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Abstract 16 

Several physicochemical processes occurring within buildings are key drivers of indoor 17 

concentrations of Volatile Organic compounds VOCs. Many models and experimental studies 18 

have been proposed to predict VOCs concentration indoors given these processes. However, 19 

there is a lack of representative data in literature to present gas-surface interaction in order to 20 

validate mathematical models. This work is divided in two parts and aims to develop and 21 

validate a method to perform fast measurements of VOC sorption parameters on the field by 22 

coupling a Field and Laboratory Emission Cell (FLEC) to a Proton Transfer Reaction-Mass 23 

Spectrometer (PTR-MS). In the part 1 of the work, sorption coefficients of aromatic 24 

compounds on a gypsum board and vinyl flooring were investigated at ppb levels to test and 25 

evaluate the proposed methodology. Sorption coefficients in the range of 0.03-1.88 m.h-1 for 26 

ka and 2.04-17.32 h-1 for kd
 were successfully measured within a (0.5-8 hours) for the two 27 

materials. Robustness tests highlight that the determination of sorption coefficients does not 28 

depend on operating conditions. While sorption coefficients for the gypsum board were 29 

measured with a PTR-MS time resolution of 20 seconds, the vinyl flooring material required 30 

measurements at a higher time resolution of 2 seconds due to its lower sorption properties. 31 

Limits of applicability assessed for this method indicate that sets of sorption parameters (ka, 32 

kd) of (0.01 m.h-1; 0.01 h-1) and (0.09 m.h-1; 0.09 h-1) can be measured with an accuracy better 33 

than 10% at time resolutions of 2 and 20 seconds respectively.  34 

Keywords 35 

Field and laboratory emission cell (FLEC), Proton transfer reaction-mass spectrometer (PTR-36 

MS), Sorption, VOCs, Building materials.  37 
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1. Introduction 38 

Volatile organic compounds VOCs are the main pollutants in indoor environment, which 39 

present a strong impact on human health, comfort and productivity [1-3]. Several 40 

physicochemical processes occurring within buildings are key drivers of indoor 41 

concentrations of VOCs [4]. These processes include heterogeneous and gas-phase chemical 42 

reactions, air exchange with outdoor and gas-surface interactions. A good understanding of 43 

these processes is important to develop efficient strategies to reduce human exposure to 44 

indoor air pollution. The available methods developed in literature to study the concentrations 45 

of VOCs indoors, given the above-mentioned processes fall into two categories, modeling 46 

approaches and experimental investigation under well-controlled environments. 47 

Under the first category, several models have been developed to simulate the VOC 48 

emission/sorption by indoor surfaces. As far as the sorption process is concerned, some 49 

models considered the adsorption (ka) and desorption (kd) rates [5-7] while, other accounted 50 

for the diffusion coefficient (Dm) in the building material and represents the sorption with a 51 

partitioning coefficient (K) between the air and the material through a diffusion-controlled 52 

mass transfer model proposed by Little [8]. Later Deng [9] proposed an improved model that 53 

considers for the convective mass transfer coefficient (hm) through the boundary layer present 54 

on the surface of a material as well as the diffusion and the partitioning coefficients. For the 55 

emission process, the diffusion-controlled mass transfer model proposed by Little [8] 56 

promoted the development of the emissions mass transfer model such as the model of Xu [10] 57 

applied for single-layer building material, the model of Lee [11] applied for porous materials 58 

and the model of [12, 13] applied for multilayer building materials. A general model was 59 

developed by Xiong [14] to characterize both emission and sorption process in ventilated and 60 

airtight chambers taking into account the convective mass transfer coefficient, the diffusion 61 

coefficient (Dm) and the partitioning coefficient (K). All these models are presented in the 62 

reviews of Liu [13] and a comparison between some of the typical models is given elsewhere 63 

[15] . Nevertheless, all the mentioned-above models consider only the gas-surface interactions 64 

and neglect the chemical reactions that can take place indoors in both homogenous and 65 

heterogeneous phases. Therefore, some studies [16, 17] proposed indoor air quality models 66 

which accounts for the effect of ventilation, deposition of inorganic species on surfaces, 67 

emission and photochemistry reactions with a consideration for a perfect mixing of the air 68 

inside simulated room. However, these photochemistry models neglects the sink behavior of 69 

surfaces. 70 

Concerning the experimental investigations, only laboratory studies have provided adsorption 71 

