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A major obstacle for computing optical spectra of solids is the lack of reliable approximations for
capturing excitonic effects within time-dependent density functional theory. We show that the accurate
prediction of strongly bound electron-hole pairs within this framework using simple approximations is still
a challenge and that available promising results have to be revisited. Deriving a set of analytical formulas
we analyze and explain the difficulties. We deduce an alternative approximation from an iterative scheme
guided by previously available knowledge, significantly improving the description of exciton binding
energies. Finally, we show how one can “read” exciton binding energies from spectra determined in the
random phase approximation, without any further calculation.
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The response of materials to an electromagnetic field is a
key to many properties and applications. In the frequency
range from infrared to ultraviolet, the optical properties
determine the color of materials, their ability to absorb
sunlight, and much more. They lay the ground for nonde-
structive spectroscopies, such as ellipsometry, that can tell us
much about the electronic or atomic structure of materials.
However, theoretical tools are needed that allow one to
analyze, understand, and predict measured results and
desired or undesired properties. These tools should be
reliable and versatile, but simple enough to be applicable
to systems of fundamental or technological interest, which
are often rather complex. One of the major challenges is to
design approximations for the ab initio calculation of optical
spectra of extended systems such as solids and liquids [1].
The state-of-the-art approach for the ab initio calculation

of optical spectra consists in using the Kohn-Sham elec-
tronic structure coming from a density functional theory
calculation as the starting point for a quasiparticle band
structure calculation in the GW approximation, and the
subsequent solution of the Bethe-Salpeter equation (BSE) to
account for the electron-hole interaction [1–5]. The scheme
is successful; in particular, excitonic effects are well
described. However, the calculations are computationally
demanding, because of the two-particle (electron and hole)
nature of the problem.Alternatively, time-dependent density
functional theory (TDDFT) [1,6,7] formulates the response
in terms of variations of local potentials that are functionals
of the time-dependent density. This reduces the size of the
problem, but raises the question of how to find a good
approximation for the time-dependent exchange-correlation
(xc) potential vxc and its first derivative, the xc kernel
fxcðr; r0; t − t0Þ ¼ δvxcðr; tÞ=δnðr0; t0Þ, where n is the

time-dependent electron density. Some simple but widely
used approximations such as the adiabatic local density
approximation [8,9], which are often successful for finite
systems and for electron energy-loss spectra, yield disap-
pointing results similar to the random phase approximation
(fxc ¼ 0) [7,10] for absorption spectra of solids.
Many works, e.g., Refs. [11–16], try to overcome this

problem. A class of successful kernels has been derived
from the BSE [17–22]. The nanoquanta kernel [20–23]
gives results close to BSE ones, but with a comparable
computational cost, although suggestions for speedups
have been made [24]. The long-range corrected (LRC)
kernel [23,25] fLRCxc ¼ −α=q2 with the correct divergence
for small wave vectors q is a simple scalar approximation of
the nanoquanta kernel. fLRCxc , with α empirically determined
from the static dielectric constant of the crystal [25], works
well for continuum excitons in semiconductors [26–28].
However, it fails to reproduce bound excitons, unless α is
set ad hoc to a much higher value than in Ref. [25]. In this
case, a transition may appear within the quasiparticle gap
[29–31], but with too high oscillator strength [29].
Alternatively, the so-called bootstrap (BO) kernel [32]

also has the correct 1=q2 behavior; the prefactor is
determined self-consistently, and it goes beyond the scalar
version. Promising results have been published [32,33] for
continuum and bound excitons, and the exciton binding
energies of a range of small- and large-gap semiconductors
have been calculated [34,35]. However, the BO expression
has not been derived, but rather justified by observations,
and the predictive power of the approach has not yet been
demonstrated. Indeed, as we will show below, the BO does
not lead to reliable absorption spectra, sometimes not even
qualitatively.
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The aim of this work is to elucidate the origin of the BO
and of its shortcomings, in order to go beyond. We show
that a BO-like expression can indeed be derived, but it is
slightly different from the ad hoc (i.e., without derivation)
one of Ref. [32] and it leads to improvements, in particular
for exciton binding energies. The computational cost can
be further significantly reduced thanks to simple analytical
formulas. In particular one can “read” exciton binding
energies from results obtained in the random-phase
approximation (RPA), without any further calculation.
Optical spectra of solids are obtained from the imaginary

part of the macroscopic dielectric function ϵMðωÞ, which
can be calculated from

ϵMðωÞ ¼
1

ϵ−100 ðωÞ
¼ 1 − v0χ̄00ðωÞ; ð1Þ

where ϵGG0 ðωÞ is the q → 0 limit of the microscopic
dielectric matrix ϵGG0 ðq;ωÞ in a basis of reciprocal lattice
vectors. 00 indicates the head (G ¼ G0 ¼ 0) element of the
matrix, v0 is the long-range (G ¼ 0;q → 0) part of the
Coulomb interaction, and χ̄, the linear density response to
the total macroscopic classical potential [1], is obtained
from the matrix (in G;G0) Dyson equation

