_REF], [START_REF] Dam | Unilaterally constrained dynamical systems[END_REF]- [START_REF] Van Der Schaft | The complementary-slackness class of hybrid systems[END_REF], walking and hopping machines [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF], [START_REF] Buehler | Analysis of a simplified hopping robot[END_REF], [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF], [START_REF] François | Running with constant energy[END_REF], [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF], control of juggling and catching robots [START_REF] Buehler | Planning and control of robotic juggling and catching tasks[END_REF], [START_REF] Rizzi | Distributed real-time control of a spatial robot juggler[END_REF], [START_REF] Schaal | Robot juggling: Implementation of memory based learning[END_REF], [START_REF] Wang | Dynamic modeling and stability analysis of mechanical systems with time-varying topologies[END_REF], [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF], systems with dynamic backlash [START_REF] Azenha | Variable structure control of systems with nonlinear friction and dynamic backlash[END_REF], [START_REF] Mata Jimenez | On the control of systems with dynamic backlash[END_REF], stabilization of polyhedral objects in some manipulation tasks [START_REF] Zumel | Balancing of a planar bouncing object[END_REF], and nonprehensile manipulation [START_REF] Huang | Impulsive manipulation[END_REF], [START_REF] Lynch | Stable pushing: Mechanics, controllability, and planning[END_REF], [START_REF] Peshkin | The motion of a pushed, sliding workpiece[END_REF]; see [START_REF] Lynch | Stable pushing: Mechanics, controllability, and planning[END_REF] for a more complete bibliography on this last topic. The work presented in this paper focuses essentially on the last five listed topics. The open-loop models used are basically rigid body dynamics with a set of unilateral constraints on the generalized position. Such hybrid dynamical systems may be represented as follows: A. Zavala Río was with the Mechanical Engineering Laboratory (MITI), Tsukuba, Ibaraki 305-8564, Japan. He is now with the University de Queretaro, Facultad de Ingenieria, DEPFI, 76010 Queretaro, Qro., Mexico (e-mail: azari@sunserver.dsi.uaq.mx).

(2) [START_REF] Benzaid | Constrained controllability of linear impulse differential systems[END_REF] where the classical dynamics of Lagrangian systems is in [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF], the set of unilateral constraints is in [START_REF] Azenha | Variable structure control of systems with nonlinear friction and dynamic backlash[END_REF] with , and the so-called complementarity conditions [START_REF] Lötstedt | Mechanical systems of rigid bodies subject to unilateral constraints[END_REF] are in [START_REF] Benzaid | Constrained controllability of linear impulse differential systems[END_REF], where is the Lagrange multiplier vector. We assume frictionless constraints. , , ,

, and are the generalized coordinate vector, the inertia matrix, the Coriolis and centrifugal terms, the gravity forces and torques, and the control input, respectively, and . In order to render the dynamical system complete, we must add to (1)-(3) a so-called restitution law that relates postimpact and preimpact velocities. Such physical rules are necessary [START_REF] Dam | Unilaterally constrained dynamical systems[END_REF], [START_REF] Brogliato | Nonsmooth Mechanics[END_REF]. The most widely used restitution rule is known as Newton's conjecture [START_REF] Brach | Mechanical Impact Dynamics, Rigid Body Collisions[END_REF]. It is based on the knowledge of restitution coefficients . When , it is represented in its generalized form as follows: [START_REF] Brach | Mechanical Impact Dynamics, Rigid Body Collisions[END_REF] where , , and generically denote the impact times (the superindices and stand, respectively, for the instants just after and just before the collisions), with

. In case of a codimension 1 constraint (

), from energetical arguments. The system in (1)-( 4) is complete, in the sense that, given preimpact velocities , we are able to calculate the postimpact velocities and continue the integration after the collision has occurred. Notice that the system in (1)-( 4) is a complex hybrid dynamical system [START_REF] Van Der Schaft | The complementary-slackness class of hybrid systems[END_REF]. This class of dynamical systems can be divided further into subclasses. In particular, the case in which the free-motion dynamics are controllable has recently received attention [START_REF] Dam | The contact problem for linear continuous-time dynamical systems: A system theoretical approach[END_REF], [START_REF] Brogliato | On the control of finite dimensional mechanical systems with unilateral constraints[END_REF]. This class does not, however, cover some impacting robotic systems. Indeed, write the dynamical equations of a two degree-of-freedom (DOF) juggler; i.e., a system composed of an object (a point mass) subject to gravity, which rebounds on a controlled table, as shown in Fig. 1: (5) (6) (7) (8) [START_REF] Heemels | Linear complementarity systems[END_REF] Restitution rule in (4) [START_REF] Huang | Time optimal control for a robotic contour following problem[END_REF] Fig. 1. One and two DOF jugglers.

Notice that the ball dynamics in ( 5) and ( 6) are not controlled because only gravity acts on the ball. Hence, the only way to influence the trajectory of the ball is through impacts. This is a strong motivation for considering the feedback control of a two DOF juggler, as in ( 5)- [START_REF] Huang | Time optimal control for a robotic contour following problem[END_REF], because it represents a simplified model of manipulation of objects through "controlled" collisions with a robotic device [START_REF] Zumel | Balancing of a planar bouncing object[END_REF]. We may suppose that the length of the surface is infinite. Hence, the impacts always occur with the same side of the table. In this paper, we shall use this example as an illustration of the influence of the physical and control parameters on the control design.

