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Theory of plasmonic properties of hyper-doped silicon nanostructures
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Caroline Bonafos®, Christian Girard®*

CCEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, 31055 Toulouse, France.

Abstract

The presence of a Localized Surface Plasmon Resonance in doped semiconductor nanostructures opens a new field for
plasmonics and metasurfaces. Semiconductor nanostructures can be easily processed, have weak dissipation losses, and
the plasmon resonance can be tuned from the mid- to the near-infrared spectral range by changing the dopant concen-
tration (in complement to the constituent material, the size and shape of the nanostructure). We present in this paper
an extension of the Green Dyadic Method applied to the case of doped silicon nanostructures of arbitrary shape on a
planar silica substrate. The method is used to compute both far- and near-fied optical properties, such as the extinction
efficiency and the electromagnetic near-field intensity inside and around any doped silicon nanostructure, respectively.
This theoretical approach provides an important tool for active dopant characterization in doped semiconductor nanos-
tructures, for near-field imaging of complex nanoantennas produced by electron beam lithography, and for the definition

of doped semiconductor-based metasurfaces.
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During the three last decades, a huge amount of work
has been devoted to the understanding of the plasmonic
properties of complex metallic nanostructures, either in-
dividually or as the elementary brick of a metamaterial.
This interest was also driven by potential applications in
sensing devices [I], nanophotonic devices [2], photocataly-
sis [3], and field-enhanced spectroscopies [4) 5] 6] [7]. How-
ever, the use of metals such as gold or silver is still an
issue due to a poor compatibility with the semiconductor
processing technology, and to strong dissipation losses at
optical and infrared frequencies.

Recently, a new category of plasmonic materials emer-
ged, with the study of Localized Surface Plasmon Reso-
nance (LSPR) in heavily doped semiconductor nanostruc-
tures and metamaterials [8, [O] 10, [TT]. Compared to met-
als, the imaginary part of the dielectric constant in the
visible and infrared range is low for most semiconduc-
tors, leading to weak losses. As for metals, the LSPR
frequency is tunable by the constituent material, the size
and shape of the nanostructure, and its dielectric envi-
ronment. However, the active dopant concentration, thus
the free carrier (electrons or holes) concentration, allows
to finely tune the LSPR frequency [8, [I0]. Notably, the
lower order of magnitude of carrier density in degenerate
semiconductors with respect to noble metals has an at-
tractive consequence: even a minor modification of the

*Corresponding author
Email address: clement.majorel@cemes.fr, girard@cemes.fr
(Christian Girard)
Inow with Physics and Astronomy, Faculty of Engineering and
Physical Sciences, University of Southampton, Southampton, UK.

Preprint submitted to Journal of BTEX Templates

carrier density has a strong effect on the spectral posi-
tion of the LSPR. Quantum size effects have also an in-
fluence in the case of nanocrystals of a few nanometers
in diameter [12]. For larger nanostructures, for which the
Drude model can be used, the LSPR frequency is vary-
ing from the far-infrared (FIR) range for standard dopant
concentration (a few 1018 - 1012 cm~3) to the mid-infrared
range (MIR) for heavily doped semiconductors (about 10%°
em~3), and even near-infrared (NIR) if higher concentra-
tion can be obtained (above 10%! cm~3) [§]. Nonstoechio-
metric alloy nanocrystals, such as Cuy_,S or Cus_,Se,
or metal-doped metal oxyde compounds (such as Al- or
In-doped ZnO for instance) have shown intense plasmon
resonances in the MIR to the NIR [8, 10, 11]. Few theoret-
ical ab initio [12| 13| 14] and experimental [9, 12} [15] [16]
work concern heavily doped silicon nanocrystals (Si-NCs),
which are potentially interesting nanomaterials for plas-
monic applications in the infrared due to their low cost
and low toxicity. However, nanocrystals are difficult to
handle and ordered arrays of nanostructures are needed
for many applications, for instance infrared sensing as de-
scribed in ref [5]. Therefore, doping Si nanostructures (Si-
NS) as the ones produced by electron beam lithography in
the thin Si overlayer of a Silicon On Insulator (SOI) sub-
strate could be attractive candidates for such applications
[I7]. High dopant concentrations are actually achievable
in Si by using out of equilibrium methods as nanosecond
Laser Thermal Annealing (LTA) treatments. Hence, ac-
tive phosphorus concentrations as high as 5x10%° cm™3
up to 2x10%2' cm™3 can be reached in respectively thin
SOI [19] and bulk silicon [I§]. Recently doping Si with
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deep chalcogen donor as Te by using the same non equi-
librium processing allows also exceeding 102! cm™2 active
dopants [20]. This doping range corresponds to a plasmon
resonance wavelength of about 1.5 pym of great interest in
photonics. It is thus important to develop theoretical tools
able to describe the far-field and near-field electromagnetic
properties of doped Si-based plasmonic nanoantennas of
arbitrary size and shape, in a similar way as for the metal-
based plasmonic nanoantennas. In the following, we will
focus on Si-NS with dopant concentration in the 1020 to
5x%10%! cm~3 range and dimensions of a few tenths to a
few hundreds of nanometers on top of a silica layer which
mimics the SOI buried oxyde layer.