χ̄ðωÞ ¼ χ̄RPAðωÞ þ χ̄RPAðωÞfxcðωÞχ̄ðωÞ; ð2Þ

χ̄RPAðωÞ ¼ χ0ðωÞ þ χ0ðωÞv̄χ̄RPAðωÞ ð3Þ

with v̄ the Coulomb interaction without the G ¼ 0 compo-
nent v0, and χ0 the independent-particle response function.
The RPA solution χ̄RPAðωÞ includes crystal local field
effects (LFE) through v̄. Note that χ0 is in principle the
Kohn-Sham independent-particle response function.
However, here we build χ0 with quasiparticle energies,
e.g., from aGW calculation (see the Supplemental Material
for details [36]). Hence fxc does not have to simulate the gap
opening with respect to the Kohn-Sham gap. This often
adopted strategy for TDDFT in solids allows one to simplify
the kernel significantly, and is used also for the BO kernel
[32]. The latter is a static matrix (middle term below)

fBOxc;GG0 ¼ ϵ−1GG0 ð0ÞvG0

1 − ϵRPA00 ð0Þ →
1

ϵMð0Þχ000ð0Þ
: ð4Þ

Often one can consider just the head element fxc;00 without
altering results significantly. The BO kernel is then the last
term of Eq. (4), and Eq. (2) for χ̄00 is scalar [53]. For clarity,
in the following we will work with scalar equations unless
stated. We have performed a detailed study for a family of
matrix kernels [54] and found that results for the full matrix
fBOxc are similar to the present scalar version. We hence drop
the subscripts 0 and consider the head of χ̄RPA and fxc.
In Ref. [32] the equivalent of Eqs. (1), (2), and (4) were

iterated numerically to self-consistency. However, this can
easily be avoided since Eqs. (1), (2), and (4) combine to a
quadratic equation for ϵMð0Þ with two solutions

ϵMð0Þ ¼
1

2

�
1þ χ̄RPA

χ0
− vχ̄RPA

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
1þ χ̄RPA

χ0
− vχ̄RPA

�
2

−
χ̄RPA

χ0

s
; ð5Þ

where all quantities are static. Only the solution with the plus
(þ) sign is meaningful, since in the limit of strong screening
and neglecting LFE it leads to the RPA solution ϵRPAM →
1 − vχ000 as expected. The minus sign would lead to ϵM → 1.
Given χ0 and χ̄RPA, the static ϵMðω ¼ 0Þ from Eq. (5) and
hencefBOxc fromEq. (4) arenumbers that canbedeterminedon
a pocket calculator and then used in Eq. (2) to correct a given
RPA spectrum for excitonic effects.We have checked that the
converged iterative results and those of Eq. (5) are indis-
tinguishable.Thenext order in the strong screening expansion
of Eq. (5) yields ϵMðω ¼ 0Þ ¼ ϵRPAM ðω ¼ 0Þ þ 1, which
agrees with the typical magnitude of excitonic effects on
the dielectric constant of semiconductors (see, for example,
Table I of Ref. [25]).
Bound excitons occur when ImϵMðω0Þ, and hence

Imχ̄ðω0Þ, is nonvanishing at energies ω0 within the quasi-
particle gap, where χ0 and χ̄RPA are real. Since the scalar fxc
in Eq. (4) is real, the imaginary part of Eq. (2) is [29]

fxc ¼
1

χ̄RPAðω0Þ
: ð6Þ

With Eq. (4), the position ω0 of the first excitonic peak
inside the gap is then the implicit solution of

