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ABSTRACT

Context. Solar twins are objects of great interest in that they allow us to understand better how stellar evolution and structure are
affected by variations of the stellar mass, age and chemical composition in the vicinity of the commonly accepted solar values.
Aims. We aim to use the existing spectrophotometric, interferometric and asteroseismic data for the solar twin 18 Sco to constrain
stellar evolution models. 18 Sco is the brightest solar twin and is a good benchmark for the study of solar twins. The goal is to obtain
realistic estimates of its physical characteristics (mass, age, initial chemical composition, mixing-length parameter) and realistic as-
sociated uncertainties using stellar models.
Methods. We set up a Bayesian model that relates the statistical properties of the data to the probability density of the stellar param-
eters. Special care is given to the modelling of the likelihood for the seismic data, using Gaussian mixture models. The probability
densities of the stellar parameters are approximated numerically using an adaptive MCMC algorithm. From these approximate distri-
butions we proceeded to a statistical analysis. We also performed the same exercise using local optimisation.
Results. The precision on the mass is approximately 6%. The precision reached on X0 and Z0 and the mixing-length parameter are
respectively 6%, 9%, and 35%. The posterior density for the age is bimodal, with modes at 4.67 Gyr and 6.95 Gyr, the first one being
slightly more likely. We show that this bimodality is directly related to the structure of the seismic data. When asteroseismic data or
interferometric data are excluded, we find significant losses of precision for the mass and the initial hydrogen-mass fraction. Our final
estimates of the uncertainties from the Bayesian analysis are significantly larger than values inferred from local optimization. This
also holds true for several estimates of the age encountered in the literature.

Key words. stars: individual: 18 Sco – stars: solar-type – stars: evolution – asteroseismology – methods: data analysis –
methods: statistical

1. Introduction

Amidst the labyrinthic zoology of stellar types and classes,
one subset has gained considerable attention over the past few
decades. These stars are called solar twins. Even though, with
such a name, what they should be seems obvious, defining what
they really are has so far been an ever-evolving process. Of
course, one expects that a solar twin should have a physical
state as close as possible to the Sun. This is actually the
reason behind the relatively recent interest for these stars.
They were first identified as a group by Cayrel de Strobel et al.
(1981), based on spectroscopic arguments. Therefore, one can
immediately see that for a “good” solar twin to be classified
as such will depend on the precision one can reach to esti-
mate its physical properties. This also explains that, before
this pioneering work, this class of stars has largely remained
ignored. Being G2V objects, they are, on average, relatively
faint, hence demanding large telescopes and high-resolution
spectrographs in order to obtain a good precision on atmospheric
parameters. Conversely, alongside the on-going improvement

? Based on observations collected at the European Organisation for
Astronomical Research in the Southern Hemisphere, Chile (run ID:
183.D-0729(A)).

of spectroscopic instrumental methods, the threshold for clas-
sification as solar twin has evolved considerably and many
observational campaigns have been carried over in order to
detect these stars (Porto de Mello & Da Silva 1997; King et al.
2005; Meléndez et al. 2006, 2010, 2014; Meléndez & Ramírez
2007; Takeda & Tajitsu 2009; Datson et al. 2012, 2014;
Porto de Mello et al. 2014; Ramírez et al. 2014; Mahdi et al.
2016). As of today, roughly a hundred stars can be classified as
solar twins, somewhat depending on the exact criterion retained
for classification.

Studying solar twins offers multiple perspectives. On a sta-
tistical level, they offer a good benchmark for solar-like pop-
ulations. Some studies have focused on the properties of the
Sun itself, trying to determine if it was an outlier with respect
to some solar-twin samples (Gustafsson 1998, 2008; Meléndez
2014; Dos Santos et al. 2016). Exploiting further this idea, some
other studies have explored potential planet-star connections
using samples of solar twins. It was suggested for instance that
planet-hosting stars were deficient in refractory elements1. This

1 Elements with high condensation temperatures (&900 K) and thus
most likely to form rocky planets. Typical examples are Na, Mg, Al,
Si, V, Cr,. . .
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is also true for the Sun itself, which is refractory-deficient with
respect to most of the known solar twins (Ramírez et al. 2010).
They were also used to study the problem of Li depletion in
planet-hosting stars (Israelian et al. 2009). Studying a sample
of approximate twins (in the sense that their ages span a range
that encompasses largely the solar age), Baumann et al. (2010)
claimed that this trend is purely evolutionary and is not corre-
lated to the presence of planets (see also Monroe et al. 2013;
Carlos et al. 2016).

From a stellar-modelling point of view, solar twins are
extremely interesting targets. We first recall that stellar evo-
lution codes were largely developed using the Sun as a ref-
erence observational benchmark. Indeed it is the only star
for which we have extremely precise measurements, inde-
pendent of modelling, for age (Bouvier & Wadhwa 2010)
and mass (Olive & Group 2014). Furthermore, the observa-
tional precision on its radius (Emilio et al. 2012) and luminos-
ity (Fröhlich & Lean 2004) allows to calibrate solar models
and assess their accuracy through helioseismic inversion (see
e.g., Thompson 1991; Basu & Christensen-Dalsgaard 1997;
Christensen-Dalsgaard 2002; Basu 2016).

As a result, we know with excellent confidence the main
physical processes at play in the solar interior. However, these
solar models are usually built on assumptions such as spher-
ical symmetry, neglecting rotation or magnetic fields, that
may quickly break down when the mass of the star varies.
Likewise, the sizes of convective envelopes or cores depend
strongly on the stellar mass and evolutionary phase. For
low-mass stars, the outer convective envelope becomes deep
enough that the radiative core disappears. This may change
the stability properties of the star against small perturba-
tions (Gabriel 1964, 1967; Rodríguez-López et al. 2012). For
masses larger than the Sun, the convective envelope rapidly
becomes very thin while convective cores start to appear.
Their modelling is somewhat uncertain. This can be due to
numerical issues in treating simultaneously microscopic dif-
fusion and nuclear reactions in a convective region (see for
instance Christensen-Dalsgaard 2008a). It might also be the
consequence of other phenomena such as double-diffusive
convection, in that case taking the form of semiconvection
(Moore & Garaud 2016).

A good property of solar twins is that they shall not enter
such regimes. At the same time, they might differ slightly from
the Sun. Hence, by studying them, we can be confident that the
general assumptions made for our stellar models hold. But at the
same time, we can test this model by letting the stellar structure
vary.

In this paper, we focus on 18 Sco, the brightest solar
twin. It was the first observed by asteroseismology (Bazot et al.
2011, 2012). This allowed to estimate its global seismic prop-
erties such as the large separation, but also individual fre-
quencies. In this paper we want to assess the impact of such
measurements on our knowledge of the physical state of 18
Sco. In particular, we want to obtain statistically robust esti-
mates of its global physical parameters but also of the related
uncertainties.

In Sect. 2 we present the statistical model we use to estimate
these parameters. We also present the two estimation methods,
namely Bayesian probability density estimation and frequentist
optimisation, that we selected to carry out the estimation. Impor-
tantly, we reassess the seismic data given in Bazot et al. (2012),
which needs to be treated carefully before being incorporated in
a statistical model. In Sect. 3 we present our results and discuss
them.

Table 1. Recent atmospheric parameters found in the literature and
weighted average used in this work.

Teff (K) log g [Fe/H] Reference

5823 ± 6 4.45 ± 0.02 0.054 ± 0.005 Meléndez et al. (2014)
5818 ± 3 4.457 ± 0.010 0.054 ± 0.004 Nissen (2015)
5809 ± 6 4.434 ± 0.012 0.046 ± 0.006 Spina et al. (2016)
5817 ± 4 4.448 ± 0.012 0.052 ± 0.005 This work

2. Statistical model

2.1. Generic formulation

By statistical model, we mean a mathematical formulation of the
behaviour of our observations. A simple approach is to consider
an additive model made of a deterministic and a random part,
and hence having the form

X = S(θ) + ε, (1)

where X are the observations, S(θ) is the deterministic part
(being a function of θ, the stellar parameters we want to esti-
mate) and ε the realisation of a random variable that represents
the observational noise.