B. A Class of Complementary-Slackness Hybrid Systems

Juggling robots may also be considered as a particular case of a class of complementary-slackness systems (11) (12) [START_REF] Ivanov | On multiple impacts[END_REF] where , , ( and may have the same or different values), and a restitution rule has to be added to complete the model. Notice that if , such a system may a priori evolve in different modes [START_REF] Van Der Schaft | The complementary-slackness class of hybrid systems[END_REF]: its hybridness is therefore intrinsic. As indicated in the title and the abstract, we choose to generically name such systems jugglers, even though, as we shall see later, other types of systems may fall into this class. In this setting, (11) plays the role of the "object," and ( 12) is the "robot." may represent the "distance" between the object and the robot, but this is not always the case, as some examples will prove. A necessary condition to transform (1) into ( 11) and ( 12) is that a generalized coordinate transformation exists and fulfills for all , . Also consider , and notice that the system in [START_REF] Huang | Impulsive manipulation[END_REF] and [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF] corresponds to [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF] written in a noncontrollable canonical form. Such systems are therefore quite different from so-called triangular systems [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive, Robust[END_REF]. In particular, setting , [START_REF] Huang | Impulsive manipulation[END_REF] and [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF] are not in general locally feedback stabilizable because the uncontrollable modes are not necessarily stable. The control problem for ( 11)-( 13) may change depending on our goal: for instance, in a system with clearance, like the impact damper [START_REF] Azenha | Variable structure control of systems with nonlinear friction and dynamic backlash[END_REF], [START_REF] Mata Jimenez | On the control of systems with dynamic backlash[END_REF], we may consider that (11) creates disturbances in the dynamics of [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF], or on the contrary, we may desire to control (11) using the impacts. In this paper, we will mainly focus on the control of from the input in [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF], via sequences of impacts. In other words, we shall restrict ourselves to control tasks with zero-measure contact phases. The controllability and stabilizability properties of such hybrid systems, which depend on the vector fields in [START_REF] Huang | Impulsive manipulation[END_REF] and [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF] and on in [START_REF] Ivanov | On multiple impacts[END_REF], have not yet been fully understood. It is advocated here that impact Poincaré mappings [START_REF] Brogliato | Nonsmooth Mechanics[END_REF] provide a suitable framework for such analysis. Let us introduce the following definition.

Definition 1: A viable controller is a function such that 1) or and between programmed impact times, and 2) and are right-continuous of local bounded variation (LBV) in time.

Here, programmed impacts are defined as those shock instants planned in the control design (contrary to accidental impacts that may be caused by various model uncertainties or disturbances in the control loop). As we shall see, the sequence depends on the controller design that in turn must incorporate the object ballistic constraints. Let us recall that an LBV function possesses a countable set of discontinuity points [START_REF] Monteiro-Marques | Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction[END_REF]; hence, a viable input ensures the well-posedness of the closed-loop system.

Definition 2: The "object" in ( 11) is controllable if given , , satisfying the object's ballistic constraints, and , such that , and , a viable control law that drives from to exists, with . The study of such notions, however, requires some intermediate steps, for which some basic properties are important (interestingly enough, some of them are similar to those done in [START_REF] Kolmanovsky | Hybrid feedback laws for a class of cascade nonlinear control systems[END_REF] for the control of a class of cascaded nonlinear systems that model some nonholonomic mechanical systems). Among those:

1) the properties of the object's flow on [explicit knowledge of the trajectories, or controllability with state and input ]; 2) the controllability of (12); 3) the controllability of (11) through impacts; 4) the relative degree 1 of with respect to and the relative degrees of with respect to ; 5) , and ; 6) the boundedness of between impacts or the ability of the robot to extracting energy to the object; 7) the restitution rule (i.e., the value of the restitution coefficient , the form of the constraint , the codimension of the striked subspace in case of multiple shocks). To illustrate the so-called ballistic constraints in Definition 2, consider for instance the one DOF juggler in the next section, with : clearly, we must wait for the ball to fall before hitting it, and the required time depends only on the vector field . The interest for considering systems as in ( 11)-( 13) is that their study finds potential applications in all types of juggling robots, catching tasks, nonprehensile manipulation (pushing-and-striking tasks with a workpiece free to slide on a work surface, which frequently occur in robotic applications [START_REF] Peshkin | The motion of a pushed, sliding workpiece[END_REF]), stabilization of manipulators on passive dynamical environments (some "hammer-like" tasks are possible), and platoons of carts with a leading cart. It is also noteworthy that walking and hopping machines may be written in a similar form as in ( 11)- [START_REF] Ivanov | On multiple impacts[END_REF], where [START_REF] Huang | Impulsive manipulation[END_REF] may represent the dynamics of the mass center when all of the feet are detached from the ground; see, e.g., [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF] and [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF], as well as rocking-block-like models of buildings excited by earthquakes [START_REF] Brogliato | Nonsmooth Mechanics[END_REF], whose active control is a topic of research [START_REF] Lee | Robust control of building structures[END_REF]. Finally, models of systems with dynamic backlash also fit within the framework in (11)-( 13) (e.g., the impact damper; see [START_REF] Brogliato | Nonsmooth Mechanics[END_REF] and references therein). Therefore (11)-( 13) constitute a large class of dynamical systems that deserves close attention and whose control is a challenging problem, as many of the above-cited references witness.