(ka) and desorption (kd) rate coefficients for VOCs on surfaces, to describe the role of these 72 

interactions on VOCs indoors concentrations. The experimental procedure is based on the 73 

exposure of sample materials, inside an emission test chamber, to artificially polluted 74 

atmospheres containing several ppm of VOCs [7, 18-20]. The mixing ratios of VOCs used in 75 

these experiments are several orders of magnitude higher than those observed in indoor 76 

environments at ppb levels [21] and are then not representative. These works were conducted 77 

considering either a single organic compound and a single material [7, 18, 22, 23] or mixtures 78 

of VOCs and combinations of materials [5, 24, 25]. To extract the parameters of interest, 79 
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experimental concentration profiles, usually measured by gas chromatography techniques, are 80 

fitted by a relevant model, more or less complex as already presented above, depending on the 81 

processes considered (sorption processes, diffusion into the material, and diffusion through 82 

the boundary layer formed above the material surface) and the type of material (homogenous 83 

or porous media).  . 84 

However, when sorption coefficients derived from chamber experiments was incorporated in 85 

indoor air quality (IAQ) models , a significant differences as high as a factor of 9 [6] was 86 

shown between modeled concentrations and ambient observations made in test houses. This 87 

disagreement may be due to sorption coefficients for real indoor surfaces that are different 88 

than those measured during laboratory experiments [6] because the implementation of a 89 

material in a real environment and its aging due to varying environmental conditions can 90 

affect its sorption properties compared to those observed in laboratory chambers. In addition, 91 

the use of inappropriate models to describe real situations can leads to this disagreement as 92 

already highlighted by Xu [10] . 93 

Given the studies mentioned above, there is actually a need to: 94 

• Develop a model that account for all physical and chemical processes occurring indoors 95 

such as emission, outdoor input, chemical reactivity and also sorption on the surface of 96 

building materials and, 97 

• Validate proposed models using more representative experimental data from real 98 

environment to determine the influence of each process on the VOCs concentration 99 

indoors. 100 

Consequently, a research project called MERMAID (Mesures Expérimentales Représentatives 101 

et Modélisation Air Intérieur Détaillée / Representative Experimental Measurement-Indoor 102 

Air Detailed Model) was designed to address the leaks found in literature as already 103 

mentioned above [26]. The originality of the MERMAID project is the combination between 104 

an experimental approach based on several types of measurements for VOCs, inorganic gases, 105 

particulate matter and reactive species to a modeling approach based on a detailed indoor air 106 

quality model called INCA-Indoor, including the physical and chemical processes. 107 

Concerning the sorption processes, the INCA-indoor  model proposed by Mendez [27] treats 108 

the sorption of VOCs on the surface of building materials through the adsorption (ka) and 109 

desorption (kd) coefficients represented as a function of the mass transfer coefficient (hm) in 110 

the boundary layer. However, the INCA-Indoor model neglects the diffusion or the mass 111 

transfer in the inner of the material since several inputs parameters are needed which is 112 

difficult to determine on the field (effective diffusion coefficients, initial concentration in the 113 

materials...etc) and which also requires computational efforts to solve diffusion equations. 114 

Nevertheless, the emission rate coefficient is taken into account to represent the mass transfer 115 

in the inner of the material. To meet the objective of the MERMAID project, this study aims 116 

to develop a methodology suitable to perform in-situ fast measurements of VOC sorption 117 

coefficients in indoor environments and under real conditions. Derived experimental 118 

parameters will be useful as data inputs to INCA-indoor air quality model. 119 
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This work aims to develop a method to determine in a fast and simple way the sorption 120 

parameters on the surface of a material present in indoor environment. Therefore this work is 121 

divided in three steps: 122 

(1) Develop a new device based on a field and laboratory emission cell (FLEC) coupled to a 123 

proton transfer reaction mass spectrometer (PTRMS); 124 

(2) Validate the proposed methodology during laboratory experiments to assess the feasibility 125 

of fast in-situ measurements and the limitations of the method applicability; and 126 

(3) Compare this method to the traditional emission test chamber method used usually in 127 

literature to perform sorption measurements. 128 

Only the findings of the first two steps are presented in this part of the study and the 129 

comparison with the traditional method is presented in the part 2 which includes a discussion 130 

on the usage of the experimental data in the INCA-Indoor model. Therefore, in this first part 131 

of the work the sorption properties of a mixture of aromatic VOCs at ppb levels were 132 

investigated on an unpainted gypsum board and vinyl flooring presenting contrasting sorption 133 

behavior [18]. These VOCs are considered as ubiquitous compounds in indoor environments 134 

and presents a large fraction of total VOC concentrations [21, 28-30]. Moreover, BTEX were 135 

chosen to test the proposed methodology, because they can be easily purchased in certified 136 

cylinders and are not prone to memory effects on sampling materials.  137 

2. Materials and Methods  138 

2.1. Chemicals 139 

For all the experiments, the BTEX mixture was provided by Air products and contained the 140 

following VOC in the mixing ratio of 2 for benzene, 6 for toluene, 1 for ethyl benzene, 2 for 141 

p-xylene and 1 for o-xylene.  142 

2.2. Test materials 143 

An unpainted 12.5-mm thick gypsum board and a 2.4-mm thick piece of vinyl flooring were 144 

used. Several samples of each material were stored at 4°C for three months before the 145 

experiments to ensure that replicate measurements are performed on samples having the same 146 

aging history. 147 

2.3. Experimental setup 148 

The setup used in this study is based on coupling a FLEC (Chematec) and a high resolution 149 