In the following, we will make the (somewhat optimistic)
assumption that our model is unbiased, that is that the noise com-
ponent has zero mean and hence that the stellar model S is the
expectation value of our observations. We assume that the obser-
vations are independent. The likelihood has thus the form

π(X|θ) =
∏

i

π(Xi|θ), (2)

where the Xi are the components of the vector X.

2.2. Data and the physical model

2.2.1. Non-seismic data

One of the main advantages of studying solar twins is that stellar
spectra can be analysed differentially relative to the solar one.
The departures from the latter are small enough that they can be
treated as a first-order perturbations. This assumes that a stel-
lar spectrum and a solar one have been obtain from the same
instrument (Meléndez et al. 2014). This translates in turn into
smaller uncertainties on the atmospheric parameters Teff, log g
and [Fe/H] than those usually quoted for other stars (see e.g.,
Meléndez et al. 2014; Nissen 2015; Spina et al. 2016).

In this work we considered three recent estimates of the atmo-
spheric parameters of 18 Sco from Meléndez et al. (2014), Nissen
(2015) and Spina et al. (2016). They are given in Table 1. Assum-
ing that data points have Gaussian parent distributions with the
same mean but different standard deviations, a reasonable new
estimate of these atmospheric parameters is the weighted aver-
age of the sample. The variance of the weighted mean was then
used tocompute theassociateduncertainties.The resultingparam-
eters are Teff = 5817 ± 4 K, log g = 4.448 ± 0.012, [Fe/H] =
0.052 ± 0.005. For modelling purposes, we used only the effec-
tive temperature and surface metallicity, choosing to constrain
our model with the luminosity rather than log g. The conversion
between [Fe/H] and Z/X, which we effectively use as the output of
the stellar code, was performed using the solar ratio (Z/X)� from
Grevesse & Sauval (1998). We note that different values for this
ratio have been derived since then (Asplund et al. 2005). However,
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Fig. 1. Examples of problematic PDFs of individual frequencies for n = 19, l = 0 (left panel) and n = 18, l = 2 (right panel). The black lines
represent the histogram estimate and the red line a kernel-density estimation.

these lower estimates raised the, still unsolved, solar-abundance
problem, which put solar models and solar observations at odds
(see e.g., Guzik et al. 2006; Castro et al. 2007; Basu & Antia
2008; Antia & Basu 2011; Gough 2012; Basu 2016). For the
sake of conciseness and simplicity we chose to overlook this
issue in the present study.

For the luminosity, we selected the value given by
Boyajian et al. (2013). It is based on an estimate of the bolo-
metric flux Fb = (17.34 ± 0.09) × 10−8 erg s−1 cm−2. This was
obtained using an aggregate of various photometric fluxes and
compared to a library of stellar spectra (Pickles 1998). The cor-
responding luminosity is L = 1.0438 ± 0.0120 L�.

A natural choice for the radius is the one derived by
Bazot et al. (2012). It was obtained using the CHARA interfer-
ometric array and the PAVO interferometer. Its value is 1.010 ±
0.009 R�.

The luminosity and radius were obtained using the Hipparcos
parallax (van Leeuwen 2007). We note that a much higher
value of 1.166 ± 0.026 R� has been derived by Boyajian et al.
(2012). Their subsequent modelling leads however to far too
large ages for 18 Sco. Consequently we decided not to take it
into account through averaging (as we did for the effective tem-
perature). Some recent analyses of angular diameters derived
by Casagrande et al. (2014) and White et al. (2018) claim some
possible systematic errors for stars observed by Boyajian et al.
(2012) that are not very well resolved, justifying our decision
not to use the radius measurement. Finally, note that using the
independently-determined, but strongly-correlated observations
effective temperature, radius and luminosity provides consis-
tency check between the existing constraints. It is indeed not
always easy to find a model that reproduce them all, as shown
by the case of α Cen A (Miglio & Montalbán 2005).

For the non-seismic data, we always choose Gaussian
densities. Therefore, the likelihood for these observations is
proportional to

exp

−1
2

nns∑
i=1

(Xi − Si(θ))2)
σ2

i

 , (3)

where i labels the non-seismic observations and nns is their
number.

2.2.2. A reassessment of the seismic data

The frequencies provided in Table 3 of Bazot et al. (2012) could
potentially be used to derive seismic indicators such as the small
separations (see below). However, one needs to clearly under-
stand what these estimates mean. In order to do so, one must go
back to the output of the Markov chain Monte Carlo (MCMC)
simulation that was used to estimate the oscillation frequencies
of 18 Sco. A thorough examination indicates that the marginal
posterior density functions (PDFs) for the νn,l are extremely
complex, mostly reflecting the noisy nature of the data and the
difficult spectral window induced by the ground-based observa-
tions. Typical examples of such distributions are shown in Fig. 1.
Therefore, even though the estimates given in Bazot et al. (2012)
provide quantitative assessments on the oscillation frequencies,
they are difficult to use in statistical models as such, that is to
provide a likelihood for asteroseismic diagnostic. They are sta-
tistical summaries that only very partially capture the shape of
their underlying parent distribution.

We chose not to derive the seismic indicators based on
the estimates of the individual frequencies given in Bazot et al.
(2012). This is motivated on one hand by the potential difficulty
there is when facing likelihoods with multiple modes2, such as
shown in Fig. 1. These could lead to many degeneracies in the
solution to the estimation problem. On the other hand, dealing
with individual frequencies demands to take into account sur-
face effects (see e.g. Kjeldsen et al. 2008). As a general rule, this
could be problematic for any given star (Bazot et al. 2013).

A much more robust approach consists in analysing directly
the posterior probability density of these seismic indicators
themselves. This is extremely straightforward since one simply
has to combine the MCMC samples for the individual fre-
quencies to obtain the sample of a frequency separation
or ratio. For instance, the two samples {ν(1)

n,l , . . . , ν
(N)
n,l } ∼

π(νn,l|y) (where y stands for the observed time series) and
{ν(1)

n−1,l+2, . . . , ν
(N)
n−1,l+2} ∼ π(νn−1,l+2|y) allow us to obtain the

sample {ν(1)
n,l − ν(1)

n−1,l+2, . . . , ν
(N)
n,l − ν(1)

n−1,l+2} ∼ π(δνn,l|y). Here

2 Not to be mistaken with an oscillation eigenmode, obtained from the
pulsation equation. Here a mode is used in its statistical sense, i.e. the
local maximum of a probability density.
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Fig. 2. PDF for the small separation δν0,19. The black lines represent the
histogram estimation, the red line the kernel-density estimation and the
green one the result of mixture model fitting.

we used the definition δνn,l = νn,l − δνn−1,l+2 for the small
separation. These were chosen because they are mostly sen-
sitive to the innermost regions of the star (Tassoul 1980;
Roxburgh & Vorontsov 1994).

It turns out that these samples are much easier to study than
those of individual frequencies. An example of such a situation is
shown in Fig. 2. A comparison with Fig. 1 shows that most of the
multiple maxima found in the marginal PDFs for ν19,0 and ν18,2
are not found in the corresponding PDF for δν19,0 = ν19,0 − ν18,2.
This is easy to understand if one considers that from one iteration
of the MCMC algorithm to the other the value of these frequen-
cies might vary greatly. However, their average small separation
will have to remain centred around the same value in order to
reproduce the seismic data.