We introduce the Green Dyadic Method (GDM) im-
plemented in the python toolkit pyGDM [21] 22]. GDM is
an ab—initio electrodynamic method that relies on solv-
ing Maxwell’s equations using Green’s dyadic functions
[22]. This method is interesting because calculations can
be performed for nanostructures of arbitrary size, shape,
composition and, in the context of doped semiconductor
NS, of dopant concentration. We show that, by solving
self-consistent equations, it is possible to determine both
electric and magnetic fields at optical or infrared frequen-
cies inside and outside a set of Si-based plasmonic nanos-
tructures of arbitrary size and shape. Thus, all physical
quantities such as extinction, absorption and scattering
spectra, as well as near—field maps, can be calculated with
precision [22].

1. The Green Dyadic Method (GDM) for submi-
crometer scale hyperdoped silicon structures

In the presence of an external illumination by an inci-
dent electromagnetic field characterized by the couple of
electric and magnetic fields, {Eq(r,t); Ho(r, )}, the local
electric field E(r,t) induced inside and around a doped
semiconductor system composed of N similar or differ-
ent particles (see the illustrating example in figure )
can be calculated using the dyadic Lippmann—Schwinger
equation:

E(r,w) = Eo(r,w)+

N
% J; \/\/j(GQOp(W) - eenv(w))S(I‘,I‘/,w) 'E(r,,CU)dI'/ (1)

where Eq(r,w) and E(r,w) are the time Fourier trans-
forms of the incident and local electric fields (written in
CGS Gaussian units), respectively. In this self-consistent
2

of the j** doped semiconductor nanostructure and the
surrounding medium, respectively. Considering the sub—
micrometer size of the nanostructures investigated here,
we can apply the simple Drude model, which accurately

equation, €7’ (w) and €gpy(w) represent the permittivity

describes the carrier dynamics in bulk doped semiconduc-
tors:

7)2
) (wp)
€ (W) = €intr(W) — —————+ 2
do ( ) 1nt7”( ) w(w_’_?/)/]) ( )
where €;,,1-(w) represents the dielectric constant of the
intrinsic semiconductor and 77 is the damping term due to
the collisions. w;, defines the plasma frequency associated

with the free carrier concentration of the j** particle:

~ [4nN3 e?
wl]) - m:p (3)
where N7

dop» € and mj define the carrier density (in cm~3),
the elementary charge, and the effective mass respectively.
The effective mass was chosen equal to 0.3 times the mass
of the electron [23]. For all the calculations in this article,
we have arbitrarily chosen 4/ = 0.1w?. This choice makes
it possible to take into account the accumulation of defects
in the structure when the doping concentration increases.
To confirm the consistency of this choice, we calculated
the free electron damping v by using v = e/m{u where u
represents the mobility of the electrons [24] 25]. In Ref.
[23], the mobility lies between ~360 and 425 cm?V—1s~1
when the concentration of P increases from 4% to 18%.
These percentages correspond respectively to carrier den-
sities equal to 2 x 10?'em ™ and 9 x 102'cm~3. By using
the above values for mobility and effective mass, we found
v ~ 1.63 x 10*Hz and v ~ 1.38 x 10'3Hz, respectively.
In our calculations, Ng,p, lies between 1x10%%c¢cm—3 and
5x10%'cm ™3, that means the number of impurities is less
important than in the reference. If we replace Ngop in
Eq. by these two values and multiply w{; by 0.1 we
obtain 4/ = 1.64 x 10'®Hz and 7/ = 11.60 x 10'3Hz, re-
spectively. Therefore by choosing 7/ = 0.1%3;, ~7 is higher
than 7, hence we overestimate the number of collisions of
the electrons inside the structure.

z

Figure 1: Example of three doped silicon nanostructures (j = 1,2,

€env (W)

€s(w)

or 3) of both arbitrary shape and intrinsic doping parameters N?

dop”
These objects are lying on a plane silica substrate of optical index
ns(w) = /es(w).

In Equation , the response function S(r,r’,w) is the
Green dyadic tensor associated with the bare silica sur-
face (i.e. computed in the absence of any nanostructure).



This second rank tensor matching the boundary conditions
on the planar surface is given as the sum of two distinct
contributions:

S(r,r’,w) = So(r,r',w) + Sgurs(r,r',w) , (4)

where So(r,r’,w) represents the dipolar propagator of
the homogeneous medium (characterized by €cpy(w)), and
Seurf(r,r’',w) takes into account the presence of the di-
electric surface supporting the nanostructures:

eik|r7r'|

vrvr] 0 (5)

So(r,l‘/,W) = [k(z)]: + ‘I‘ — r,l )

€env(W)

with kg = w/c, k = \/€enw(w)w/c, and

Agurs (W)
/ - surf
Ssurf(r7 r, UJ) - (X2 + Y2 4 22)5/2
72472 _9X2 -3XY 3XZ
—3XY 7% + X2 -2v? 3YZ
-3XZ -3YZ 27% —Y? - X?

(6)

with r = (z,9,2), v = (2/,y,7/), and X =2’ — 2,V =
y' —y, and Z = 2’ + z. The reflection coefficient Ay, f(w)
is given by:

6s(w) - eenv(w)
€s(W) + €enp (W) (™)

As explained in reference [26], numerical solutions of
(1) need a volume discretization of the source region occu-
pied by the nanostructures. Generally, each particle vol-
ume Vj is discretized with n; identical elementary volumes
v;. Such a procedure converts integrals into discrete sum-
mations:

Asurf (W) =

nj

=Eo(r,w) + > ni(w) >

j=1 i=1 (8)
X [So(r,rjs,w) + Ssurp(r,rj,,w)] - E(rj,,w).

E(r,w)

In this summation, the scalar parameters 7;(w) are pro-
portional to the elementary volumes v; of the discretized
cells in the j** particle:

e((ijo)p(w) — €enov (W)
4

n;(w) = vj (9)
and the vectors r;; define the positions of the discretized
cells inside the j** doped particle. The N nanostructures
are positioned at the nodes of a cubic compact array. No-
tice that, in the case of most semiconductors including
Si, the very high dielectric constant requires a fine dis-
cretization of the NS in order to have reliable calculations
For instance a nanostructure with a dielectric constant

Re €£z)p illuminated by a plane wave of wavelength \g

leads to an effective wavelength in the material A¢fy =

Xo/y/Re {effo) } For a very high dielectric constant this

effective wavelength may become comparable to the dis-
cretization step of the NS. In such case, the computation
does not converge properly. The step d should be small
compared to the wavelength inside the material and also
with respect to the skin depth in an absorptive material
[27].