PTR-MS (PTR-ToFMS, Kore technology) and presented in Figure 1. The FLEC inlet is 150 

connected to two gas generation systems using a three-way valve. The first generation system 151 

is composed of a dry zero air generator (Claind) and a humidificator made of a water bubbler 152 

and mass flow controllers (MKS). This system is used to supply the FLEC with humid clean 153 

air at constant flow rate (200-500 ml.min-1) and stable relative humidity (50±5 % at 23±2°C). 154 

The second generation system is made of a VOC cylinder connected to a dilution system (Gas 155 

Calibration Units - Ionicon Analytik), which is used to dilute the VOC mixture at a constant 156 
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relative humidity of 50%. The FLEC’s outlet is connected to the PTR-MS to quantify VOC 157 

concentrations exiting the cell. An exhaust is left at atmospheric pressure to prevent a pressure 158 

build-up in the FLEC apparatus. 159 

 160 

Figure 1. Experimental setup for measuring adsorption and desorption coefficients of VOCs on 161 

building materials. 162 

The FLEC can be easily handled and fixed on surfaces and the PTR-MS instrument was 163 

designed for easy and safe transportation. In fact, the deployment of PTRMS instruments has 164 

been demonstrated during field campaigns in ambient air [31] and for indoor studies [32]. 165 

This setup exhibits reasonable dimensions to be used during intensive field campaigns for 166 

research purposes in buildings but is not proposed as a tool for quick indoor air diagnostics 167 

due to its high price and high weight. 168 

FLEC. The FLEC® is a portable tool commercialized by CHEMATEC, which can be 169 

exposed on flat and non-porous surfaces to investigate gas-surface interactions. Technical 170 

details have been provided elsewhere [33]. When the cell is exposed on a flat material, it 171 

covers a surface area of 177 cm2, leading to a loading factor of 506 m2.m-3. It has a small 172 

internal volume (35 mL), which allows conducting fast sorption experiments (a few hours) 173 

compared to laboratory emission test chambers of several liters (a few days). 174 

PTR-MS. The PTR-MS was chosen as a fast analytical tool to accurately monitor the 175 

fast variations of VOC concentrations at the sub ppb level [34] with time resolutions in the 176 

range of 2-20 seconds. As shown in the result section, the measurement time resolution is a 177 

critical parameter to correctly describe fast sorption processes taking place at the material 178 

surface inside the FLEC apparatus. The PTR-MS technique has been described in detail 179 

elsewhere [34]. As proposed by De Gouw [34], signals of protonated VOCs are normalized to 180 

H3O
+ and H3O

+(H2O) to correct for a small humidity dependence of the PTR-MS response. 181 
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H3O
+(H2O) is an ionic cluster that is formed when humid samples are analyzed. Detected 182 

VOC signals are then converted to concentrations (µg.m-3) using calibration coefficients 183 

determined experimentally for each targeted species. In the following, ethylbenzene and o/p-184 

xylene are referred as C8-aromatics due to their detection as a sum of isobaric compounds 185 

with the PTR-MS. Calibration coefficients were measured before each experiment using zero 186 

air and a standard mixture of VOCs provided by IONICON. Response factors measured over 187 

a period of 3 months indicate a good stability of the PTR-MS instrument with a relative 188 

standard deviation for each species in the range 9-10%. In addition, the stability of the PTR-189 

MS response over the time of a sorption experiment (only a few hours) is estimated to be 190 

better than 3% from differences observed between subsequent calibrations performed every 2-191 

3 days. VOCs background signals measured using zero air were used to estimate detection 192 

limits (LOD) as three times the standard deviation on the zero measurements. Measured 193 

LODs are less than 3.4, 4.7 and 11 µg m-3 for a time resolution of 20, 10 and 2 seconds 194 

respectively and which is low enough to measure accurately the concentrations used in this 195 

study (See Table 1- [15]).  196 

2.4. Experimental protocols 197 

First of all, a blank experiment is carried out on a Pyrex glass before each sorption experiment 198 

on a tested material and using the same procedure. This experiment, referred as “No sink” in 199 

the following, allows evaluating sorption processes on internal surfaces of the FLEC 200 

apparatus and the Teflon tubing. A sorption experiment involves a 3-step procedure as 201 

described in the following. The FLEC is first exposed on a material and supplied with 202 

humidified zero air. When concentrations reach relatively steady state, the FLEC is supplied 203 

with humid air containing targeted VOCs. This second phase is named “adsorption phase” as 204 

illustrated in Figure 2. During this step, VOCs concentrations increase until an equilibrium is 205 

reached where the concentrations are equal to those registered for the adsorption phase 206 

already performed on the Pyrex glass. Once the VOCs concentrations are stable (Figure 2: 207 

teq), humidified zero air is provided to the cell instead of the VOCs mixture. This third phase 208 

is named “desorption phase”. During this step, VOC concentrations decrease until steady 209 

concentrations similar to those reached in the end of the first phase, are observed (Figure 2). 210 