This first step considerably simplifies our analysis. We also
stress that any subsequent study of 18 Sco using the HARPS data
should adopt this approach. However, our marginal PDFs for the
small separations remain complicated. We noticed that some of
them depart from normal densities. In most cases, they display
important asymmetries and, sometimes, multiple modes. A very
interesting approach in order to manipulate these distributions
is to model them as mixtures of normal distributions (see e.g.
Frühwirth-Schnatter 2006). Formally if we consider a random
vector Z with density pZ , we can model the latter as follows

pZ(Z) =

M∑
j=1

P jN(µ j,Σ j), (4)

with N(µ|,Σ|) a multivariate normal distribution with mean µ j,
a vector of size N = dim(Z), and covariance matrix Σ j, of size
N × N, and subject to the constraints

M∑
j=1

P j = 1 and P j ≥ 0. (5)

Equation (4) gives a Gaussian mixture model for a vector.
Ideally, this is how one would treat any seismic indicator used to
constrain a stellar model. For instance, when dealing with the so-
called frequency ratios r01 or r10 (Roxburgh & Vorontsov 2003)

one has to take into account that any values evaluated for order
n1 and n2, such that n1 , n2, are correlated through the frequen-
cies that enter their computations (see e.g. Silva Aguirre et al.
2013). This is not true, however, of the individual small sepa-
rations which are uncorrelated for different values of the cou-
ple (n, l). Lets call Xsis that vector that regroups all the seis-
mic indicators we wish to reproduce. In the case its com-
ponents are only small separations, we can model each one
with a separate Gaussian mixture model. This is a very conve-
nient simplification. Indeed, a popular approach to estimate the
parameters of a mixture model is the expectation-minimisation
(EM) algorithm. As it turns out estimating the parameters of
a Gaussian mixture model of the form (4) using an EM algo-
rithm becomes increasingly difficult when the dimension of the
problem increases. Using small separation allows us to bypass
this technical difficulty. We could then use a separate Gaus-
sian mixture model to model each individual small-separation
likelihood

π(δνn,l|θ) =

M∑
j=1

P jN( µ j, σ
2
j ). (6)

If we map (bijectively) the (n, l) couples for which we have
measured a small separation onto a single index i then the seis-
mic data vector can be written Xsis = (δν1, . . . , δνi, . . . , δνN).
Here, N is the number of observed small separations. The corre-
sponding likelihood is then

π(Xsis|θ) =

N∏
i=1

 Mi∑
j=1

P j,iN( µ j,i, σ
2
j,i)

 . (7)

The parameters of the Gaussian mixtures were estimated sep-
arately, for a given i, following the simple version of the EM
algorithm given in Bishop (1995). In Table A.1 we give the
main characteristics of the mixture model we used to describe
the small separations.

A mixture model has the advantage, in the framework of
MCMC sampling, of being easy to compute, since it has a simple
analytic form. However, a word of caution is in order concern-
ing the current implementation of this methodology in our anal-
ysis. One should note that we are using a rudimentary approach
to mixture model fitting. In particular, we evaluate, by visual
inspection, the number M of normal distributions to be included
in the sum on the right-hand side of Eq. (4).

2.2.3. ASTEC

Our model for the evolution and oscillations of the stellar struc-
ture, S, is composed of the Aarhus STellar Evolution Code
(ASTEC) and adipls. Both have been extensively described in
the literature (Christensen-Dalsgaard 1982, 2008a,b). Here we
simply state the main settings we adopted.

We assumed a non-rotating, non-magnetic star. The opac-
ities and equation-of-state tables in which we interpo-
late are taken from the OPAL collaboration, respectively
from Iglesias & Rogers (1996) and Rogers & Nayfonov (2002).
Nuclear reaction rates were taken from Angulo et al. (1999) with
the additional inclusion of the values obtained by the LUNA col-
laboration for the 14N(p,γ)15O reaction (Formicola et al. 2004).
Diffusion was included for He and heavy elements. These lat-
ter are treated as a block. It is fine to do so with ASTEC as
long as we do not try to model stars with convective cores
(Christensen-Dalsgaard 2008a).
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Many parameters can be tuned in ASTEC. We only let a
small subset vary, namely the mass, M, the age, t?, the ini-
tial metallicity and hydrogen mass fraction, Z0 and X0. We also
have the mixing-length parameter α as a free parameter. The
latter is the proportionality coefficient between the mean-free
path of a fluid element, in the mixing-length picture as described
by Böhm-Vitense (1958), and the pressure scale height. There-
fore, S is a mapping from a subspace of the parameter space
to the observation space in which the vectors are respectively
θ = (M, t?, X0,Z0, α) and X = (Teff, L,Z/X,R, {νn,l}).

2.3. Bayesian estimation

2.3.1. Bayesian statistical model

Bayesian density estimation is one of the two strategies we adopt
to obtain values for the parameters of 18 Sco. To that effect, we
shall supplement our parametric statistical model with a prior
density for the parameters as per Bayes’ formula

π(θ|X) ∝ π(θ)π(X|θ). (8)

Here π(X|θ) is the likelihood, which is in our case computed
as the product of Eqs. (3) and (7). π(θ|X) is the Posterior Den-
sity Function of the parameters conditional on the data, X, and
π(θ) is the aforementioned prior density. The former is the object
we are ultimately interested in, since its knowledge allows us to
use the tools of statistics to provide estimates of the parameters.
The latter is the fundamental feature on which Bayesian statis-
tics rely and thanks to which one can, in practice, switch from
the observations to the parameters being the random quantities
in the problem.

The prior density encodes the information we possess on the
parameter before carrying over the estimation. Its use has been
the subject of many discussions and debates for many decades.
These are far outside the scope of this paper. For the present
study, suffice to say that one always needs to specify carefully
the prior density considered. Indeed, its formulation will con-
dition the final outcome of the estimation process. As general
rule, using two different priors π1(θ) and π2(θ) in (8) shall ulti-
mately result in different a posteriori estimates θ̂1 and θ̂2. That
being said this does not mean that Bayesian Statistics are more
“subjective” than a frequentist method. They simply provide a
way to formalise assumptions one may have on the outcome
of the estimation process, for instance forbidden regions in the
parameter space or previous independent measurement on some
of the parameters. In stellar physics a typical example are stellar
mass estimates for members of close binaries (see for instance
Bazot et al. 2016).

The prior information on the stellar parameters is sparse. In
this study we only used uniform densities, their properties are
given in Table 2. The only parameter for which reliable prior
measurements exist is the mass. A previous study by Bazot et al.
(2012) gives an estimate of the mass, namely 1.02 ± 0.03 M�.
This was obtained by combining density and radius estimates
through homology relations. Therefore, this estimate is based on
the same data we are using here and a much cruder physical
model than ASTEC. For these reasons we decided not to use it
as a prior, but simply compare it to the results inferred from the
PDF.

Regarding the other stellar parameters, only two of them
have clear cut upper limits. The age of 18 Sco ought to be smaller
than ∼13 Gyr, the age of the Universe3. For X0 helium measure-
3 A more precise value is provided by WMAP: 13.772 ± 0.059 Gyr
(Planck Collaboration XIII 2016). Such a level of precision is not

Table 2. Lower and upper bounds used for the prior uniform densities
for each stellar parameter.

Parameter Lower bound Upper bound

M (M�) 0.7 1.25
t? (Gyr) 1 13
Z0 0.010 0.027
X0 0.525 0.750
α 1.0 3.5

ments have shown that the earliest galaxies have an helium mass
fraction ≤0.25 (Olive & Skillman 2004; Aver et al. 2013). If we
neglect the metal abundance in these very old galaxies at the
epoch of their formation, we can set an upper bound on the ini-
tial hydrogen mass fraction, X0 = 0.75.