2. Spectral and near—field optical properties of squa-
re shaped-doped silicon pads deposited on a sil-
ica surface

In the different sections of the paper, we will consider
a normal incidence monochromatic plane wave as illumi-
nation mode. In this case, the incident electric field can
be defined by:

Eo(r,t) = Eo{cos(k-r —wot) + Fenv,surf cos(k-r+wot)} ,
(10)

where k = (0,0, —k) and Ey = Ey(cos(¢),sin(¢),0)
(in which ¢ labels the incident polarization angle), and

Fenv,surf defines the reflection Fresnel coeflicient:
\/eem,(w) — \/es(w) (1)
\/een'u(w) + \/Es(w)

The Fourier transform of this field can be defined by:

Fenv,surf =

1 .
Eo(r,w) = % /EQ(I‘, t)elwtdt

({ ter + ]:env surfe —ik r}é(w WO)

+ {e_Zk v + ]:enmsurfelk r}é(w + WO))

_Eo (12)

For hyperdoped silicon structures the external excita-
tion wavelength \g = 2m¢/wy becomes an extremely sensi-
tive parameter because of the known existence of plasmon
resonances [8] and specific physical quantities can be used
to characterize their new optical properties (near field in-
tensity, absorption and scattering spectra, infrared local
density of states, ...).

2.1. Case of a single cuboid nanostructure of doped Si
(100x 100x 50 nm?, N =1, ny=4000)

(i) Extinction efficiency of a single doped Si pad
The extinction cross-section can be deduced from the local
electric polarization induced inside the doped nanostruc-

ture (see figure (2)):

2 N mnj
€€7lU7T
/\0|E0|2 ZZ S(Eg rJZ’)‘O) 7D(I”g‘,z‘7)\o)),

j=11i=1
(13)

Cewt ()\0)



where & depicts the imaginary part and

P(rji,wo) = nj(w)B(r;;,wo) (14)

A first example is shown in figure for a square
shaped pad of heavily doped (Ngop =8 x 10?2 cm™3) silicon
standing on a silica substrate. The spectrum of the extinc-
tion efficiency Q..+ (the extinction cross-section divided by
the geometrical cross-section) exhibits a well-defined plas-
mon peak located around 2.8 ym. The first resonance at
2.8 pm corresponds to the free carrier-induced LSPR. In-
terestingly, one can observe at longer wavelength a second
spectral structure composed of different resonances, one of
which dominating around 9.5 ym. This resonance, far from
the plasmon band, is the signature of an optical phonon ex-
citation inside the silica wafer supporting the doped Si-NS.
Indeed, in the vicinity of 9.5 um, the real part of the dielec-
tric constant es(w) of silica becomes rapidly negative while
its imaginary part significantly increases [29, 30]. Conse-
quently, the coefficient Ay, ¢(w) in the surface propagator
Ssurs(r,r',w) (see also Eq. ) resonates at the optical
phonon frequency, yielding the additional peak at 9.5 ym
in the extinction spectrum. In that case, silica phonons
are excited by the virtual dipole image induced under the
silica surface by the real dipole induced inside the Si-NS
by the incident illumination field.

The behavior of the two absorption bands is evidenced
in figure giving the extinction efficiency for the same
Si pad as function of the dopant concentrations in the 1 x
1020 - 3 x 10?' ¢cm ™3 range and the excitation wavelength.
It can be seen that the LSPR band at short wavelength
follows the square root of the carrier density, while the
phonon band around 9.5 pum is rather insensitive to the Si-
NS dopant concentration. At lower dopant concentration,
a coupling between both resonances due to LSPR in Si-
NS and phonon absorption in silica occurs. This kind of
plasphonics phenomenon has been already studied in ref
[31), B2} B3].

For a high dopant concentration, the LSPR band is
localized in the 1.5 - 2 pum range. Such frequencies are
accessible with strongly anisotropic gold structures. For
instance, in ref [34], where nanorods of length 110 nm
and radius 5 nm present a resonance at A\ = 1170 nm.
The use of hyperdoped Si-NS makes it possible to obtain
the LSPR frequencies in the same NIR range even with
isotropic structures.