χ̄RPAðω0Þ ¼ ϵMð0Þχ0ð0Þ: ð7Þ
By plotting ReϵRPAM ðωÞ and comparing to the static
1 − vϵMχ0 with ϵM from Eq. (5), one can hence read
exciton binding energies from a RPA spectrum. For
illustration, we show bulk silicon, LiF, and solid argon.
The black solid lines in Fig. 1 show the real part of ϵRPAM ðωÞ
for the three materials (for computational details, see the
Supplemental Material [36]); it is monotonically increasing
within the quasiparticle gap. The value ½1 − ϵMð0Þvχ0ð0Þ�
with ϵM calculated with Eq. (5) is given by the horizontal
red dashed lines, and the red vertical lines indicate
intersections, hence bound excitons.
In silicon no bound exciton is found because ϵMð0Þ is

large. LiF and argon have a low dielectric constant and
therefore exhibit a crossing below the gap. However, the
exciton binding energies, given by the difference between
the energy of the fundamental quasiparticle gap and the
exciton peak, are only 0.05 eV in LiF and 0.0 eV in Ar,
much smaller than the experimental results (about 1.4 and
2.0 eV, respectively [55,56]), and in apparent contrast to
Ref. [32]. The latter discrepancy cannot be explained with
the use of Eq. (7), which is exact when the BO kernel is
used. Let us therefore look at the spectra. Figure 2 shows
our results of BO calculations for the imaginary parts of
the macroscopic dielectric function for Si, LiF, and Ar.
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Red dashed curves stem from our TDDFT calculations with
the BO kernel [Eq. (4)]. In silicon, like in Ref. [32], the
kernel improves the spectrum with respect to quasiparticle
RPA (QP-RPA) [57] by enhancing the first peak and
inducing an overall transfer of oscillator strength to lower
energies. However, the effect appears underestimated when
compared to experiment [58] and to BSE results [25]. For
silicon, the simple long-range fLRCxc ¼ α=q2 is sufficient
[23]. However, the prefactor αBO from the BO kernel
defined in Eq. (4) is only α ¼ −0.1, too weak compared to
the optimal value α ¼ −0.2 [25], which explains why the
effect is not strong enough.
In LiF and Ar, our BO spectra confirm the weak exciton

binding energies obtained from Eq. (7). The spectral shapes
look similar to the ones of Ref. [32]; however, the positions
of the exciton peak differ and, for argon, the peak height
from our BO is about half of that in Ref. [32]. As regards
the peak position, we are not in contradiction with Ref. [32]
since our quasiparticle gaps are close to experimental
photoemission gaps. Instead, the quasiparticle gaps used
in Ref. [32] are much smaller. This compensates the
too small exciton binding energy and leads to seemingly
good agreement with experimental optical spectra. We
elaborate on this point in the Supplemental Material
[36]. Additionally, it is important to note that the exciton
binding energy is very sensitive to details, especially for
strongly bound excitons. The reason is that the latter lie in a
region where the real part of ϵRPAðωÞ is very flat (see

Fig. 1). A small change in χ0ð0Þ leads then to a large shift in
the crossing point, and hence in the exciton binding energy.
Such a small change in χ0ð0Þ can be due to a small change
of the structure, or of computational ingredients like a
pseudopotential or convergence parameters, and it can be
amplified since the static dielectric constant enters the BO
self-consistently. Indeed, the calculations for the BO kernel
show a notable slow convergence with respect to both
the LFE (i.e., number NG of G vectors) and the number
of empty bands. The second issue is exemplified in Fig. 2 for
the case of Ar: the brown double dot–dashed curve has been
obtained with only 8 bands, versus 20 in the converged
calculation (red dashed curve). The unconverged calculation
exhibits a bound exciton with a binding energy of more
than half an eV. Similarly, poorly converged calculations
with respect to NG give also, for the case of argon, a BO
spectrum with a slightly higher binding energy and a higher
peak height than the converged result [54], much more
similar to Ref. [32]. More generally, this explains why for
argon or LiF one can easily obtain results that differ by an eV
or more from others in the literature [34].
Once the calculations are settled, the results of the BO

are hence disappointing. Let us therefore finally elucidate

1.4 eV

2.0 eV

0.05 eV

FIG. 1 (color online). Real part of ϵRPAM ðωÞ for Si, LiF, and Ar
(black solid line). Its crossing with the red dashed [blue
dot-dashed] horizontal lines gives the exciton binding energy
ω0 from Eq. (7) [Eq. (11)]. The green vertical line indicates the
quasiparticle gap.