The other parameters are less-well constrained. In practice,
upper and lower bounds can be obtained using test runs of our
MCMC algorithm (see Sect. 2.3.2 below). After analysing their
outcome, we can redefine the domain of definition of our prior
by excluding regions of the space of parameters in which we
are confident that models will not be accepted by the algorithm.
This empirical procedure using MCMC test runs was used to set
the priors for Z0 and α. The resulting domains are sometimes
very large with respect to the region in which the marginal PDF
significantly differs from zero. This is largely due to the fact that
if a parameter is only allowed to vary over a narrow region, then
the approximate PDF could be artificially increased close to the
boundaries. This is due to the MCMC algorithm trying to go past
the upper or lower limits and thus getting “swamped” near the
boundaries. Therefore, only sound physical arguments, such as
the ones given for the upper bounds for t? and X0, shall motivate
strong restrictions in the space of parameters, and we chose to
err on the safe side for the numerical setup.

One may wish to include an Y0−Z0 relation in the prior.
These have been observed previously. Some studies have shown,
for instance, that there exists a linear relation between galac-
tic abundances of helium and metals (Izotov & Thuan 2004;
Fukugita & Kawasaki 2006; Balser 2006; Casagrande et al.
2007), and hence between X0 and Z0. Such relations have been
used previously for stellar modelling (see e.g. Deal et al. 2017).
However, we do not wish to incorporate a priori correlations
between the parameters but would rather study them a posteriori.
Thus we retain independent uniform priors for both Z0 and X0.

Finally, the case of α is a difficult one. The current formula-
tion of the mixing length is somewhat heuristic, adopted in order
to provide a convective flux in one-dimensional models. Numer-
ical simulations far more precise than the one used here exist
and have shown the mixing-length parameter to remain fairly
constant across the HR diagram, at least for solar analogues
(Trampedach et al. 2014). So far, these simulations have not
been used directly to fit stellar observations. Some hybrid one-
dimensional stellar codes that interpolate in the tables obtained
from three-dimensional simulations have developed in order to
obtain solutions in the upper stellar layers, and in particular
the superadiabatic layers (Sonoi et al. 2015; Ball et al. 2016;
Houdek et al. 2017; Jørgensen et al. 2017). These were mostly
developed to account for surface effects on oscillation frequen-
cies but could be of great interest to simply provide a more robust
formulation of surface convection. Nevertheless, we do not have

required here. In all the samples from our MCMC simulations, the
model with the largest age is about 12.6 Gyr.
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such a code implemented together with an MCMC interface.
Moreover, the testing required to ensure good performance of
a stellar code interpolating in a grid of three-dimensional atmo-
sphere in the context of Bayesian estimation is outside the scope
of this study. This implies that we have to let the mixing-length
parameter vary significantly, since there does not exist a phys-
ically sound reason to limit it (Gough et al. 1977). Likewise, it
would be poor practice to set the bounds of a uniform prior based
on other numerical simulations. Thus we set the upper and lower
bounds of α using the aforementioned empirical approach.

We finally assume that, besides X0 and Z0, all the parameters
in the priors are uncorrelated, that is

π(θ) = π(M)π(t?)π(α)π(Z0)π(X0)π(αov). (9)

2.3.2. Sampling method

Recovering the posterior density function π(θ|X) is the main
technical issue of the estimation process. There is no closed-
form solution to this inverse problem that gives θ as a function
of X. We note that our use of the term “inverse problem” dif-
fers here from the more restricted scope encountered in solar
physics (see e.g. Christensen-Dalsgaard 2002). We consider a
much broader meaning as can be found for instance in Tarantola
(2004) or Gregory (2005).

Numerical methods are thus in order and in this paper we
adopted an MCMC algorithm to carry out the estimation. The
details of the method are given in Appendix A.1. Their viabil-
ity in the framework of stellar modelling has been discussed by
Bazot et al. (2008, 2012, 2016). It has already been emphasised
in these studies that fine tuning of an MCMC algorithm for stel-
lar parameter estimation might turn out to be a subtle matter.
These papers dealt with α Cen A, which is a component of a
binary system. As such, we have a strong prior on its mass, which
greatly facilitates the sampling, restraining significantly the rel-
evant space of parameters.

2.4. Local optimisation

It is important to compare the resulting parameters and their
uncertainties using classical local optimisation methods with
a Bayesian one. The former are used widely in the literature
and the shortcomings of such approaches need to be quantified
and understood, and in particular, the (under-)determination of
proper uncertainties.

Using the exact same code set-up as described in Sect. 2.2.3,
we also used the Powell algorithm to find local solutions. This
algorithm has the advantage that it can minimise any function
where the uncertainties on the data are not necessarily described
by simple Gaussian distributions. Using the baseline dataset X =
(Teff, L, [Fe/H],R, {δν}n,l) (Sect. 2.2) we proceeded to find local
solutions by optimising the likelihood that appears in Eq. (8).
The one difference between the two parameter sets θ is the use
of the initial helium abundance Y0 instead of the initial hydrogen
abundance X0 in the optimisation. As X0 + Y0 + Z0 = 1 this has
no influence on the result.

Unlike the Bayesian approach, a local method suffers badly
from correlations in parameters, that is it will find a solution
close to the initial parameters if two of the free parameters are
degenerate, whereas the Bayesian method will correctly extract
all of these parameter correlations and additionally provide a bet-
ter framework for interpreting the results.

Due to this local problem, we chose to work in a reduced 3-d
parameter space to optimise M, t0,Z0 while fixing X0, α. Such an

approach is typical and necessary (Miglio & Montalbán 2005;
Creevey et al. 2007, 2012; Stello et al. 2009; Dogan et al. 2013;
Lebreton & Goupil 2014). The optimisations were repeated
using many initial guesses of the parameters as well as using
different combinations of the latter.

The estimation of our uncertainties is based on 1. generat-
ing a small grid around the optimal parameters, 2. perturbing
the observations by their uncertainties and 3. finding the model
from the grid that matches best to the perturbed observations.
These simulations were repeated 10 000 times, and we used the
resulting distributions of 1D parameters to describe their mean
parameter and symmetric uncertainty.

3. Results and discussion

3.1. MCMC results

In Appendix A.1, we show that our MCMC simulations have
converged to an acceptable level. We can thus merge the
results from the independent chains we ran and obtain a pos-
terior density for θ. The baseline case we analyse is for X =
(Teff, L, [Fe/H],R, {δν}n,l) and the uniform prior on the mass as
explained in Sect. 2.3.1. In Table 3 we show the estimates for
the individual stellar parameters based on the corresponding
marginal densities. We also display the 68.3% credible intervals
intervals on the parameters. In the following, whenever a den-
sity is Gaussian the 68.3% credible interval will be given using
the symbol “±”. In this case, the 68.3% credible interval then
coincides with the 1σ credible interval. Otherwise, the inter-
vals are summed up as asymmetric error bars. These are defined
as the smallest intervals containing the Maximum A Posteriori
(MAP) and for which the posterior density integrates to 0.683
(see Bazot et al. 2016, and references therein).

It can be noted immediately that the mass estimate is in very
good agreement with the one given in Bazot et al. (2011). This
is particularly interesting since, as already noted, these have not
been obtained using the same assumptions for the stellar model.
Of course, without a proper modelling of the star, one cannot
make statements on the other parameters. Nevertheless, it is a
nice a posteriori confirmation for homology techniques (Gough
1990).

