

Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity

Benjamin R Waterhouse, Karen L Adair, Stéphane Boyer, Steve D Wratten

▶ To cite this version:

Benjamin R Waterhouse, Karen L Adair, Stéphane Boyer, Steve D Wratten. Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity. Basic and Applied Ecology, 2014, 15 (7), pp.599-606. 10.1016/j.baae.2014.09.001. hal-02303663

HAL Id: hal-02303663 https://hal.science/hal-02303663v1

Submitted on 2 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity

Author: Benjamin R. Waterhouse Karen L. Adair Stéphane

Boyer Steve D. Wratten

PII: \$1439-1791(14)00114-5

DOI: http://dx.doi.org/doi:10.1016/j.baae.2014.09.001

Reference: BAAE 50820

To appear in:

Received date: 1-4-2014 Revised date: 2-9-2014 Accepted date: 5-9-2014

Please cite this article as: Waterhouse, B. R., Adair, K. L., Boyer, S., and Wratten, S. D., Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity, *Basic and Applied Ecology* (2014), http://dx.doi.org/10.1016/j.baae.2014.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- Advanced mine restoration protocols facilitate early recovery 1
- of soil microbial biomass, activity and functional diversity. 2

3

Benjamin R. Waterhouse*1, Karen L. Adair1, Stéphane Boyer1,2 and Steve D. Wratten1 4

5

- ¹Bio-Protection Research Centre, PO Box 85084, Lincoln University, Lincoln, 7647, 6
- 7 New Zealand.

8

- ²Department of Ecology, PO Box 85084, Lincoln University, Lincoln 7647, New 9
- 10 Zealand.

11

- 12
- 13 Running title: Microbes in restored soils

14

Email address: brwaterhouse@gmail.com

Corresponding author: Ben Waterhouse. Tel.: 0064 423 0932; fax: 0064 325 3864

Abstract

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

15

Many ecosystem restoration programmes can take over 15 years to achieve ecosystem functioning comparable to that of an unmodified ecosystem, therefore a reliable shorter-term method of assessing and monitoring ecosystem recovery is needed to ensure that recovery is following an appropriate trajectory. Soil microbes respond to environmental change relatively quickly, and shifts in microbial communities can reflect the current status of their environment. As well as potentially acting as 'indicator communities', microbes play an integral role in restoring ecosystem functions. On an active opencast mine on New Zealand's West Coast, three main restoration methods are used, differing in cost and restoration effort. They range from most expensive 1) vegetation direct transfer (VDT), to 2) biosolids-amended stockpiles that are spread and replanted, and 3) untreated stockpiles that are spread and replanted. We assessed the impacts of these methods on soil microbial communities by measuring microbial biomass, dehydrogenase activity, community level physiological profile (CLPP) and functional diversity as measured by carbon substrate utilisation, where restored sites were 5 years old or less. These measures were compared to an unmodified reference ecosystem in the same location. Microbial activity and biomass were highest in pristine habitats, followed by VDT and biosolids-amended soils, then untreated stockpile soil. When compared to all other treatments untreated stockpiled soils had significantly different CLPPs and significantly reduced microbial biomass and activity; microbial biomass was an order of magnitude lower than in pristine soils. Functional diversity and richness did not differ between pristine, VDT and biosolids-amended soils, but