Contrary to most of the previous works on the topic, we shall consider the full dynamics of the system (11)- [START_REF] Ivanov | On multiple impacts[END_REF]. We are therefore interested in designing directly the controller that is to be implemented on the robot and to propose a general control design framework for complementary-slackness juggling mechanical systems. In Section II, we briefly recall the controller and the closed-loop analysis for the one DOF juggler that constitutes the basic benchmark example of complementary-slackness juggling systems. Controllability concepts based on the study of some impact Poincaré mappings associated with the object are introduced, which are thought to be useful for the overall control design. Section III presents the control strategy and the closed-loop analysis for a more general class of complementary-slackness juggling systems. The codimension one case is analyzed first. Then, the multiconstraint case is examined. Conclusions are given in Section IV. The relationships with various published results are pointed out throughout the paper.

II. ONE DOF JUGGLER

In this section, we briefly recall the results presented in [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF]. The proofs can be found in those references. As we shall demonstrate in the next section, this benchmark example does not en- 1 As defined in [START_REF] Isidori | Nonlinear Control Systems[END_REF].

capsulate the whole essence of the general problem. It provides us, however, with a nice starting point.

Lemma 1: Consider the dynamics of a one DOF juggler

(14) (15) (16) (17) 
Suppose that and are such that an impact or a contact time exists. Define the following control input: Then, for all 1) , ; 2) ; 3) ; 4)

(18) (19) , with (20) 
. Remark 1: The control input force ( 18)-( 21) is based on a dead-beat control strategy (inversion of the controllability Grammian). Other dead-beat inputs can be derived by simply adding position or velocity feedback to the robot, but they may not be viable inputs. Such controllers are basically open loop. We notice from ( 18)-( 25), however, that the controller is computed from the value of the state at (which does not necessarily mean that the states are measured at ). Property 1) may be used to perform an indirect measurement by measuring for instance the apex of the object's orbit. Consequently, is a state feedback for the system considered as a discrete-time operator at the shock times .

From property 1), it is clear that we may replace the dynamics in ( 14) by any integrable vector field. Difficulties in calculating the flight times may occur, however, (hence, ), for instance, if some damping is added on the object. In practice, we may use a numerical estimation of or study conditions under which the presented scheme is robust with respect to such uncertainty. As shown in [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF], the next step is to define the signals and , which can be regarded as the desired trajectory of the ball, whereas in ( 23) is the desired robot's preimpact trajectory. We still consider the system at a generic impact time .

Lemma 2: Let and be given as

if if (26) if if ( 27 
)
where , and is such that

(28)
Then, converges toward its desired value after at most two impacts, i.e., . Notice that the logic conditions in ( 26)-( 28) are necessary because of the ballistic constraints imposed by the object's motion, and they justify the difference between the desired values and those denoted as . Such control strategy has been shown to present several nice properties [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF]: robustness with respect to various uncertainties (measurement noise, restitution coefficient), possibility of modification of and to cope with control saturations, and flexibility to cope with various object's orbits.

Remark 2 [Three-Steps Recursive Control Design]: Describe a systematic, recursive control design method, which will enable us to recover the dead-beat strategy in ( 18)-( 27) as well as new controllers. Let us choose a structure for as , , with and constant on . Integrating ( 14) between impacts or using [START_REF] Kolmanovsky | Hybrid feedback laws for a class of cascade nonlinear control systems[END_REF], we get 31) into (30), we get for some function , from which we deduce and , which are equal to those in Lemma 1.

• Step 3: Check viability, i.e., the sign of the function on . It is noteworthy that the success of Steps 1 and 2 relies on the invertibility properties of the first "subsystem" [which is not to be confused with the mapping in [START_REF] Babitsky | Theory of Vibro-Impact Systems and Applications[END_REF] that is obtained assuming the a priori knowledge of an input satisfying properties 1)-3) in the introduction of Section III] with and as inputs, i.e., on the existence of solution to the algebraic equations and . We can choose another controller structure . Remark 3:

• The use of open-loop controllers during flight times is further motivated by the results on control holdability of sets of the form [START_REF] Dam | Unilaterally constrained dynamical systems[END_REF]. It is shown in [30, Corollaries 5.6.2 and 7.4.9] that, for linear mechanical systems , such sets are neither positively invariant (with ) nor closed-loop holdable by static or dynamic feedback. (i.e., such that those sets are invariant under , . In other words, such control cannot keep inside the set.) They may be open-loop controlled holdable, however. Therefore, it is expected that in general viability will be difficult to satisfy with time-invariant closed-loop inputs (even on finite time intervals). At the same time, this study shows that results on dead-beat open-loop controllers for LTI systems [29, Theorem 5, p. 3], do not straightforwardly extend to the unilaterally constrained case; see [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF] for counterexamples.

• The relationships with Bühler-Koditschek's mapping and mirror law [START_REF] Buehler | Planning and control of robotic juggling and catching tasks[END_REF] are explicited in [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF].