The two- and one-dimensional densities are shown in Fig. 3.
Another notable feature in Fig. 3 is seen in the side panels repre-
senting the one-dimensional marginal densities. These appear to
be far from Gaussian. In particular the one for the age is multi-
modal. Consequently, establishing the statistical summaries such
as those given in Table 3 demands some care. For unimodal dis-
tributions, we report the MAP estimate. The uncertainties are
given as the smallest interval containing the MAP estimates for
which the parameters have a 68.3% probability to lie in. We
define the level of precision as the estimated as the ratio of the
length of the 68.3% credible interval to the MAP estimate. This
is a global estimate that does not account for any asymmetry in
the density. For our baseline case, we obtained levels of preci-
sion of the order 6% on the mass, 6% and 9% on X0 and Z0, and
35% on α. The precision on the age is discussed below in greater
details.

Examining the correlation coefficients for each pair of
parameters shows that they all correlate to some degree. How-
ever, we can identify two groups that display significant correla-
tions. As a rule of thumb, we consider as significant a correlation
for which the Pearson’s correlation coefficient (Pearson 1895)
is &0.7. First, the mass correlates strongly with X0. Second, t?,
α, X0 and Z0 are all tightly correlated. The correlation between
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Table 3. Estimates of the stellar parameters of 18 Sco for X = (Teff, L, [Fe/H],R, {δν}n,l).

Mass prior M/M� t? (Gyr) X0 Z0 α

Mean σ Weight

Uniform 1.03+0.03
−0.03

3.05 0.86 0.18

0.716+0.020
−0.024 0.0220+0.0011

−0.0010 2.29+0.54
−0.26

4.75 0.69 0.36
6.92 0.61 0.30
8.87 0.88 0.16

Notes. The first column gives the prior we used. Columns 2–6: mass, age, initial hydrogen mass fraction and metallicity and mixing-length
parameter. The estimates for all but the age are the Maximum A Posteriori (see text) with the associated 68% credible interval. The age was
modelled with a Gaussian Mixture model and we give the mean, standard deviation and weight of each component.
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Fig. 3. Two- and one-dimensional marginal densities for the stellar
parameters of 18 Sco for X = (Teff, L, [Fe/H],R, {δν}n,l), with the uni-
form prior on the mass given in Sect. 2.3.1. The red shades in the central
panels represent the two-dimensional marginal densities (normalised).
The side panels represent the one-dimensional ones.

the mass and X0 can be explained by the adverse effects these
two parameters have on the luminosity on the zero-age main
sequence, LZAMS. Mass-luminosity relations obtained from sim-
ple homology considerations (see e.g. Clayton 1968) establish
clearly that an increase of M induces an increase of LZAMS. Con-
versely, the dependence of opacity on X0, often assumed being
a power law, implies that an increase in hydrogen-mass frac-
tion corresponds to a luminosity decrease. In Fig. 4, we display
the posterior joint density for the couple (M, X0). Overplotted
are lines of constant luminosity on the ZAMS and the slope
obtained using Pearson’s correlation coefficient. For this lat-
ter we retain its classical interpretation as the geometric aver-
age of the two regression slopes of M by X0 and X0 by M
(Rodgers & Nicewander 1988). We see that all of these have the
same direction. For that reason, we can associate the correla-
tion between these two variables to be caused solely by the need
to balance their effects on the initial luminosity. Since the mass
does not correlate strongly with the other parameters, we can
assume that once LZAMS is determined through the values of Z0,
α and X0, then a value of M is imposed.

The correlation between X0 and Z0 is intuitive and corre-
sponds to setting the initial metal-to-hydrogen ratio so that the
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Fig. 4. Marginal joint probability density for (M, X0) (magnified from
Fig. 3). The full lines mark locii of constant ZAMS luminosity. The
dashed line shows the slope as obtained by Pearson’s correlation coeffi-
cient.

evolved star can reproduce the observed value of [Fe/H]. On a
side note, we can notice that the behaviour of these two parame-
ters is opposite to what is seen in Bazot et al. (2016) in the case
of α Cen A. This is due to the fact that there exists a strong prior
on the mass for this latter star. Therefore, it is not possible to set
an adequate initial luminosity by varying M and X0 and this is
instead achieved through relative adjustments of X0 and Z0. This
shows how complex can be the dependence of the final posterior
estimates on the precise functional form of the statistical model.

The correlations of α with Z0 and X0 can be partly explained
by considering the effects of varying the mixing-length parame-
ter. This affects mostly two characteristics of a stellar model: the
depth of its convective zone and its effective temperature (and
consequently its radius). The correlation between α and Z0 thus
sets the initial metal density in the convective zone, that is the
ratio of Z0 to the size of the convective zone. This is an impor-
tant quantity because, together with the initial Z0/X0 it char-
acterises the amount of metals that diffusive process ought to
deplete the external convective zone in order to reproduce the
observations. The correlation between α and X0 is partly gov-
erned by the initial effective temperature. Because in the frame-
work of the mixing-length theory an increase of α decreases the
temperature gradient, then, all other things remaining equal, it
will increase Teff. Decreases of Teff induced from increases of
X0 can be deduced from homology relations which predict that
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the effective temperature is proportional to some power of the
molecular weight. However, the initial effective temperature is
not as strongly linked to the (α, X0) correlation as is the ZAMS
luminosity to the (M, X0). This indicates that other parameters,
such as Z0, have an influence on the initial Teff. Such intricate
interplay are difficult to disentangle.

The same can be said for the correlation between the stellar
age and α, Z0 and X0. The age of the star is mostly controlled by
the need to reproduce the internal layers of 18 Sco and thus its
seismic characteristics. In that sense, it is the tight constraints on
the age that imply the aforementioned correlations for the other
parameters, as shall be discussed below. On that point suffice to
say that Fig. 3 shows that the age of the star increases with α, Z0
and X0. The two first correlations are diffusion effects. Indeed,
reaching the required amount of metal takes longer when Z0
increases and diffusion becomes slower when, everything other-
wise equal, the depth of the convective envelope becomes larger.
The correlation with X0 is related to the energetics of the star
since the ZAMS luminosity is on average lower and that more
time is necessary to reach the observed luminosity.

The case of the age demands a more careful discussion. It has
been established that its marginal density is bimodal. To account
for this we used a Gaussian Mixture Model. We found that a
reasonable agreement is obtained for four Gaussian components
(this allows to accommodate reasonably well for the bimodal-
ity but also for clear asymmetries in the densities). One mode
peaks at 4.46 Gyr and the other at 6.71 Gyr. We can describe
both modes satisfactorily using two of the components given in
Table 3. The peak at 4.46 Gyr is well-described with the two
modes with the smallest means and the one at 6.71 Gyr by the
other two. Taking this into account, the weights of the lower-
and upper-age modes are respectively 0.54 and 0.46. Therefore,
one cannot conclude clearly on whether one of these two solu-
tions is more likely than the other. Coming back to the problem
of estimating credible intervals, one can separate the two peaks
using the results of the Gaussian Mixture model fitting. In that
case, it is necessary to renormalise the weights obtained, since
only two components are used for each mode. Using such a pro-
cedure, we obtain as a MAP estimate 4.67+0.87

−1.29 Gyr. Likewise, for
the upper-age mode, we derive a credible interval 6.95+1.81

−0.89 Gyr.
The relative precisions are 46% for the former mode and 39%
for the latter. We note that if we estimate the age in the sense of
the Posterior Mean, then the two solutions are even further apart
(4.18 ± 1.10 Gyr and 7.60 ± 1.17 Gyr).

From what preceded, it seems obvious that the bimodality
observed in the age marginal density of our main result stems
from the very nature of the seismic data we used. If we look
at the joint probability of the age and the theoretical individ-
ual small separations (not displayed here), we indeed see that
they are strongly (anti-)correlated. In order to understand how
the small-separation measurements affect the age, we need to
examine the adequacy between the theoretical and observational
density of the individual small separations. In short, we want to
assess whether or not we could reproduce the seismic data.