were higher than in untreated stockpiled soils. CLPPs did not differ between pristine
habitat soil and VDT soil but biosolids-amended and untreated stockpiled soils were
significantly different to pristine soil. This study has shown that soil microbial
communities are a valuable tool to assess restoration progress, and that ecosystem
restoration can begin in a relatively short time following investment in appropriate
restoration strategy, ultimately benefiting recolonisation by plants and animals.
Zusammenfassung
Viele Ökosystem-Renaturierungsprogramme können mehr als 15 Jahre benötigen,
bevor eine Ökosystemfunktion, die mit der eines nicht modifizierten Ökosystems
vergleichbar ist, erreicht wird. Darum wird eine verlässliche, früher einsetzbare
Methode zur Bewertung und Überwachung der Regeneration des Ökosystems
benötigt, um sicherzustellen, dass die Regeneration einen geeigneten Verlauf nimmt.
Bodenmikroorganismen reagieren relativ schnell auf Umweltänderungen, und
Änderungen der Mikroben-Gemeinschaften können den aktuellen Status ihrer
Umwelt widerspiegeln. So wie sie potentiell als "Indikator-Gemeinschaften"
fungieren, spielen Mikroben auch eine zentrale Rolle bei der Wiederherstellung von
Ökosystemfunktionen. In einer aktiven Tagebau-Kohlegrube an der
neuseeländischen Westküste werden drei Haupt-Renaturierungsmethoden
angewandt, die sich hinsichtlich der Kosten und des Aufwandes unterscheiden. Sie
reichen von der sehr teuren direkten Übertragung bewachsener Bodenblöcke (VDT)
über die Ausbringung von mit Klärschlamm vermischtem Lagerhaldenmaterial, das
ausgebreitet und bepflanzt wird, bis zur Ausbringung von unbehandeltem
Haldenmaterial, das verteilt und bepflanzt wird. Wir erfassten die Auswirkungen

63	dieser Behandlungen auf die Mikrobengemeinschaften im Boden, indem wir die
64	mikrobielle Biomasse, die Dehydrogenase-Aktivität, das physiologische Profil der
65	Gemeinschaften und die funktionelle Diversität (gemessen als Nutzung von
66	verschiedenen Kohlenstoffsubstraten) bestimmten. Die untersuchten
67	Renaturierungsflächen waren bis zu fünf Jahre alt. Die Messungen wurden mit Daten
68	aus einem benachbarten naturnahen Referenzökosystem verglichen. Die mikrobielle
69	Aktivität und Biomasse waren in dem alten Ökosystem am höchsten, gefolgt von den
70	VDT-Flächen, dem mit Klärschlamm versetzten Material und schließlich dem
71	unbehandelten Haldenmaterial. Die letztgenannte Behandlung wies verglichen mit
72	den anderen Varianten ein signifikant abweichendes physiologisches
73	Profil sowie signifikant reduzierte mikrobielle Biomasse und Aktivität auf. Die
74	mikrobielle Biomasse war um eine Größenordnung geringer als die von
75	ursprünglichem Boden. Funktionelle Diversität und funktioneller Reichtum
76	unterschieden sich nicht zwischen ursprünglichen, mit Klärschlamm gemischten und
77	VDT-Böden; sie waren aber höher als in unbehandelten Haldenböden. Die
78	physiologischen Profile der Gemeinschaften unterschieden sich nicht zwischen
79	ursprünglichem Boden und VDT-Böden, aber sowohl mit Klärschlamm versetzter als
80	auch unbehandelter Haldenboden unterschieden sich signifikant vom ursprünglichen
81	Boden. Diese Untersuchung hat gezeigt, dass mikrobielle Gemeinschaften des
82	Bodens ein wertvolles Mittel sind, um den Rekultivierungsfortschritt abzuschätzen
83	und dass die Renaturierung relativ kurz nach der Investition in eine angemessene
84	Renaturierungsstrategie einsetzen kann, wodurch letztendlich die Wiederbesiedlung
85	durch Pflanzen und Tiere gefördert wird.

87	Keywords:	Biosolids;	Ecological	restoration	: Microbes:	Mining;	Vegetation	direct
----	-----------	------------	-------------------	-------------	-------------	---------	------------	--------

88 transfer; VDT.