(#i) Near—field intensity distribution around a single Si pad

The function I,, (R, o) gives the variation of the normal-
ized optical near—field intensity recorded at a given loca-
tion R above the sample and for the incident wavelength
Ao. This signal can be computed for each location R from
the total electric field and the incident electric field given

by equations (8) and (12), respectively:

Ly (R, Xo) = [E(R, Xo) */[Eo (R, Ao) (15)

In order to get more insight on the impact of the dopant
concentration, we calculated the infrared near—field in-
tensity distributions of the electric field around the Si-
NS for different wavelengths, and compared them to the
case of intrinsic Si. In figure (4h), we show the scat-
tering efficiency of a Si-NS with a dopant concentration
Ndop:2.66><1021 cm™? corresponding to a LSPR wave-
length of about 1.54 ym (see solid dark curve in frame (a)).
This wavelength corresponds to the state-of-the art active
dopant concentration that can be obtained experimentally
by pulsed laser annealing [18], and is of outmost interest
in photonics. It indeed belongs to the optical telecom-
munication window and matches the emission of Erbium
ions, which have been recently found new applications in
Telecom-Band Quantum Optics [35].

Then we compute the normalized electric near field at
two different locations shown in the inset of ), corre-
sponding to a site at R = (0,0,70) on top of the Si-NS
(magenta cross), and to a lateral site at R = (—60, 0, 70)
(green cross). The near-field intensity distributions are
shown in the two frames of figure (4p). The more strik-
ing feature is the presence of a strong contrast observed
above the lateral site when changing the wavelength from
1200 pm to 1900 pm (see left frame of figure ([d@b)). The
contrast change is less marked above the top site (right
frame of figure ) For these wavelengths, the 2D maps
of the electric field intensity distribution are given in (k)
and ) This reveals either the absence of contrast or a
strong contrast around the doped Si-NS by controlling the
excitation of the localized plasmons. By comparison, the
maps computed around intrinsic Si-NS ) and ) are
very similar independently of the wavelength. The absence
of a strong local contrast in the case of the doped silicon
can be explained by a vanishing contrast of the real parts
of the permittivities between environment (€., = 1) and
the doped silicon around Ag = 1.2 um (close to the sign
change of Re{eqop})-



8
Ao (UmM)

10 12 14

Figure 2: (a) Extinction efficiency spectrum computed for a single hyper-doped silicon cuboid structure of size 100 x 100 x 50 nm? supported
by a planar silica substrate. The dopant concentration Ny, is 8 X 1020 cm—3. (b) Side view, and (c) top view of the discretized structure.
Each point represents an elementary cell of volume v;. Eq gives the incident plane wave polarization along the x-axis. (d) 3D representation
of the snapshot of the charge density distribution inside the structure[28].
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Figure 3: 2D map representation of the extinction efficiency for heavily doped cuboid Si-NS of size 100 x 100 x 50 nm? lying on a silica
substrate. The dopant concentration Ng,, varies between 1 x 102% and 9 x 1020 cm~3 (a) and 1 x 102! and 3 x 102! cm—2 (b). The purple
dashed line represents the evolution of the LSPR as a function of the dopant concentration.

2.2. Case of randomly oriented and/or doped Si-NS:

In figure (5)), we complete our simulation sequence with
a set of N = 5 randomly located and oriented Si-NS ex-
cited by an incident plane wave. We remark first that the
disordered arrangement of the particles tends to slightly
downgrade the image—object relation observed with sin-
gle particles (cf. figure ) In addition, we analyse the
changes of the near—field intensity maps when gradually
increasing the pad doping rate.

The analysis of these results raises the following com-
ments.
(i) Although the system is illuminated in the s—polarized
mode (incident electric field parallel to the substrate), each
Si-NS (either intrinsic or doped) displays a typical contrast
in the electric near—field intensity maps with a large field
gradient near the Si-NS edges.
(ii) In the case of intrinsic Si, the contrast pattern does not
depend on the incident wavelength. This is consistent with

previous results reported in [36}, [37], since in the absence of
any plasmon resonance, those intrinsic Si-NS behave like
dielectric pads.

(iii) Contrary, within a wavelength interval ranging from
1200 nm to 1850 nm centered around the plasmon reso-
nance at A, = 1540 nm, we observe a significant change
of the near—field intensity patterns when increasing the
dopant concentration. In particular, close to A\g = 1200
nm, increasing the dopant concentration tends to flatten
the contrast amplitude, illustrating how the incident wave-
length can be used to control the visibility level expected
in the near—field zone when approaching the plasmon res-
onance of the doped Si-NS.