Looking at these densities, one sees immediately that it is
difficult to model them properly. Two examples are shown in
Fig. 5. The MCMC-simulated densities always show a bimodal-
ity that maps the age bimodality. In order to get a feeling of the
closeness between the observed and theoretical densities, we can
compute the Kullback–Leibler distance, which is defined as the
distance between two probability densities p and q

DKL(p, q) =

∫ +∞

−∞

p(x) log
(

p(x)
q(x)

)
dx. (10)

The theoretical densities shown in Fig. 5 are those with the
smallest (l = 0, n = 15) and largest (l = 0, n = 19) DKL. None
of these reproduce perfectly the observed ones. However, for the
case l = 0, n = 15 the absolute distance between the mean is
0.34 and the variance ratio is 2.08. Those values are 1.36 and
0.02 for the l = 0, n = 19 small separation. This indicates that
the model reproduces much better the former than the latter.

It is in fact those small separations with the highest DKL that
cause the bimodality of the age density. We sketch an explana-
tion in Fig. 6. In there we plot the small separations obtained for
the best models found in the MCMC sample for t? > 5 Gyr (full
line) and t? < 5 Gyr (dashed line). For the sake of readability,
we did not represent the full distribution of the small separa-
tions. Each corresponds to a different peak in the bimodal age
density. We also plot the observational means and variance to
provide an idea of the agreement between these local best mod-
els and the observed densities of the small separations. We see
there that only five observed small separations are compatible
with both models. Of the 13 remaining small separations, two
are far closer to the older model, in particular δν19,0, which is
likely to control the old-age solution. The other ones, are mostly
compatible with the lower-age solution, even though they have
larger variances than the distribution of δν19,0 and thus only par-
tially compensate the impact of this latter.

From this discussion, we can conclude that the main source
of error in our result does not come from the modelling of
the observational errors. Rather, it is the data themselves that
impose limitations on our analysis, either because of their intrin-
sic properties, that is the noise, or because their modelling in
Bazot et al. (2012) was not accurate enough. The density of the
small separations as we could derive them from MCMC samples
in Sect. 2.2.2 suggests larger variations with the mode order (or
the frequency) than what the stellar models can accommodate.
Therefore, using only the data at hand cannot allow us to make
a choice on which solution for the stellar age is the preferred.
Either new data or a re-analysis of the existing time series with
more adequate techniques is needed to go further.

3.2. Effect of observational constraints

In order to test the effect of the observations as constraints, we
also ran three MCMC simulations with different observation
vectors: X = (Teff, L, [Fe/H], {δν}n,l), X = (Teff, L, [Fe/H],R),
X = (Teff, L, [Fe/H]). The resulting estimates of the param-
eters are given in Table 4. In Fig. 7 we show the two- and
one-dimensional marginal densities of the stellar parameters
for the case X = (Teff, L, [Fe/H], {δν}n,l). In Fig. 8 we display
the same graphs for the two cases in which the seismic data
were not included. We did not split up the spectro-photometric
data since we considered that without these basic observations
together, it is not possible to get any useful estimate of the stellar
parameters. As discussed below, this assumption seems justified
a posteriori.

The case X = (Teff, L, [Fe/H], {δν}n,l) shows the effect of
adding a radius measurement to the basic spectro-photometric
data. We first note that the bimodal structure of the age den-
sity is preserved. Second, we see a significant decrease of the
precision on the mass, which now drops to 15%. This a conse-
quence of the loss of information on the average density of the
star (Creevey et al. 2007; Bazot et al. 2011). Given the existing
correlation between M and X0, it is unsurprising that precision
also decreases for this latter parameter, down to 12%. However,
the decrease in precision is not as large as it is for the stellar
mass. An explanation is that the lack of constraint on the final
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Fig. 5. Examples of observed (full lines) and posterior (dashed lines) probability densities for the small separations δν15,0 (left panel) and δν19,0
(right panel).
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Fig. 6. Observed and estimated small separations. The dashed lines
show the small separations of the best model with t? < 5 Gyr. The full
lines show the small separations of the best model with t? > 5 Gyr. The
red dots show the mean of the observed small separations and their stan-
dard deviations. The full dots mark small separations with l = 0 and the
open dots those with l = 1.

average stellar density allows for correlation between the mass
and other stellar quantities besides X0. We indeed see in Fig. 7
that it now correlates marginally with t?, α and Z0. The corre-
lation with the age is a well-known trend in stellar physics. On
isochrones, luminosity and effective temperature increase with
the stellar mass. Therefore, to reproduce a similar data set with
a larger mass, one needs to decrease the age. In retrospect this
behaviour sheds light on the very small correlation seen between
M and t? seen in Sect. 3.1. It indicates that, in the regime defined
by the observations of 18 Sco, the age–mass relation is not as
steep as the mass-X0 relation and that the effects of the former
can only be seen when M is allowed to vary on wider ranges.
The correlations with α and Z0 reflects, as above, the need to
set up the ZAMS model adequately, only this time with one
more degree of freedom. Rather than being fixed by balancing

M and X0, the initial luminosity is now the result of an inter-
play between M, α, X0 and Z0. Consequently, we do not observe
such a good alignment between lines of constant LZAMS and the
geometric average of the regression lines in the (M, X0) plane as
seen in Fig. 4 for the case including the radius measurement.

The precisions on α and Z0 do not change, even though the
MAP estimates do. This stresses that the radius does not pro-
vide such an important constraint on these parameters. It was
already noticed by Creevey et al. (2007) that understanding the
relation between the error on the radius and the uncertainty on
α is difficult and depends on the details of the model. In the
case of 18 Sco, this relative independence can be understood
by the fact that the critical quantity upon which α and Z0 act is
not the radius, but the density of metals in the convective zone.
This is not constrained by the radius but rather by the surface
[Fe/H] ratio. Looking at the results for X = (Teff, L, [Fe/H],R)
and X = (Teff, L, [Fe/H]) in Fig. 8 seems to confirm this. First
we see that the age distribution does not display any signifi-
cant bimodality. The loss of precision on the age compared with
cases that include seismic data is very significant. If the radius
is included precision is of the order 96%, otherwise it is of the
order of 118%. This implies a small loss of precision in α, but
not of the same magnitude. There is, however, almost no loss of
precision in Z0 and X0. In Fig. 8, the two-dimensional marginal
PDF that preserves a structure relatively similar to those seen
in Figs. 3 and 7 is the one for (α,Z0). This sheds light on the
the role of the very precise measurement of [Fe/H] that exists
for 18 Sco. This true regardless of whether or not the radius has
been included as a constraint.

3.3. Comparison with local optimization

After presenting the results from the Bayesian approach, we
aim to compare the resulting model parameters with those
obtained from local optimisation and attempt to quantify the
differences in the uncertainties using the two approaches. Opti-
mal models and uncertainties from the local method are given in
Table 5. These have been obtained for the baseline case with
X = (Teff, L,Z/X,R, {νn,l}). As can be noted the uncertainties
are much smaller compared to those presented in Table 3, being
based on fixing X0 and α. In all cases, the optimal parameters
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Table 4. Estimates of the stellar parameters of 18 Sco for different observational vectors X.