III. THE CONTROL OF COMPLEMENTARY-SLACKNESS JUGGLERS

In this section, we present the control strategy and the closed-loop analysis for the two DOF juggler (as depicted in Fig. 1). In parallel, we propose a general analysis and control design method for the class of systems as in ( 11)-( 13). The two DOF juggler is thus shown to constitute a simple case of such nonsmooth systems, which does not satisfy all of the desired requirements of the general framework. Moreover, it proves very useful in highlighting some peculiarities of the control design that are difficult to consider in a too-general approach, like the influence of the restitution rule and of on property 3). One objective to be considered is to design a torque input such that, given arbitrary initial conditions, the surface 1) hits the object with a desired preimpact angular velocity, 2) at a desired angular position (respecting the natural trajectories of the ball: the ballistic trajectory of the system imposes a time constraint on the control problem), and 3) the viability conditions hold ( is a viable control). In the sequel, we shall first assume that a suitable control input satisfying 1)-3) has been designed, and we shall investigate which trajectories the object can be made to follow when it is controlled only through the impacts with the rotating table. Then, it is shown how such an input can be calculated. . What follows is not to be confused with the three-step recursive design method presented in Remark 2. We assume that an ideal control law, which guarantees 1)-3) above to be satisfied, exists. Hence, rather than providing us with a control law, this step aims at examining whether the impact Poincaré mapping associated with ( 11) is controllable when the preimpact velocity of the robot is considered as the input. Clearly, if the answer is negative, whatever the controller we may find, the goal of the juggling (or manipulating-with-impacts) task will be limited.

A. An Intermediate Controllability

To begin with, we consider the system in ( 5)-( 10) with and (i.e., , ). Let us denote . Integrating ( 5)-( 7) on and using the restitution rule in and [START_REF] Huang | Time optimal control for a robotic contour following problem[END_REF], it is possible to show that [START_REF] Van Der Schaft | The complementary-slackness class of hybrid systems[END_REF] with (in the following, will stand for preimpact values). Now, if we are able to design a torque input such that 1)-3) above are achieved, then can be considered as the input of the system (5), (6), i.e., [START_REF] Van Der Schaft | The complementary-slackness class of hybrid systems[END_REF]. Indeed, notice that 2) fixes the next impact time. [In case the ball has a vertical motion, it can pass twice at the same position while going upward or downward. The choice of the desired flight-time 2 eliminates one of the two; see [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF] for the one DOF juggler.] Now notice that because we assume that we know such that , [then from ( 9)], we can express as [START_REF] Wang | Dynamic modeling and stability analysis of mechanical systems with time-varying topologies[END_REF] is the state-dependent restitution matrix (

) and with , and using the object's dynamics only (the robot dynamics and the unilateral constraint are not needed at this stage). Clearly, and have to be chosen on the object's trajectory. Substituting this expression into (32) yields the desired form of the partial Poincaré mapping [the total Poincaré mapping state being ] with fictitious input [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF] where if . More generally, from [START_REF] Heemels | Linear complementarity systems[END_REF]. Recall that, from the assumptions we made, the coefficients depend on and . Notice that, if the ball is initially at rest at the origin, then from [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF] and [START_REF] Wang | Dynamic modeling and stability analysis of mechanical systems with time-varying topologies[END_REF] it follows that because one must choose in this case. Therefore, no impact occurs and the ball may start to slide along the bar. In other words, those initial data are such that the closed-loop impact Poincaré mapping is not defined because the vertical orbit passing at the origin cannot be controlled. It suffices, however, to make the ball leave this position to make it detach from the bar, using a suitable input. (For instance, in the one DOF case, the proposed input assures detachment even if the two bodies are initially in contact at rest or if [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF]. When , detachment becomes possible and is classically checked by searching for the first derivative that is , with , .) Now, derive the same partial impact Poincaré mapping when . We get [START_REF] Zumel | Balancing of a planar bouncing object[END_REF] for some matrices and . Intuitively, the controllability and stabilizability properties of the mapping in [START_REF] Zumel | Balancing of a planar bouncing object[END_REF] should be better than those of the mapping in [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF].

2) Generalization: The interest for considering the controllability and stabilizability properties of the nonlinear discrete-time systems in [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF] or [START_REF] Zumel | Balancing of a planar bouncing object[END_REF] is that this may provide us with a sequence of "inputs" and . More generally, we may apply this philosophy to subsystems [START_REF] Huang | Impulsive manipulation[END_REF] and [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF] assuming as in 1)-3) that the following occurs.

Assumption A: A viable exists such that, given , , an impact time exists such that • can be given an arbitrary value; • can be chosen as desired on the object's orbit; Mimicking the developments for the two DOF juggler, such an assumption allows us to derive a partial impact Poincaré mapping with state and input , similar to the one in [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF]. Recall that the viability of guarantees that the sequence is countable; see Definitions 1 and 2. Also, recall that the impact Poincaré mapping is well defined. We can now set a first definition of Property 3), which we shall refine in Section III-C.

Definition 3: The subsystem in ( 11) is controllable through the impacts if its partial impact Poincaré mapping obtained from Assumption A, with state vector , and considering as an input restricted to values satisfying , is controllable. The restriction on the inputs is a consequence of the physics of impact (and is equivalent to

). Clearly, Property 1) (after Definition 2 in Section I) is crucial for the calculation of the impact Poincaré mapping. Notice that the obtained partial impact Poincaré mappings are generally strongly nonlinear in the state and the input. Various types of auxiliary feedbacks may then be applied, depending on their controllability and stabilizability properties (local stabilization, input-to-state linearization, I/O decoupling; see [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF]Section 14.3]). Denote the object and the robot's inertia matrices as and , respectively, (the arguments are dropped for convenience here). Define the matrices , , , . Then, using the restitution rule, the algebraic shock dynamics (that relate the velocity jump to the percussion vector; see, e.g., [START_REF] Brogliato | Nonsmooth Mechanics[END_REF]), and integrating the object's motion on (let us recall that the notation in Lemma 3 means ), it is possible to show the following lemma. 3Lemma 3: Let the subsystem in [START_REF] Huang | Impulsive manipulation[END_REF] have the form , where is a constant inertia matrix and is a constant generalized gravity vector. Then [START_REF] Babitsky | Theory of Vibro-Impact Systems and Applications[END_REF] where and . The "object" is controllable through the impacts in the sense of Definition 3 if the nonlinear discrete-time system in (36) is controllable, under the input constraint . Now, assume that has full row rank. Then, this controllability property holds if the pair is controllable and if the algebraic equation [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF] is solvable in , with . Notice that and depend on the ballistic constraints, i.e., cannot be chosen arbitrarily; see ( 26)-( 28). The upperscript is to emphasize that and depend on the desired position trajectories. In other words, the controllability Property 3) may depend on the initial data.