89

Introduction

\sim	^
u	
-,	_

To access target resources, opencast mining requires the complete removal of soil, rock and vegetation, soil and rock mixtures are then regularly stored in large stockpiles of mixed topsoil and various other rock and soil strata (Boyer, Wratten, Pizey, & Weber, 2011). In New Zealand, these stockpiles are often used for restoration of areas where mining is complete. However, the materials selected for stockpile storage (soil, subsoil and overburden) can have detrimental effects on stored soil quality, microbial communities and fauna. For example, increased proportions of rock and a reduction in levels of primary plant nutrients (Nitrogen (N), Phosphorus (P), Potassium (K) and Carbon (C)) in stockpile soil will decrease soil quality (summarised in Sheoran et al. 2010). Stockpiles can become stratified such that at > 1 m depth they can become compacted and anaerobic resulting in loss of earthworm populations (Boyer et al., 2011), decreased abundance of mycorrhizae, aerobic bacteria and fungal species, and an increase in soil bacterial to fungal ratio (Abdul-Kareem & McRae, 1984; Harris, Birch, & Short, 1989).

Soil quality is important in the restoration of ecosystems because of its role as the physical, biological and nutrient basis for plant recolonisation and establishment (Zhang & Chu, 2012). Soil microbial communities are responsible for many ecosystem functions including decomposition, nutrient cycling, nitrogen fixation and soil formation (Zhang & Chu, 2011). They also support revegetation processes, which can further stabilize soils and prevent loss of bulk soil and nutrients through erosion (Ros, Hernandez, & García, 2003). Restoration following mining should therefore not

115	only aim to achieve plant cover, but also regenerate soil functions that form the
116	foundations on which ecosystems can persist (Ohsowski, Klironomos, Dunfield, &
117	Hart, 2012); and microbial assessments can contribute an insight to this process.
118	
119	The definition of ecological restoration, as defined by the Society for Ecological
120	Restoration, is: 'the process of assisting the recovery of an ecosystem towards a
121	reference state' (Society for Ecological Restoration, 2013). Following this definition,
122	studies have shown that after mining, at least 15 years or more may pass before soil
123	functions are comparable to those of pristine areas (Ruiz-jaen & Aide, 2005; Grant &
124	Ward, 2007). While restoration of soil functions may take decades, monitoring in its
125	early stages is essential to assess whether restoration efforts are effective or at least
126	following a suitable trajectory, and that limited resources (time, finance, machinery)
127	are not misdirected. Appropriate early monitoring can also be useful to assess the
128	efficacy of new or previously untested restoration techniques.
129	
130	The majority of restoration studies examining ecosystem processes occur within 15
131	years since restoration was implemented, with most of these in the first 5-10 years
132	(Wortley, Hero, & Howes, 2013). These studies show that some ecological processes
133	can have made measurable progress within that time. In particular, soil microbial
134	communities can serve as early indicators of effective mine restoration, because
135	they respond relatively quickly to changes in environmental conditions (Sparling,
136	1992; Emmerling, Liebner, & Haubold-Rosar, 2000; Izquierdo, Caravaca, Alguacil,
137	Hernández, & Roldán, 2005). They can provide more accurate representations of
138	short-term recovery, unlike plant species diversity assessments that may prove

139 misleading in the short-term as they could simply reflect the artificial planting 140 schedules in a particular restoration scheme, rather than genuine re-establishment 141 (Harris, 2003). 142 Stockton mine is an active opencast coalmine on the West Coast of New Zealand's 143 144 South Island where three primary restoration protocols are employed. Vegetation direct transfer (VDT) is a relatively recent development in restoration in New Zealand 145 146 (Simcock, Toft, Ross, & Flynn, 1999; Ross, Simcock, & Williams, 2000) and is the most 147 expensive and labour-intensive of the three protocols. It requires lifting patches of complete ecosystems (all above-ground vegetation and ~30 cm topsoil) and 148 149 transferring them to either holding sites, or areas where mining is completed and 150 requires restoration. VDT sods are laid in a patchwork, where intact sods are placed 151 alongside each other to achieve ground coverage resembling the donator site. 152 Typically VDT contains low-medium height scrub vegetation (1-3 m in height) as 153 larger trees have root networks that become damaged by the process and 154 experience dieback. The second most labour-intensive restoration strategy is the 155 mixing of biosolids (dried and sterilised municipal sewage waste) with stockpiled 156 mine tailings, which are then spread and planted with native vegetation. The third 157 process is the spread of untreated stockpiled tailings, which are also replanted with 158 native species. VDT and biosolids soil amendments are relatively new additions to 159 the Stockton mine restoration protocols that have been implemented on a large 160 scale only within the last 5 years, and have not yet been thoroughly assessed for 161 their efficacy in restoring mined areas. To our knowledge few studies have assessed