Standard operating conditions were defined as an air temperature of 23 ± 2°C and a relative 211 

humidity of 50 ± 5 % for all experiments described in this study.  212 

The feasibility of measuring sorption parameters with the FLEC/PTR-MS coupling was first 213 

investigated by repeating the same experiment on a gypsum board and a piece of vinyl 214 

flooring (FLEC inlet flow rate = 400 mL.min-1; PTR-MS time resolution = 20 s). The VOCs 215 

concentrations used for the adsorption phase were closed to 565 µg.m-3 for toluene, 434 µg.m-216 
3 for C8 aromatics, and 160 µg.m-3 for benzene. The VOC steady-state-concentrations 217 

measured before the sorption experiment by exposing the material to humidify zero air, are 218 

negligible and represent less than 3% of Ce. A second set of experiments was carried out on 219 

the gypsum board to test the robustness of this method. It consisted in assessing (1) the 220 

repeatability on 5 different samples (of the same board); (2) the repeatability of 4 tests 221 

performed consecutively on the same sample; (3) the influence of VOCs concentrations 222 
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(threefold variation); and (4) the influence of different inlet flow rates (threefold variation) 223 

keeping VOCs concentrations unchanged. Experimental conditions are listed in Table 1. 224 

Table 1. Experimental conditions used to perform tests of robustness on an unpainted gypsum 225 

board at a PTR-MS time resolution of 20sec. 226 

Test Flow rate 
(mL.min -1) 

Air exchange 
rate 
(h-1) 

Specific flow 
rate per unit of 

surface 
[m3/(h.m2)] 

Concentration (µg.m-3) 

Benzene 
C8 

aromatics 
Toluene 

R 
(n=5) 

 
300 514 1.0 106 289 377 

M 
(n=4) 

300 514 1.4 106 289 377 

F 
(n=3) 

300 400 500 514 686 857 1.0 1.4 1.7 106 289 377 

C 
(n=3) 

400 686 1.4 

479 868 1131 

319 434 565 

106 289 377 
n: number of experiments; R= Repeatability tests performed on different samples of the same board; M= 227 
Multiple successive measurements (replicates on the same sample); F= Inlet flow rate tests performed using 228 
three different air flow and C = Concentrations tests performed using three different concentrations.  229 

3. Theory and data treatment 230 

The data analysis yields values for Cse the mass of VOCs in the sink per unit area of the 231 

material at equilibrium (µg.m-2), ka the adsorption rate constant (m.h-1), kd the desorption rate 232 

constant (h-1) and Ke (ka/kd) the equilibrium constant (m) described in the following.  233 

3.1. Determination of Cs 234 

Based on the experimental procedure described above, the mass of VOCs adsorbed on the 235 

material is in steady state at time teq. The total mass adsorbed or desorbed by a material 236 

corresponds to the area between the sorption curves (FLEC exposed on a material) and the 237 

“no sink” curve (FLEC exposed on pyrex), for the adsorption and the desorption phases 238 

respectively (Figure 2). 239 

Equations (1) and (2) were used to calculate the absorbed and the desorbed mass of VOC 240 

respectively. 241 

dt
A

FC
C

eqt

t

g
se ∫

×
=

0

         ( 1 )242 

dt
A

FC
C

f

eq

t

t

g
se ∫

×
=          ( 2 ) 243 

where, F is the flow rate at the FLEC’s inlet (m3.h-1), A the surface area of the material 244 

covered by the cell (177×10-4 m2), and t the exposure time to the VOCs mixture (h). 245 

3.2. Determination of ka and kd 246 
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The model used to derive sorption parameters from experimental data is the Tichenor model 247 

based on the Langmuir theory [7]. This model is based on the assumption that the 248 

concentration of a species in bulk air is homogeneous and proportional to the surface 249 

concentration. However, this model neglects the diffusion (Dm) inside the material and the 250 

mass transfer coefficient (hm) between the surface of the material and the bulk air. Despite 251 

these limits, this model is suitable for this work to determine ka and kd coefficients, for the 252 

reasons detailed below. Zhang [35] studied the flow filed in the FLEC cavity and calculated 253 

the local Sherwood number ShL for the different flow rates (186 to 509 mL.min-1). According 254 

to this work, the mass transfer coefficient was calculated in the FLEC cavity for the different 255 

flow rates used in Table 1 (See Figure 1 in [36]). The flow field in the FLEC is laminar 256 

because the Reynolds number Re varies between 1.4 and 2.3 for.316 mL/min and 509 mL/min 257 

respectively (Re<2000 for laminar flow). The mass transfer coefficient is very high on the 258 

FLEC periphery and decreases in the center to reach a value varying between 1.4 and 2.3  259 

m.h-1. The mass transfer coefficient hm, is always higher than the specific flow rate per unit of 260 

surface (Table 1) which means that the that any substance present on the surface of the 261 

material is immediately diffused in the transverse direction of the flow by molecular diffusion 262 

as already highlighted by Zhu [37]. Therefore, the effect of the mass transfer coefficient is not 263 

significant on the concentrations in the FLEC cavity and the concentration measured in the 264 