denotes the Moore-Penrose generalized inverse. The proof for the first part uses standard calculations of shock dynamics. The second part follows by rewriting the system in (36) and using as an intermediate input so that . From the rank condition of , the result follows. This criterion, although restricted to a specific class of "objects," is interesting because it allows us to study the influence of on such controllability properties. In partic-ular, because the rank condition implies , then invertibility of implies so that , indicating that such sufficient criterion is certainly too strong (it does not apply to the two DOF jugglers with ) and must be refined. As we shall see in Section III-C, the case requires particular care.

The outlined method to study controllability of the object through the impacts is expected to yield a general method of design of manipulators such that, given some prespecified goals (in terms of the object shape and motion), we may be able to design the mechanical structure of the robot in accordance. For instance it is clear that input-output decoupling of [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF] with and as outputs is not possible because only one input [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF] exists; hence, the possible interest to consider is and [START_REF] Zumel | Balancing of a planar bouncing object[END_REF], which indicates that we should preferably have in general, although this is not sufficient to assure controllability of the partial Poincaré mapping . Remark 4: Bühler et al. [START_REF] Buehler | Planning and control of robotic juggling and catching tasks[END_REF] made similar assumptions as 1) and 2) and studied some controllability properties of a two DOF juggler performing a vertical one-juggle task. In [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF] and [START_REF] François | Running with constant energy[END_REF], the control of a kangaroo hopping robot has been investigated. In particular, controllability properties of the impact Poincaré mapping with respect to the true inputs have been derived. In those works, the goal is to stabilize (locally) the system around a lossless natural (with no input) periodic trajectory of the system (such trajectory does not exist in all juggling systems). Also notice that viability conditions do not appear because the control is applied during the contact phase, whose length is greater than zero because it is assumed in [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF], [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF], and [START_REF] François | Running with constant energy[END_REF] that . Finally, notice that the underlying idea of extracting a discrete system and a controlling one variable with another coordinate as the input has been used in the control of hopping robots [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF], [START_REF] François | Running with constant energy[END_REF], [START_REF] Raibert | Dynamically stable locomotion[END_REF].

Remark 5:

• The results in [START_REF] Benzaid | Constrained controllability of linear impulse differential systems[END_REF] are not applicable (at most, they would provide us with necessary conditions) because the "input" at impacts is signed, which is the reason why we have introduced the "robot" preimpact velocity through the restitution rule.

• The controllability properties of the "object" may also be analyzed using a similar basic idea to what has been done in the vibro-impact literature to prove the existence of periodic trajectories in simple impacting devices with complex dynamical behavior; see [START_REF] Masri | On the stability of the impact damper[END_REF], [START_REF] Shaw | The dynamics of a harmonically excited system having rigid amplitude constraints-Part 1: Subharmonic motions and local bifurcations-Part 2: Chaotic motions and global bifurcations[END_REF], [START_REF] Babitsky | Theory of Vibro-Impact Systems and Applications[END_REF], and [START_REF] Brogliato | Nonsmooth Mechanics[END_REF]Section 7.1.4]. This process has been advocated in [START_REF] Zavala-Río | On the control of juggling robots[END_REF] and will be further developed in future works.

B. Coordinate Transformations for Controller Design

The foregoing subsection has been devoted to studing systematic methods to provide a designer with sequences of a "robot's" preimpact velocities. We now pass to the second step of the design. We have solved the one DOF juggling control problem using dead-beat control laws. A first question is: is it possible to extend this kind of strategy to the two DOF case with and ? In other words, can we assure the requirements 1)-3) using the ideas developed for the one DOF juggler? The answer is, in some manner, yes.

a measure [START_REF] Monteiro-Marques | Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction[END_REF]. Hence, , , is a distribution of order , and it follows that . This result can be proved also directly, noticing that with , that is different from zero as long as (true by assumption), which can be checked on examples. For the two DOF juggler and the kangaroo in [START_REF] Brogliato | Nonsmooth Mechanics[END_REF], and .

is not defined globally in these cases, however, because of . Note that, when (the permanently constrained mode), the order of the system is . The following lemma is also true. Lemma 6: Consider the system in ( 11) and [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF] with output in [START_REF] Ivanov | On multiple impacts[END_REF]. Then, . To prove Lemma 6, let us consider . Assume that ,

. Then, the system can be transformed in the normal form, i.e., a chain of integrators. Thus, the strong accessibility distribution (i.e., the controllable subspace) has everywhere dimension [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF]Th. 3.4.9,Def. 11.15], which is a contradiction because the uncontrollable subspace has dimension [the subsystem [START_REF] Huang | Impulsive manipulation[END_REF] with ]. This process shows that the partial linearization performed in is in some sense the best result we may expect.