X M/M� t? (Gyr) X0 Z0 α

Teff, L, [Fe/H] 1.01+0.07
−0.10 5.64+3.32

−3.33 0.714+0.032
−0.051 0.0216+0.0011

−0.0015 2.09+0.60
−0.29

Teff, L, [Fe/H],R 1.01+0.06
−0.08 7.18+2.89

−3.97 0.713+0.030
−0.048 0.0222+0.0009

−0.0019 2.31+0.47
−0.52

Mean σ Weight

Teff, L, [Fe/H], {δν}n,l 1.02+0.06
−0.09

2.57 0.87 0.21

0.697+0.045
−0.039 0.0213+0.0010

−0.0011 2.17+0.37
−0.35

4.41 0.71 0.38
6.59 0.74 0.28
8.43 1.06 0.13

Notes. The format is similar to Table 3.
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Fig. 7. Same as Fig. 3 but with X = (Teff, L, [Fe/H], [δν]n,l).

are in good agreement with the marginal distributions obtained
from the MCMC simulations. Comparing these values directly
with Fig. 3, we can see that by restricting 0.692 < X0 < 0.711
(0.287 > Y0 > 0.268) the local uncertainties that we obtain are
not entirely underestimated. For X0 = 0.692 for example, solu-
tions are found between 1.00 and 1.05 M�, in agreement with
the values of M = 1.041 M�, 1.035 M� and 1.028 M� proposed
in Table 5.

It is interesting to visualise the real discrepancy between
them knowing that our assumptions on the local analysis are
indeed unrealistic. There is no possibility to constrain the values
of α and X0 given the current (and most likely future) observa-
tions used in this work. The upper row in Fig. 9 illustrates the
1D marginal distributions for M, t? and Z0 as inferred from the
Bayesian analysis (black curves), along with the inferred param-
eters and uncertainties from local optimisation. The parameters
and uncertainties from the local analysis are represented by the
red Gaussian distributions for the three solutions provided in
Table 5. We note that in particular, we entirely fail to obtain
a solution in the second age range proposed by the Bayesian
approach.

Some of this discrepancy can be explained by the need to
fix some parameters in the local optimisation procedure. To test
this we restricted the MCMC sample to ranges α ± 0.01 for all
cases. We see in the bottom row of of Fig. 9 the corresponding

distributions for all three values of the mixing-length parameter
given in Table 5. A significant agreement is then reinstated for
the age, although this means that the large-age solution observed
in the original sample has been filtered out by our cut on α.
Likewise, the mass distribution is also much closer to the one
estimated from local optimisation. However, the metallicity den-
sity, whose estimates obtained from the local optimisation and
MCMC strategies looked fairly similar, now becomes much nar-
rower in the former case.

This highlights the difficulty there is to find a proper agree-
ment between the two approaches. It is extremely difficult to
rule out any similarity between the two outcomes as not being
incidental. This is due to the fact that, while the dimension of
the problem increases, it becomes more difficult to keep track
of correlations between parameters This is the so-called curse
of dimensionality. To that issue, MCMC algorithms offer a bet-
ter operational solution, due to their ability to explore stochas-
tically the space of parameters. They could potentially be used
to serve as a benchmark for less-time-consuming local optimisa-
tion strategies.

Of course, this explanation of the discrepancy in terms of
fixed parameters does not account for the difficulty to identify a
second mode in the marginal age PDF using local optimisation.
In this case, optimisation algorithms, which provide, by defini-
tion, point estimates, naturally underperform.

3.4. Other stellar parameter estimates

In Sect. 3.3 we have estimated the stellar parameters using a local
optimisation strategy. The estimates there are in agreement with
all those presented in the previous section. However, the relevant
quantities are not only the point estimates for the parameters but
also the uncertainties one can associate to these values. Those
quoted in Tables 3–5 are consistent for Z0. For the other parame-
ters, they differ much, sometimes close to an order of magnitude.
It is noteworthy that the uncertainties obtained from optimisation
do not vary much when the observation vector X changes. This
indicates that a lot of information is factored in the assumptions
made in Sect. 2.4 for the derivation of the uncertainties and that
this may lead to underestimating them.

We have seen above that it is hard to reproduce perfectly
the seismic data, and that its inclusion leads to a double solu-
tion to the estimation problem. One could extrapolate to a case
in which more accurate seismic data would be available and
expect lower uncertainties on the age, that could come closer
to those of Table 5. Nevertheless, even in that case, a proper
modelling of the uncertainties points towards uncertainties of
the order of ∼1 Gyr, which remains more than twice those found
with optimisation. The convergence results from Appendix A.1
show that the samples generated from the MCMC are reliable,
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Fig. 8. Same as Fig. 3 but with X = (Teff, L, [Fe/H],R) and X = (Teff, L, [Fe/H]) in the left and right panel, respectively.

Table 5. Results from local optimisation for the reference case X =
(Teff, L,Z/X,R, {νn,l}).

M/M� t? (Gyr) Z0 X0 α

1.041 4.09 0.021 0.711 2.24
1.035 3.65 0.021 0.702 2.14
1.028 3.22 0.021 0.692 2.04
0.005 0.40 0.001 – –

Notes. The first three columns give the Maximum Likelihood Estimates
for the M, t? and Z0. The last two columns give the values to which
X0 and α were fixed to perform the optimisation. The last row gives
the estimated uncertainties, expressed as the standard deviation of a
Gaussian distribution.

therefore one should clearly study carefully the details of the
estimation strategy chosen to obtain stellar parameters before
trusting the uncertainties. Contrary to what has been done in
previous so-called “hare-and-hounds” exercises, this compari-
son only focuses on the differences in the methodology used to
obtain the parameters. This means that we have used the exact
same data and code (and code setup), which is not always the
case in other comparison studies (see e.g. Reese et al. 2016).

Comparison with previously derived stellar parameters for
18 Sco is difficult precisely for this reason. It becomes very
hard to disentangle the effect of the estimation strategy, the data
that constrain the model and the precise numerics of the stel-
lar evolution code used. We can point out a few recent esti-
mates given in the literature, limiting ourselves to the age, which
is the parameter the most difficult to assess but that could be
crucial, in particular for studies that focus on Li depletion on
the main sequence (Israelian et al. 2009; Meléndez et al. 2010).
Carlos et al. (2016) give an estimate of 3.8 ± 0.5 Gyr. This was
obtained by comparison with the Yonsei-Yale (Kim et al. 2002)
set of isochrones and using only spectrophotometric constraints.
A notable difference is that log g was considered instead of the
luminosity. The estimates of the atmospheric parameters and
their associated uncertainties also differ slightly. However, it
remains extremely unlikely that these changes could account
for the difference with the uncertainties in the range 3–4 Gyr
obtained with X = (Teff, L, [Fe/H]). At any rate, this should

not allow to obtain uncertainties lower than those obtained
using seismic data. Other recent estimates can be found in
Ramírez et al. (2014) and Spina et al. (2018), they give t? =
3.0+0.3
−0.6 Gyr and t? = 4.2+0.3

−0.5 Gyr respectively. These uncertain-
ties are again much lower, by an order of magnitude, than what
is found using our method. These results were also obtained
using isochrone fitting procedures, together with a Bayesian Sta-
tistical model. Only spectrophotometric parameters were con-
sidered, Spina et al. (2018) using both log g and the luminos-
ity. A likely explanation for such a discrepancy is the difficulty
to sample properly the space of stellar parameters using pre-
computed isochrones (Bazot et al. 2012). Therefore, some mod-
els are not taken into account either due to incomplete sam-
pling or because some stellar parameters have been fixed, thus
reducing the final variance. As a sanity check we notice that
the models from the MCMC simulation reproduce satisfactorily
the probability density of the atmospheric parameters, indicating
that a wide range of stellar ages can indeed account for such a
combination.

Other studies provide ages derived using stellar population
statistics. Some have focused on the so-called chemical-clocking
methods, which are based on the chemical evolution of our
galaxy, that is how much the interstellar medium from which the
star was formed was enriched in Y, Mg and Al. Tucci Maia et al.
(2016) estimate the age to be 3.090 ± 0.391 Gyr based on an
average age–[Y/Mg] relationship. Spina et al. (2018) found age
estimate ranging from 3.2±0.9 Gyr to 4.3±0.5 Gyr depending on
whether they use an age–[Y/Mg] or an age–[Y/Al] relationship
and on the precise nature of their fit. Interestingly, Nissen et al.
(2017) seem to confirm these relationships using the Kepler
LEGACY database (Silva Aguirre et al. 2017).