FLEC is considered uniform in the entire cavity (Cg) as Zhang [35] confirmed previously by 265 

conducting experimental and numerical studies of the fluid flow and the convective mass 266 

transfer coefficients in a FLEC. They concluded that the air becomes nearly saturated shortly 267 

after it begins to flow on the emission surface, due to the small spacing between the cap and 268 

the bottom surface. Concerning the diffusion in the inner of the material, this parameter is 269 

neglected in this work and supposed to be slower than the instantaneous adsorption on the 270 

surface of the material, since the FLEC-PTRMS method is dedicated to fast in-situ 271 

measurements and the INCA-indoor model neglects the diffusion in the inner of the material. 272 

It worth to note that further works will use a model that considers the diffusion coefficient in 273 

the inner of the material to determine the diffusion coefficient and this point will be discussed 274 

later in this paper.  275 

Giving the reasons above, the concentration variations (dCg/dt and dCs/dt) observed in a 276 

chamber depends on the adsorption (ka) and desorption (kd) coefficients, as shown in the 277 

following equations: 278 

LCkLCkNCNC
dt

dC
sdgagin

g +−−=       ( 3 )279 

sdga
s CkCk

dt

dC −=         ( 4 ) 280 

where, N is the air exchange rate (h-1), Cin the VOC concentration at the chamber inlet 281 

performed (µg.m-3), Cg the gas-phase VOC concentration inside the chamber (µg.m-3), ka the 282 

adsorption rate constant (m.h-1), kd the desorption rate constant (h-1), Cs the surface 283 

concentration (µg.m-2), and L the loading factor (m2.m-3). 284 
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The model used to fit the experimental observations is characterized by equations (3) and (4). 285 

Analytical solutions given in equations (5) and (6) can be derived for the desorption phase 286 

using the following initial conditions at teq: t = 0 ; Cg(0) = Ce and Cs(0)=Cse=Ce(ka/kd). 287 

( ) ( )
21

12 ][
)(

21

rr

erNerNC
tC

trtr
e

g −
−−−=

−−

      ( 5 ) 288 

)(

][
)(

21

21
12

rrk

ererkC
tC

d

trtr
ae

s −
−=

−−

        ( 6 ) 289 

where, 
2

]4)[()( 2/12

2,1
ddada NkkLkNkLkN

r
−++±++=         290 

To determine ka and kd, the concentration time profiles Cg (t) measured from teq to the end of 291 

the test (desorption phase) is fitted using equation (5) and a non-linear least square regression 292 

procedure in SigmaPlotTM. Ce is the average concentration observed in the gas-phase at the 293 

end of the adsorption phase. N, L and Ce are experimental parameters so that they are 294 

constrained during the fit.  295 

4. Results 296 

4.1. Technical feasibility 297 

Time-resolved concentration profiles obtained for toluene are shown in Figure 2 for two 298 

experiments performed on a gypsum board and a piece of vinyl flooring. Concentration 299 

profiles of other compounds are given elsewhere (see Figure 2 in [15]) and exhibit the same 300 

behavior.  301 

 302 

Figure 2. Concentration profiles measured during sorption experiments on a gypsum board and a 303 

piece of vinyl flooring for benzene, C8 aromatics and toluene. The “no sink” plot is also shown for 304 

comparison. 305 

The concentration profiles indicate that the duration of a sorption experiment is about (0.5-8 306 

hours), which is faster than that observed for regular chamber experiments, usually few days 307 

[7, 18]. The experimental no sink profile obtained using Pyrex glass indicate that VOC 308 

sorption on the FLEC internal walls is negligible since no difference can be observed with the 309 
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theoretical no sink profile obtained according to the equation Nt
eg eCtC −=)( . In addition, 310 

these results figure out different sorption behaviors for the 2 materials as seen from the total 311 

mass adsorbed on the material at equilibrium and the time needed to reach this equilibrium. 312 

Similar concentration profiles are observed for vinyl flooring and pyrex, suggesting low 313 

sorption properties for this material. As a consequence, experiments discussed below to 314 

characterize the proposed methodology were only performed using the gypsum board, which 315 

exhibit significant sorption properties. Values of ka and kd were evaluated for the gypsum 316 

board by fitting Equation (4) to concentration profiles acquired during the desorption phase as 317 

described in the theory and data treatment section. Obtained values for ka and kd are 318 

respectively (3.2 m.h-1-24 h-1) for benzene, (1.3 m.h-1-1.6 h-1) for C8 aromatics and (1.7 m.h-1-319 

5.5 h-1) for toluene. The modeled curves shown in Figure 3 are in good agreement with 320 

experimental observations because the correlation coefficient R2 is very close to 1 (0.96 for 321 

benzene, 0.97 for C8 aromatics and 0.97 for toluene). This good agreement is also observed 322 

for the first minutes of the experiments (Figure 3 (d)) contrary to some previous studies made 323 

using emission chambers [7, 38].  324 

325 

 326 

Figure 3. Analysis of the desorption phase for the gypsum board: Benzene (a), C8 aromatics (b), 327 

and toluene (c, d). The “no sink” curve is also shown in grey for comparison. The first minutes of 328 

the toluene decay are expended in panel (d) to evaluate the “best-fit” curve. 329 

4.2. Robustness 330 

(a) 

(d) (c) 