Example 1: Consider now the system in Fig. 2, which represents a one DOF flexible joint robot that collides a dynamical environment. The canonical form of the dynamics as in [START_REF] Zavala-Río | On the control of juggling robots[END_REF] yields because . Notice that Definition 2 may not be always appropriate in this case, because it means that the aim of the task is to control the environment, not the robot. The dynamics of the two carts with a hook yields , , . The four DOF hopper studied in [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF] also fits within our framework, with , , and . Finally, consider the kangaroo hopper in Fig. 2. It is assumed that the total mass is concentrated at the joint. Its dynamics in coordinates with is given by [START_REF] Brogliato | Nonsmooth Mechanics[END_REF] This process is a simplified model of a kangaroo hopper, as in [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF] and [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF]. In [START_REF] Brogliato | Nonsmooth Mechanics[END_REF], we may take and . As expected, the fact that the constraint is frictionless hampers us to create a horizontal motion, contrary to what is proposed in [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF], [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF] and [START_REF] François | Running with constant energy[END_REF]. Hence, the system in ( 36) is not controllable. It is not clear at this stage how , or friction at shocks may influence the property in Definition 3.

Three-Steps Recursive Method: Let us now apply the three-step recursive control design method to the system in [START_REF] Zavala-Río | On the control of juggling robots[END_REF].

• , where , and we can prove that on [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF]. The procedure applies to the one DOF juggler defining . We retrieve the same controller as in Section II, Remark 2. In general, step 3, which is crucial for satisfing the controllability property in Definition 2, will be difficult to check. It is possible, however, to numerically search for desired motions such that and to restrict the task to such motions. Moreover, notice that for some , which (slightly) simplifies the problem. Most importantly, other types of controllers can be tried, e.g., . By a density argument, we know that such an input can be approximated by smooth controllers. Also, piece wise constant inputs may be applied. Notice that combinations of such controllers is also possible; see [START_REF] Mata Jimenez | On the control of systems with dynamic backlash[END_REF]. Still, another solution is to apply a control during the phases [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF], [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF]. As noted in Remark 4, however, this is feasible only when , which may be a restrictive assumption. The goal is then to control the reduced-order system , to get detachment at some and with . Finally, it is possible to derive tracking controllers for the robot, by designing desired trajectories on under the constraint and the boundary conditions , , , . This process may not be easy in certain cases.

Remark 6: Notice that from Lemma 3 we may deduce a sequence of inputs , hence . Those values can be used in Step 2.

The explicit derivation of in ( 41) is in general possible only if the vector field is linear in and is related to Property 1). This feature is common in such manipulations in which integration is needed [START_REF] François | Contribution à la locomotion articulée dynamiquement stable[END_REF], [START_REF] François | Running with constant energy[END_REF]. The second equation, however, can be obtained in a more general setting for mechanical systems. Indeed, if and denote the inertia matrices of both subsystems in [START_REF] Huang | Impulsive manipulation[END_REF] and [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF], respectively, and at impacts, then it is easy to show that ( The canonical form is not needed to perform Step 1, as the result of Lemma 7 shows. It greatly facilitates Steps 2 and 3, however. Let us notice that contrary to the controllability of the impact Poincaré mapping associated with [START_REF] Huang | Impulsive manipulation[END_REF], the input/output strong decoupling of the "free-motion" system with input and output is a property that facilitates the control design, but it is not a fundamental property.

Remark 7: The control design method based on the canonical form in [START_REF] Zavala-Río | On the control of juggling robots[END_REF] applies to various systems, like some hopping robots, jugglers, and manipulators with dynamic passive environments. The system in [START_REF] Brogliato | Nonsmooth Mechanics[END_REF] and the two DOF juggler have a , however, that is not defined globally. This obstacle may be overcome by either performing some other coordinate transformations or by adding a DOF and an input, i.e., by increasing . Consider, for instance, the two DOF juggler as in Fig. 2 with and( ). It is easy to verify that the choice of the quasicoordinate , for as defined by the constraint in (9) yields a relative degree that is not well-defined in the neighborhood of the subspace . Now, if ( ), , we get for some smooth function . Thus, the space in which the system loses its relative degree with respect to both and reduces to . Comparison with shows that by suitably switching between and , the system may be partially linearized to the canonical form in a much larger work space. The whole analysis of the two DOF juggler will be the object of future investigations and is not done here for the sake of briefness of the paper.

C. The MIMCO Case 6

This subsection is devoted to extending the foregoing SISCO setting to the MIMCO case ( , ). We have seen that control of the partial impact Poincaré mapping associated with [START_REF] Huang | Impulsive manipulation[END_REF] is facilitated if , even if (consider, for instance, the two DOF juggler with

). The first step of the recursive method requires also in general ; see Lemma 7. Moreover, it is clear that the partial I/O strong decoupling performed in [START_REF] Zavala-Río | On the control of juggling robots[END_REF] requires . Notice that simple examples exist, in which several unilateral constraints naturally appear: hopping robots [consider, for instance, the kangaroo in [START_REF] Brogliato | Nonsmooth Mechanics[END_REF], and rotate it to obtain a compass gait with ], the two DOF juggler with , building models relying on the simple rocking model [START_REF] Brogliato | Nonsmooth Mechanics[END_REF], vibratory feeders [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF], and nonprehensile manipulation systems.