3. Spectral and Polarization effect of a doped Si
nanowire

Unlike doped cuboid Si-NS previously described, the ex-
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Figure 4: Simulation of the electric near—field behavior in the vicinity of doped (Ngop = 2.66 x 102! ¢cm~3) and intrinsic single Si-NS of same
geometrical cross—section (100 x 100 x 50 nm?). (a) Top view geometry and extinction efficiency; (b) Local near—field optical spectra computed
above two different sites defined by R = (—60,0,70) (lateral site) and R = (0,0, 70) (top site). The blue dots indicate both minimum and
maximum values of the near—field intensity above the edge of the doped Si-NS, occurring at Ag = 1200 nm and Ag = 1862 nm, respectively.
(c)-(d) Corresponding near—field intensity maps computed in a plane Z = 70 nm;(e)-(f) Same maps as in (c¢)-(d) for intrinsic Si-NS.

tinction cross-section of anisotropic doped Si-NS such as

4. Conclusion and Perspectives

nanowires exhibit two polarization-dependent plasmon bands,

that correspond to carrier oscillations either along their
length (longitudinal mode) or across their width (trans-
verse mode). This behavior, presented in figure @, is
well-known in the field of the ”standard” (metal) plasmon-
ics, where it was realized that one of the most effective
approach in plasmon engineering was to break the con-
finement symmetry by modifying the nanoparticle aspect
ratio from spherical to rod shape [38] [39]. The symmetry
breaking lifts the plasmon mode degeneracy and gives rise
to two distinct transverse and longitudinal bands. In our
case, the most striking result is that two distinct regions
of the infrared spectrum can be investigated using doped
semiconductor nanowires.

In Summary, we have adapted GDM to describe the en-
hanced light-matter interaction and electromagnetic field
confinement in the case of sub-wavelength doped Si-based
plasmonic nanostructures. We show that such properties
can be tuned over the MIR and NIR spectral ranges as
function of NS size, dopant concentration. In addition,
modifying the aspect ratio leads to two distinct trans-
verse and longitudinal modes by lifting the plasmon mode
degeneracy. Our results provide a useful tool for active
dopant concentration measurement in doped semiconduc-
tor nanostructures using infrared absorption experiments,
and for modeling near—field imaging in the infrared.

As shape and/or dopant concentration allow obtain-
ing LSPR near the telecom wavelength of 1.54 um, there
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Figure 5: Sequence of optical near—field images describing the evolution of near—field patterns when passing from pure to doped silicon pads.
(color scale increasing from blue to red, window size 1000 x 1000 nm?). All optical and geometrical parameters are identical to those of figure
. (a) Geometry and dopant concentration considered in the numerical simulations; (b) Near-field map evolution computed at Ag = 1200

nm; (c) Same as (b) but for A\g = 1862 nm.

are potential applications for silicon-based nanophotonics,
and study enhanced emission from Erbium ions coupled to
hyper-doped Si-NS. In addition, highly localized IR light
depression or enhancement can be controlled in the vicin-
ity of the highly doped Si-NS by adjusting the excitation
wavelength. This property can be further exploited for ei-
ther exalting (SERS effect or fluorescence exaltation) or on
the contrary hiding (invisibility effect) the optical signal of
molecules or nano-objects located in their near field.
These new objects open a new physics field for a mature
nano-optics domain. Following up along this simple dop-
ing concept, extended networks of interconnected lattices
of doped nanoparticles could generate unique and unusual
sub-wavelength patterning of the infrared near—field. Sev-
eral impacts are associated with light confinement around
plasmonic structures. The most direct consequence is the

improvement of the quality of the near—field infrared imag-
ing and the increased local field enhancement, and finally
the light energy storage in tiny volumes of matter [4] [40].
The optical physics related to the control of light con-
finement might have also important impact on the future
solution for the miniaturization of both chemical and bio-
logical sensors in the infrared range.
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Figure 6: (a) Side view, and (b) top view of the discretized structure of size 500 x 100 x 50 nm
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