(b) 
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Figure 4 shows mean values of ka, kd and Ke measured for the targeted VOCs for the Gypsum 331 

board and using experimental conditions described above in Table 1. The first set of 332 

experiments made on different samples of the same gypsum board (R in Figure 4) indicates a 333 

good repeatability for the 5 tests, with RSD (1σ) values lower than 17% for ka, kd, and Ke. 334 

Four adsorption/desorption cycles (M in Figure 4) made successively on the same sample also 335 

show a good repeatability for Ke, ka, and kd, with RSD values lower than 12%, except for 336 

benzene for which the RSD reaches 38% for kd. The high uncertainty seen on the 337 

determination of benzene sorption parameters is due to the fact that the benzene profile is 338 

close to that obtained on pyrex glass, having negligible sorption effect. The uncertainty on the 339 

determination of low sorption values will be discussed later in this work. Tests performed at 340 

different VOCs concentrations (C in Figure 4), as well as different inlet flow rates (F in 341 

Figure 4), give consistent results for sorption parameters with RSD values lower than 12% for 342 

C8 aromatics and toluene but around 40% for benzene. These results highlight that the 343 

determination of sorption coefficients does not depend on operating conditions such as the 344 

VOCs concentration used, the inlet flow rate, and the number of measurements made 345 

previously on the investigated material.  346 

 347 

Figure 4. Average results for ka, kd and Ke measured on the gypsum board using a mixture of 348 

aromatic compounds (A=All experiments; R=Repeatability experiments; M = Multiples adsorption-349 

desorption experiments on the same piece of material; F = different air flow rates at the FLEC 350 

inlet; C = different concentrations of VOCs). Error bars correspond to 1 standard deviation. 351 

5. Discussion 352 

5.1. Method evaluation 353 

Based on the results shown above, the FLEC/PTR-MS coupling appears as a promising setup 354 

to measure sorption coefficients of VOCs on building materials within a few hours (1-16 355 

hours). Compared to common test chamber experiments usually conducted over 27-600 hours 356 

(i.e. over 1-24 days) [18-20, 38, 39], the experimental time is reduced by a factor of 54-75. 357 

This method exhibits also a good repeatability and the determination of sorption coefficients 358 

is independent on gas concentration or the number of tests investigated on the same sample. 359 
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In addition, derived parameters are independent on flow rates conditions, which validated the 360 

choice of the Langmuir model to extract sorption parameters from experiments performed 361 

using an enclosure where the gas-phase concentration above the material is homogenous 362 

under the conditions of this study.  363 

The applicability of the Langmuir isotherm was verified by investigating the partitioning of 364 

VOCs between the gas and adsorbed phases when the equilibrium is reached. The relationship 365 

between Cse (calculated from equations 1 and 2) and Ce (experimental measurements) for the 366 

Gypsum board and target VOCs, shows a linear trend with a correlation coefficient of 0.92, 367 

0.80 and 0.94 respectively for benzene, C8 aromatics and toluene (See Figure 3 in [15]). 368 

According to the relation (Cse=Ce×Ke), the slope of the regression line should be equal to Ke. 369 

The slope determined for benzene (0.16), C8 aromatics (0.66) and toluene (0.29) is in 370 

excellent agreement with the average Ke value derived from 15 measurements presented in 371 

Figure 4. This linear relationship confirms that Langmuir equilibrium can be applied at the 372 

concentrations used in this study (106-1131 µg.m-3). 373 

In order to test the robustness of the fitting procedure, multiple fits have been performed for 374 

several sorption experiments by varying the end-time of desorption phase (Table 2). All 375 

desorption phases were performed for 450 minutes and then were analyzed for three different 376 

time durations of 450, 300, and 200 minutes.  377 

Table 2. Comparison between ka and kd values derived from the fitting procedure applied to the 378 

gypsum board. All experimental measurements were made for duration of 450 minutes. 379 

Mathematical fits were performed using an end-time set at 450, 300, and 200 minutes of the 380 

desorption phase. Errors correspond to 1σ standard deviation. Number of replicates = 5. 381 

Time of 
desorption 
phase (min) 

Benzene         C8 aromatics Toluene 

ka (m.h-1) kd (h
-1) ka (m.h-1) kd (h

-1) ka (m.h-1) kd (h
-1) 

450 1.8±0.57 16±5.2 1.3±0.11 2,0±0.24 1.6±0.11 6.2±0.59 
300 1.6±0.16 12±1.1 1.3±0.10 1.8±0.32 1.6±0.05 5.2±0.35 
200 1.7±0.24 15±3.4 1.2±0.13 2.1±0.35 1.6±0.04 5.8±0.69 

 382 

This test indicates that determinations of ka and kd are robust for these 3 experimental 383 

durations. Deviations between individual calculated values and mean values (of all sorption 384 

experiments) are within the experimental RSD displayed in Figure 4 (10-17 %). This result 385 

also indicates that the time of a sorption experiment, including adsorption and desorption 386 

phases, can be adjusted to less than 7 hours for this type of material. 387 

5.2. Limitations of applicability 388 

While the setup described in this study is suitable for fast measurements of sorption 389 

coefficients in laboratory and indoor environments, this setup exhibits some drawbacks. On 390 

the first hand, it is important to avoid high leakage between the cell and the material. For 391 

homogenous and flat materials, the cell can be directly exposed on the surface. However, 392 

porous or rough surfaces cannot be sampled directly and need to be introduced in a sub unit 393 