1) Simple Multiple Impacts: When , the design of the control scheme requires more care than for the codimension one case. As pointed out above, multiple shocks create modeling problems. For control purposes, however, we can suppose that a correct impact rule has been defined, without explicitly specifying it. This process may be a solution for the control of "objects" with ; see Lemmas 3 and 7. A first approach is the direct extension of the developments in Section III-A to the case of simple multiple shocks: in other words, the object always strikes the robot at the same singularity of the admissible domain of the configuration space [that is defined by , ]. Therefore, the codimension one setting extends to this codimension setting once an impact rule is defined. To simplify, assume orthogonality of the attained constraints in the kinetic metric; i.e., . In this case, it is known that Newton's conjecture in (4) can be extended to the case . To simplify again, assume that for all . Then, the settings of Lemmas 3 and 7 can be used with . As an illustration of Lemma 3, let us consider the two DOF juggler with ( ) and , whose partial impact Poincaré mapping is given in [START_REF] Zumel | Balancing of a planar bouncing object[END_REF]. The computation of the matrix shows that rank , using the fact that . Adding a horizontal DOF to the robot (and modifying and in accordance), however, it is possible to show that has rank 2. Thus, provided [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF] is solvable, we deduce that we need , , and to apply Lemma 3-sufficient conditions.

We conclude that multiple shocks improve the controllability properties of the object's partial impact Poincaré mapping (see the second item of Lemma 3): this is not surprising because a multiple impact has more capabilities of reorientation of the object after a shock. Notice also that item 2) may become difficult to satisfy because it implies that the "robot" is able to strike the "object" at any point of its orbit. Because we assume that collisions are restricted to some subspace of the admissible domain boundary and because orthogonality conditions generally imply particular configurations of the whole system at , the "robot" should possess enough DOF to assure 2). Consider the two DOF juggler with and . Obviously, the robot is not able to satisfy 2) because and the rotational DOF is useless in moving the point in the object's configuration space . Add the horizontal DOF to the robot. The table singular point can now attain any point in the -plane. Such mobility problems depend on the application at hand.

2) Successive Simple Impacts: Now, deal with tasks that consist of successive simple collisions. Indeed, it may not be desired to have in certain systems, or even impossible (think of dynamic backlash: , but ). We notice at once that the controllability as defined in Definition 3 must be modified to cope with possible successive collisions with different constraints . Indeed, the restitution rule may change from one shock to the next, hence, modifying the partial impact Poincaré mapping as in [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF]. In other words, the form of the mapping depends on which constraint is striked. Within this setting, we conclude that it is not possible to derive an explicit form of the application that drives the state , without taking into account the order of the attained surfaces (this is a similar conclusion as the one in [START_REF] Ivanov | On multiple impacts[END_REF] concerning modeling of multiple shocks). Assume that the vector relative degree of the system (11), [START_REF] Hurmuzlu | Dynamics of bipedal gait-Part 1: Objective functions and the contact event of a planar 5-link biped-Part 2: Stability analysis of a planar 5-link biped[END_REF] with input and output is globally defined, so that strong I/O decoupling can be performed. Then, the second subsystem in [START_REF] Zavala-Río | On the control of juggling robots[END_REF] for all , . In other words, the "robot" can strike the "object" on any point of the object's orbit, with any preimpact velocity, with an arbitrary constraint, and with a viable control. Such viable inputs can be derived similarly as in the SISCO case. Viability conditions, however, are more stringent because of the fourth item in Assumption E; see, e.g., [START_REF] Mata Jimenez | On the control of systems with dynamic backlash[END_REF] for dynamic backlash as the two carts with a hook in Fig. 2. Define a sequence of indices . 7 therefore fixes the ordering of the successive simple impacts with . Notice that, for each , possible sequences exist. The impact Poincaré mapping is thus defined between times for . Mimicking what we have done in [START_REF] Wolfsteiner | Dynamics of a vibratory feeder[END_REF], we get on . Then, we have on the application , and so on for the whole sequence . Defining , , so that represents the number of sequences , , ,

Definition 4: Let Assumption E be true. Then, the subsystem in [START_REF] Huang | Impulsive manipulation[END_REF] is controllable through the impacts if at least one sequence exists such that the associated impact Poincaré mapping in (47) is controllable with input , whose entries satisfy the preimpact velocity condition.

In practice, we have to fix , then search for one sequence among the possible ones, such that controllability holds. Although it might appear clumsy, such enumerating procedure is inherent to systems involving multiple shocks [START_REF] Ivanov | On multiple impacts[END_REF]. If the 's are nonlinear in general, only local results will be obtained. In 7 Clearly, this n has nothing to do with the number of DOF's of the system in [START_REF] Ahmadi | Stable control of a simulated one-legged running robot with hip and leg compliance[END_REF].

the framework of Lemma 3, we get the special structure for in (47) (48) with and is defined similarly. This special structure should be used in future works to prove further results on controllability and stabilizability of such closed-loop impact Poincaré mappings. The concept in Definition 4 may provide us with a starting point to study controllability (in the sense of Definition 2) of the kangaroo with and successive shocks with both feet. Remark 8-Object's Controllability: Notice that we may also consider the kangaroo in [START_REF] Brogliato | Nonsmooth Mechanics[END_REF] and add one DOF in the leg that contacts the ground to get . It is, however possible in certain cases that the free-motion uncontrollable part of the "robot" plays a role in the overall controllability and stabilizability because it may be indirectly "controlled" via the multiplier , which depends on . With this in mind, we conclude that the controllability of the object (see Definition 2) is a complex property. Notice further that because of the ballistic constraints or to the designer requirements, we may have to choose in Definition 2 (for instance by targeting the apex of the "object's"; orbit). Then, we can state that if the object is controllable in the sense of Definition 3, if is controllable as in 1) 8 and if a viable input exists, then the object is controllable in the sense of Definition 2; i.e., we can find a viable input that drives the state to the desired target at time (perhaps after a series of impacts).