FIG. 2 (color online). Imaginary part of ϵRPAM ðωÞ for Si, LiF, and
Ar computed in various approximations. Experimental spectra are
taken from Ref. [58] for Si, Ref. [55] for LiF, and Ref. [56] for Ar.
The green vertical lines indicate the quasiparticle gap.
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the origin of this kernel and indicate a possible improve-
ment. We start from three assumptions: (A) We can take
a static fxcðω ¼ 0Þ in the optical range. (B) The static
dielectric constant is larger than 1. (C) The static dielectric
constant is not too different from the RPA one. These
assumptions are based on previous knowledge from theory
and experiment [assumption (B)], numerical results, e.g., of
Bethe-Salpeter calculations [assumption (C)], and, most
importantly [assumption (A)], insight from previous studies
of long-range corrected kernels, e.g., Refs. [23,24,59]. The
fact that fxc should be proportional to the inverse dielectric
constant [23,25,60,61] has also been useful to guide the
derivation, which we start by combining Eqs. (1) and (2):

fxc ¼
1

χ̄RPA
−
1

χ̄
¼ 1

χ̄RPA
−

v
1 − ϵM

: ð8Þ

If one had to make a guess for fxc and iterate Eqs. (1), (2),
and (8), onewould of course get the same fxc back, however
absurd it might be. The trick of a BO-like approach is to
make an approximation in one of the equations, such that
they are no longer equivalent. At first sight this should not
lead to any advantage: how could an approximation be better
than the exact formula? However, by choosing the approxi-
mation carefully one can feed information. In that case,
iteration of the (now no longer equivalent) equations may
indeed define the three unknowns fxc, χ̄, and ϵM.Wewill call
this procedure “guided iteration.”Wewill first use condition
(A) to this aim: a static kernel can be determined from the
equations at ω ¼ 0 alone. In that limit, hypothesis (B) is
generally valid, and we can use it to expand the 1=χ̄ term in
Eq. (8) to leading order in 1=ϵM

1

χ̄
¼ v

1 − ϵM
≈ −

v
ϵM

≈ −
v

ϵRPAM
; ð9Þ

wherewe have used hypothesis (C) in order to obtain the last
expression. This finally leads to

fRBOxc ≈
1

ϵRPAM χ̄RPA
; ð10Þ

which we call the RBO (RPA bootstrap). TheRBO is close to
BO which appears in Eq. (4), but there is no self-consistency
condition. The blue curves in Fig. 2 are obtained using
Eq. (10). In silicon, the improvement with respect to the RPA
result is close to that of the original BO (red dashed curve).
Changes are noticeable in LiF and argon, where now the peak
position is close to the experimental one [62]. Compared to
experiment there is still too much spectral weight on these
peaks. This is to be expected, because the two kernels behave
like the LRC kernel. It is indeed known [29] that one can tune
α to reproduce the exciton binding energy, but at the price of
too much oscillator strength. To cure this problem, one may
have to introduce a frequency dependence that is able to
distribute spectral weight over the whole Rydberg series; this
is however beyond the scope of the present work. Here, we
focus on the exciton binding energy, which can now again be
obtained from ϵRPAM ðωÞ alone, using themodified prescription

χ̄RPAðω0Þ ¼ ϵRPAM ðω ¼ 0Þχ̄RPAðω ¼ 0Þ: ð11Þ

This corresponds to the use of the blue horizontal dot-dashed
line in Fig. 1. The exciton binding energies that we can read
in this way, and which correspond of course to the peak
positions given by the RBO in Fig. 2, are 2.0 eV for argon
and 1.4 eV for LiF, in excellent agreement with the exper-
imental values of 2.0 and 1.43 eV, respectively.
In conclusion, starting from the so-called bootstrap

kernel of TDDFT [32], we have derived very simple
approaches to determine absorption spectra and to estimate
exciton binding energies from RPA calculations alone. We
have however shown that the boostrap kernel is not reliable
for the determination of exciton binding energies, and that
promising results in the literature are partially misleading.
We have therefore derived a related kernel starting from a
few physically meaningful assumptions. Numerical results
confirm that the new kernel is more reliable. One may
expect that this first derivation of a boostrap-like kernel
could trigger new developments, but caution is called for:
our guided iteration is not a systematic expansion that one
might continue to obtain better and better results, since it
intrinsically relies on the fact that an approximation is made
by feeding knowledge. We stress again the importance
of this approximation: Eqs. (1) and (2), and Eq. (8) are
equivalent, though written in a different way; however,
making an approximation on the second term of Eq. (8)
[as in Eq. (9)] leads to a new formula, so breaking the
otherwise tautological sequence Eqs. (1) and (2), and
Eq. (8). The choice of a reasonable approximation (in this
case the RBO) makes the method very effective in the
description of the spectrum and, above all, for estimates of
exciton binding energies. As we have shown and explained,
these estimates are very sensitive, and a numerically precise
agreement should not be overemphasized. Most impor-
tantly, we have shown that exciton binding energies can be
obtained at literally zero cost, since we have introduced a
way to read binding energies from RPA dielectric functions
alone. This may be interesting especially for scientists
outside the community of ab initio calculations, including
experimentalists, since it allows one to use the numerous
already published RPA results, without the need of new
calculations.
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