Finally, some other studies focused on age–activity rela-
tionship to provide an estimate to t? for 18 Sco. Noteworthy
are Mittag et al. (2016) and Lorenzo-Oliveira et al. (2018) which
give respectively 5.1±1.1 Gyr and 4.6±0.9 Gyr. Similarly to the
chemical-clocking estimates, the point estimates for the age are
compatible within their error bars. However, the critical point
is that those error bars differ significantly from the ones found
using direct modelling and the Bayesian Statistics approach cou-
pled to MCMC sampling. This raises the question of under-
standing how average-based estimates are representative of sin-
gle objects. In other words how are these estimates affected by
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systematics. One also needs to understand if the current esti-
mates for the age provided in this paper hint at the need to recal-
ibrate these relations using more realistic uncertainties.

4. Conclusion

In this paper, we obtained estimates of the physical parameters
of the solar twin 18 Sco using existing seismic data. Special care
was taken to describe the asteroseismic diagnostic for the stars.
A Bayesian Statistical model was used to relate the observations
and the stellar parameters and statistical samples were obtained
using an MCMC algorithm. A bimodal solution is obtained for
the age, due to the difficulty to reproduce the seismic data. The
most likely result gives an age that is roughly solar. This also
points out the limitation of the current ground-based seismic
data. This result may thus be used has benchmarks to evaluate

in a near future the improvements made using the forthcoming
TESS data or, potentially, SONG measurements.

Comparison of the resulting uncertainties with those
obtained from local optimisation shows a discrepancy, the
MCMC simulations leading to much larger uncertainties. The
same conclusion applies when comparing these results to previ-
ous estimates in the literature. This motivates a more thorough
investigation of the strategies used to estimate uncertainties on
the physical characteristics, and in particular the age, of other
solar twins.
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Appendix A: MCMC sampling
A.1. Algorithm

For the sake of completeness we describe here the MCMC
algorithm used in this work. In order to explore efficiently
the space of parameters, we combined a Simulated Anneal-
ing (SA; Liang et al. 2010) algorithm with an Adaptive Markov
chain Monte Carlo algorithm with Global Adaptive Scaling
(AMGAS; Andrieu & Thoms 2008, Algorithm 4). The pseudo-
code is given in Algorithm A.1. In there, the quantity q(.|θ(n−1)

m )
is the proposal density used by the MCMC algorithm to obtain
a trial parameter, conditional on the current value of the Markov
chain. Additionally, we ran several Markov chains in parallel.

The SA and AMGAS components of the algorithms are
expected to improve the efficiency of the sampler. The former
will improve convergence to the regions of highest probability
density, even when the initial guess is chosen close to another
local minimum. The latter improves the efficiency of the clas-
sical Metropolis–Hasting algorithm (Metropolis 1953; Hastings
1970) by improving iteratively the proposal density of the algo-
rithm. The adaption of the scaling factor is related to the idea
of of optimal scaling (Rosenthal 2008) and allows to adapt
the scaling factor of the (Gaussian) proposal density so that it
approaches a certain acceptance rate.

The main idea behind running multiple chains is to improve
convergence diagnostics of MCMC algorithm (Gelman & Rubin
1992;Brooks & Gelman1998).Inprinciple,multiplechainsdonot
sample the space of parameters better than one single long chain.
In practice though, in the special case of stellar models, which
take a long time to compute, it is beneficial to construct a sample
fromdifferentchains,providedwecanassesswithsomeconfidence
that these have converged, since we are able to share the computa-
tional load on several processors. This helps the post-processing
analysis of the posterior densities. In particular, the modelling of
densities is improved when the size of the sample increases.

A.2. Convergence assessments

We show here some common convergence diagnostics for a mul-
tiple chain sampler. In Fig. A.1 we show the pooled and within
variance and in Fig. A.2 the pseudo-scale reduction factor first
introduced by Gelman & Rubin (1992). We use the proper cor-
rection for the degrees of freedom given in Brooks & Gelman
(1998). We also show the posterior pooled and within variances.
These three indicators taken together give a decent indication of
convergence. First it appears that the two variances are fairly sta-
bilised in all cases and converge towards each other (the within
variance being lower as is expected). The pseudo-scale reduction
factor is always lower than 1.2 which is a reasonable indicator
for convergence (it is expected to converge to 1 when N → +∞).

These are indicators defined for univariate distributions.
Brooks & Gelman (1998) also provide a convergence diagnos-
tic for multivariate distributions. We also display it in Fig. A.2.
It is an upper bound to the pseudo-scale reduction factor, as an
MCMC algorithm converges slower towards the marginals than
the joint posterior. Nevertheless it still decreases towards 1, giv-
ing another confirmation that our chains have converged towards
the same stationary density.

Finally, we also used the cumulative mean of the sample
of these chains to control the mixing. These indicate that the
algorithm may not be performing optimally. This is further con-
firmed by the fact that the acceptance rates are usually lower than
what is expected. They vary between roughly 3% and 10%. We
attribute this to the strong correlations seen in the PDF.

Table A.1. Mixture models parameters for the small separations.

l n Mean Standard deviation Weight

0 14 12.23 2.86 1.
0 15 10.32 2.49 1.
0 16 10.29 3.09 1.
0 18 9.58 2.90 1.
0 19 7.21 0.25 1.
0 22 10.66 1.01 0.63

13.96 0.89 0.14
9.15 0.64 0.23

0 24 16.11 1.12 0.66
7.76 2.87 0.34

0 25 8.47 3.69 0.30
6.64 1.14 0.70

0 26 20.88 1.98 0.43
17.11 3.08 0.57

1 15 22.64 1.00 0.15
20.87 1.44 0.65
16.46 1.91 0.20

1 16 17.88 0.73 0.72
14.75 2.04 0.05
20.78 0.81 0.23

1 17 17.45 1.52 0.35
17.94 0.57 0.34
17.71 3.31 0.31

1 18 16.13 0.58 1.
1 19 19.11 1.09 0.06

12.19 1.27 0.94
1 20 18.46 2.22 0.24

16.07 0.43 0.76
1 21 16.32 0.76 1.
1 23 16.71 2.72 1.
1 24 15.68 1.55 0.13

9.25 2.02 0.87

Algorithm A.1 Multiple SA-AMGAS algorithm.
m = 1
while m ≤ M do

Generate θ(0)
m ∼ π(.)

t = T
while t ≥ 0 do

Compute π(θ(0)
m )π(X|θ(0)

m )1/2t

n = 1
while 1 ≤ N do

Generate θ∗m ∼ q(.|θ(n−1)
m )

Generate ρ ∼ U([0, 1])

if ρ ≤ max
(

π(θ∗m)π(X|θ∗m)1/2t

π(θ(n−1)
m )π(X|θ(n−1)

m )1/2t , 1
)

then

Set θ(n)
m = θ∗m

else
Set θ(n)

m = θ(n−1)
m

end if
n = n + 1

end while
θ(0)

m = θ(N)
m

t = t − 1
end while
m = m + 1

end while
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Fig. A.1. Pooled (dashed lines) and within (full lines) variances for the
stellar parameters.

0 1000 2000 3000 4000
# Iterations

1.0

1.5 M
1.0

1.5 t?
1.0

1.5

R
,R

p

Z0

1.0

1.5 α
1.0

1.5 X0

Fig. A.2. Pseudo-scale reduction factor (full line) for all stellar param-
eters. The multivariate pseudo-scale reduction factor is shown in each
panel as a black dashed line.
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