IV. CONCLUSIONS

This paper deals with the extension of feedback control strategies for one DOF jugglers previously proposed in [START_REF] Zavala-Río | On the control of a one degree-offreedom juggling robot[END_REF] to a class of complementary-slackness "jugglers." The interest for studying the control properties of such systems is twofold: first, they belong to a large class of complementary-slackness systems whose controllability and stabilizability properties have not yet fully been understood; second, they encompass many impacting controlled systems. Although it is clear that suitable controllers will depend on the particular application at hand (the goals and the technological constraints are different from one system to another), it is important to recast the analysis of such systems into a general stabilizability and control design framework.

This study should, in our opinion, be seen as a first step toward a better understanding of control properties of the general class of complementary-slackness juggling systems as in (11)- [START_REF] Ivanov | On multiple impacts[END_REF]. Indeed, we believe that the developments in this note pave the way toward a general control design method for such nonlinear nonsmooth systems and shed a new light on a topic that has been the object of many studies in the past 10 years.

Two steps have been proposed. The first one is to examine the object's controllability through impacts, by studying the controllability and stabilizability properties of the closed-loop impact Poincaré mapping associated with the subsystem in [START_REF] Huang | Impulsive manipulation[END_REF], with the robot's preimpact velocity as a fictitious input. The second one concerns the controller design. It uses some state-space transformation (partial linearization), which allows us to perform a recursive algorithm from which a viable can be calculated. Although some parts of such method have been alluded to in the related literature, their systematic analysis in a general control framework is thought to be proposed for the first time.

The limitations of the proposed design method have been pointed out, as well as some alternative paths (e.g., concerning the "robot's" control during flight phases). We have also studied the role played by some properties of the subsystems (orders, relative degrees, number of inputs) as well as the restitution rule, on the controllability of the system, both in particular cases (two DOF juggler) and in a more general framework. The two DOF juggler analysis is expected to serve as a basis for other types of systems. Future work should concern the extension of this work toward more complex complementary-slackness jugglers (adding DOF's in both the "object" and the "robot," taking into account friction and more complex restitution rules), in the outlined stabilization framework. In particular, the influence of the various characteristic numbers , the friction impulse ratio [START_REF] Brach | Mechanical Impact Dynamics, Rigid Body Collisions[END_REF], and of the contact geometry on the intermediate controllability properties of the "object's" dynamics has been studied all through the paper and should be investigated in more detail to enlarge the class of systems to which the proposed developments apply.
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  Step 1: We choose and as the inputs of the system in[START_REF] Sontag | Mathematical Control Theory, Deterministic Finite Dimensional Systems[END_REF], such that and . This step gives (29)[START_REF] Dam | The contact problem for linear continuous-time dynamical systems: A system theoretical approach[END_REF] where and are given in Lemma 1, and for some function .• Step 2: Introducing the values in (

Property 1 )

 1 The Two DOF Juggler Case: This paragraph is devoted to investigate Property 3) in Section I-B, i.e., what we have called the controllability of the subsystem in (11) via the impacts with the restriction

  

The notation 1 emphasizes that the underlying philosophy is to reach a position on the object's orbit, and d is an a priori choice of 1 from which the attained position results.

We keep the notation m, although m = 1 in this section, but some of the developments that follow will be used in the multiple constraints case. Notice that necessarily here the codimension m of the striked surface satisfies m = m = 1, but for m 2, M 2 .

Single-input-single-constraint.

Similarly as for Lemma 3, we keep the notation m, although only the case m = 1 is analyzed for the moment.

Multi-input-multi-constraint.

It is easily checked that this is the case for the one and two DOF jugglers, the one-DOF and the kangaroo hoppers. This process is less direct for the one DOF flexible joint robot with a passive environment as in Fig.2. We may also imagine "objects," e.g., on moving belts, with dry friction and other nonlinear effects, for which takes more complex forms and is not necessarily controllable.

1) A General Framework for the SISCO 4 Case: In order to extend the previous ideas to more general complementaryslackness jugglers, let us first make the following hypotheses.

Assumption B: . Assumption C: The relative degrees , are defined everywhere.

Assumption D: . Lemma 4: If Assumptions B-D are satisfied, then the system in ( 11)-( 13) can be transformed by a local diffeomorphism into [START_REF] Zavala-Río | On the control of juggling robots[END_REF] where if is not defined, if and . The proof of Lemma 4 uses standard results of nonlinear control theory and may be seen as a partial linearization. Notice that is full-rank if and only if is full-rank (which is true because Assumptions C and D; [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF]; actually, setting and , we see that represents the uncontrollable zero dynamics of the system with output ; recall [22, pp. 336-337] that the uncontrollable modes are necessarily modes of the zero dynamics). In the sequel of this subsection, we shall assume that the form is defined globally. Write the vector fields and as and , respectively. Denote and . Then, if , we have if [START_REF] Brogliato | On the control of finite dimensional mechanical systems with unilateral constraints[END_REF] The other expressions for derivatives of may be derived similarly and allow us to obtain and . Therefore, such a transformation generally yields measure differential equations with singular distributions of order . Notice that higher order derivatives , , may not be continuous, but in general are distributions of order . In fact, we have the following lemma.

Lemma 5: If the system in ( 11) and ( 12) is a mechanical system with a unilateral constraint , then . The proof follows from the fact that, necessarily, is a right-continuous function of bounded variation, and is