(cylindrical container) made of aluminum, with the FLEC exposed on the top of the container. 394 

Even if this method is destructive in the case of porous materials, it still exhibits the 395 
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advantage of reducing the measurement time compared to test chambers. In addition, 396 

measurements of sorption coefficients require a fast analytical tool such as the PTR-MS 397 

instrument used in this study. In addition, PTR-MS instruments can only measure a limited 398 

number of VOCs present in indoor environments and some species such as formaldehyde 399 

cannot be measured due to a proton affinity that is only slightly higher than the water proton 400 

affinity [34]. Further studies should focus on coupling the FLEC apparatus to other fast 401 

analyzers, such as a formaldehyde analyzer to study interactions of this important indoor 402 

pollutant with indoor surfaces. Fast analytical tools that are currently under development in 403 

several laboratories, designed to measure different compounds, may offer a more compact and 404 

lighter alternative than the PTR-MS. 405 

On the other hand, the Langmuir model used to extract sorption parameters neglects the 406 

diffusion inside material which is an important key parameter for indoor air quality models. 407 

Nevertheless, Jorgensen [40] used previously the Langmuir model and a diffusion model to 408 

analyze sorption experiments performed in emission test chambers. They found that the 409 

adsorption and desorption coefficients still unchanged between the two models even if the 410 

diffusion models determined a supplementary diffusion coefficients. Further works will be 411 

conducted to analyze experimental data obtained by the FLEC-PTRMS method, using a 412 

model that accounts for the diffusion in the inner of the material, to determine the VOCs 413 

diffusion coefficient. 414 

In order to determine the lower values of sorption parameters that could be measured with this 415 

method, measurements made on a piece of vinyl flooring exhibiting sorption properties close 416 

to that observed for a Pyrex glass, were investigated at different PTR-MS time resolutions. 417 

Indeed, an adsorption experiment made at a time resolution of 20 seconds showed that it was 418 

not possible to extract sorption coefficients from the desorption phase using equation (5) due 419 

to a fast decrease of VOCs concentrations (over a few minutes). Additional experiments were 420 

performed at resolution times of 10 and 2 seconds. These experiments showed that ka and kd 421 

values could only be extracted from measurements performed at the fastest time resolution of 422 

2 seconds (Table 3).  423 

Table 3. Average values of ka, kd, and Ke for a piece of vinyl flooring at a PTR-MS time resolution of 424 

2 seconds. Number of replicates = 5. 425 

VOC Toluene C8 aromatics Benzene 
Sorption 

parameters 
ka 

(m.h-1) 
kd 

(h-1) 
K e 
(m) 

ka 
(m.h-1) 

kd 
(h-1) 

K e 
(m) 

ka 
(m.h-1) 

kd 
(h-1) 

K e 
(m) 

Average 0,06 11 0,01 0,18 17 0,01 0,03 8,3 0,01 
Std 0,02 5,2 0,01 0,03 5,2 0,01 0,02 9,0 0,01 

RSD (%) 28 46 26 18 30 16 57 109 119 

RSD values calculated from 5 replicates range from 15-110% and are higher than values 426 

determined for the gypsum board due to higher noise levels on the PTR-MS measurements at 427 

faster time resolutions (Table 3). These results highlight that large uncertainties are associated 428 

to the determination of weak sink effects. However, materials exhibiting very weak sink 429 

effects will have minor influences on the variation of VOCs concentrations in indoor 430 

environments.  431 
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As mentioned above, faster measurements lead to higher noise levels on measured signals, 432 

and thus lead to a degradation of the measurement precision. Therefore, the best conditions 433 

correspond to a compromise between temporal resolution and noise levels. To determine the 434 

best operating conditions of the proposed setup, a set of curves, characteristic of the 435 

desorption phase, was simulated at 3 different time resolution (2, 10 and 20 seconds) using 436 

equation (4), an air exchange rate of 514 h-1 and several values of adsorption (ka) and 437 

desorption (kd) coefficients. To reduce the number of couples for ka and kd, the same value 438 

was used for both parameters. The simulations were also performed using experimental values 439 

measured for the vinyl flooring at a PTR-MS time resolution of 2 seconds. Equation (4) was 440 

fitted on the simulated curves using Sigma Plot to check whether the mathematical fit is 441 

capable of retrieving the values of ka and kd used to generate the curves. The accuracy of the 442 

fit was calculated as the difference observed between values of ka and kd used to simulate the 443 

curves and values determined by fitting the curve as shown in Table 4.  444 

Table 4. Accuracy determined by simulation for low values of ka and kd for three PTR-MS temporal 445 

resolutions.  446 

Temporal resolution (sec) ka (m h-1) kd (h
-1) Accuracy ka (%) Accuracy kd (%) 

2 

0.01   0.01 9.89 10.00 
0.02   0.02 4.71   5.00 
0.10   0.10 0.10   0.10 
0.01   0.10   0.001   0.60 
0.10   0.01 1.20   1.00 
0.03 17.00 0.33   0.24 

10 
0.07   0.07 6.22   8.71 
0.09   0.09 2.51   4.33 
0.10   0.10 1.63   3.00 

20 
0.09   0.09 5.39 10.11 
0.10 0.1 3.63   7.30 
0.20   0.20 0.02   0.95 

An accuracy lower than 10% is considered as satisfactory to accurately determine ka and kd. A 447 

close inspection of Table 4 indicates that temporal resolutions of 20 and 10 seconds are fast 448 

enough to accurately measure adsorption and desorption parameters (ka; kd) as low as 449 

(0.09m.h-1; 0.09h-1) and (0.07m.h-1; 0.07h-1), respectively. Faster measurements (2 seconds 450 

time resolution) are needed to determine lower values down to ka=0.01m.h-1 and kd=0.01h-1. It 451 

is important to note that these results only provide an estimation of the lower values of ka and 452 

kd that can be measured at a specific time resolution with the FLEC-PTRMS coupling since 453 

combinations of different values of ka and kd are usually observed. Experimental values 454 

derived for the vinyl flooring were also tested and they prove that more resolute 455 

measurements are necessary to accurately determine sorption coefficients in this range. In 456 

addition, these simulations indicated that the determination of low values of ka is more 457 

impacted by the temporal resolution than kd because the value of ka is mainly determined by 458 

using the first minutes of the experimental measurements.  459 

5.3. Literature comparison 460 

Won [6] measured sorption coefficients for a gypsum board exposed to toluene and 461 

ethylbenzene. Tichenor et al. [7] also report sorption coefficients of toluene for the same type 462 
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of material. To the best of our knowledge, there is no measurement of sorption coefficients for 463 

benzene available in the literature. Sorption coefficients measured in this study are in the 464 

same order of magnitude of previous studies and show a difference by a factor of 2-3 times 465 

for Ke parameter (Table 5). However, a difference is also reported between previous works for 466 

the same type of material with ethylbenzene. For the vinyl flooring the difference is more 467 

important. This difference can be due to the composition of the tested material as reported by 468 

Won [41]. The aging of the surface, or its physicochemical properties may also introduce 469 

some variability in the results as observed by Meininghaus [42]. From the other hand, this 470 

difference can be due to the inappropriate use of the Tichenor model for emission test 471 

chambers used for sorption experiments. The effect of the mass transfer due to the presence of 472 

a boundary layer on the surface of the tested material can have an important effect on the 473 

determination of sorption parameters. The companion paper (part 2 of this work), will present 474 

a comparison using an emission test chamber and the same type of material and the same 475 

VOCs mixture. Therefore, different type of models will be used to determine sorption 476 

parameters with a consideration for the effect of the mass transfer coefficient and the effect of 477 

the boundary layer.  478 

Table 5. Comparison of literature values of Ke for a gypsum board with results from this 479 

study. 480 

VOCs ka (m.h-1) kd (h
-1) Ke (m) References 

Benzene 1.8 ± 0.57 14 ± 5.2 0.12 ± 0.01 This work 

Toluene 
0.21 1.7 0.12 [6] 

1.6 ± 0.11 5.4 ± 0.59 0.29 ± 0.03 This work 

Ethylbenzene 
0.21 0.87 0.24 [6] 
0.45 1.50 0.30 [7] 

C8 aromatics 1.3 ± 0.11 1.8 ± 0.24 0.72 ± 0.09 This work 

6. Conclusions 481 

The proposed experimental approach, based on a FLEC-PTRMS coupling, has been used 482 

successfully to measure sorption coefficients of aromatic compounds on different types of 483 

materials. This method presents the advantage to be transportable and non-destructive method 484 

for flat and homogeneous material to perform fast measurements in real environments and 485 

under indoor conditions. Moreover, this new setup exhibits the advantage of reducing the 486 

measurement time to 0.5-8 hours compared to emission test chambers that require several 487 

days of measurements and allows measuring low sorption values. The FLEC/PTR-MS 488 

coupling allows measuring low sorption values and will be used for in-situ measurements in 489 

energy efficient buildings. Sorption coefficients determined on the field will be then used as 490 

inputs for a new indoor air quality model (INCA-indoor) that takes into account the boundary 491 

layer effect and the mass transfer coefficient, to predict VOCs concentrations in indoor 492 

environments (see companion paper). The FLEC-PTRMS method will be compared in the 493 

part 2 of this work, to the traditional emission test chamber method used previously in 494 

literature to measure sorption parameters only on the laboratory scale. Further works, will use 495 

a more complex model to take into account for the diffusion inside building materials.  496 
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• Development of a new methodology to measure in-situ VOCs sorption on building 
materials 

• Evaluation of sorption parameters under real conditions within few hours 
• Measurement of low sorption properties with 10% of accuracy 
• Sorption parameters are useful to IAQ models to predict VOCs concentration indoors  

 