162	the role of VDT in ecological restoration (Simcock et al., 1999; Ross et al., 2000), and
163	its impact on soil organisms (Boyer et al., 2011).
164	
165	This study assessed soil microbial metrics under the three primary restoration
166	techniques used on the mine less than five years after their deployment. This
167	includes measurement of dehydrogenase activity, soil microbial biomass, functional
168	diversity, and community-level physiological profiles (CLPP). These measurements
169	were compared to those taken from local unmined native habitat as a benchmark for
170	restoration success.
171	
172	
173	Materials and methods
174	
175	Experimental design and site selection
176	
177	Stockton mine has been active since 2008 with an expectancy of 20 years coal
178	extraction. Prior to mining, the area was pristine native New Zealand bush
179	vegetation, of typically low to medium height (1-5 m) ranging from native tussock
180	grassland to beech and podocarp forest. The site undergoing restoration following
181	coal extraction was Mt Frederick, located on the southwestern area of the Stockton
182	mine (414248.16 E, 1715045.03 S). Mt Frederick was selected as it was one of the
183	first areas where mining had been completed. It contains a number of replicated
184	restoration sites (n=4 for all restoration types) of differing restoration techniques,
185	including VDT (direct, never stored in holding sites), biosolids soil amendment, and

untreated stockpiled soil spreads, and an unmodified pristine native site, all within
0.5 km of one another. The inclusion of areas of unmodified native vegetation was
intended as a benchmark for the restored sites, and was the same state as that prior
to mining. Owing to their location, all sites were a similar size (approximately 200-
300 m ²), and were subject to similar environmental variables such as slope and
weather conditions at a west to southwest orientation of approximately 1000 m
altitude. Age ranges for restored sites were: VDT 2-5 years, replanted stockpiled soils
2-5 years, and biosolids treated stockpiled soils 3-4 years. Soil stockpiles contain soil,
small fractured rock (generally <5 cm in diameter) and overburden, and can range
from 6 months to 5 years in age before use. Standard practice on Stockton mine is to
1:1 mix 5 years stockpiled soil with 6 months stockpiles prior to spreading and
planting in an attempt to improve soil quality (Thompson, personal communication).
The biosolids spread comprises 1:4 mix of biosolids and the above described
stockpiled soil preparation.

Soil collection

Soils were collected from four separate plots of each restoration type. Fifty 7 cm deep x 3 cm wide soil cores were taken across each restored and pristine plot starting in one corner of the plot and following a 'Z' shaped path across the width and length of the plot to capture the variation in soils within each plot. The 50 cores were then pooled for each site. Soil was then transported to Lincoln University, New Zealand and stored at 4 °C until microbial assays were completed.

210	
211	
212	Soil microbial biomass
213	
214	Microbial biomass was assessed by the chloroform-fumigation method (Vance,
215	Brookes, & Jenkinson, 1987). Triplicate 3.5 g soil fresh weight subsamples were
216	extracted in 15 ml $0.5M\ K_2SO_4$ (at 1:4 soil:extractant ratio) for 30 minutes on a rotary
217	shaker. Extracts were filtered using Whatman № 40 filter paper and analysed on a
218	Total Organic Carbon Analyser TOC-5000A fitted with a ASI-5000A autosampler (TOC;
219	Shimadzu, Japan). Another set of triplicate 3.5 g subsamples was subjected to
220	fumigation. These were placed in open vials in a vacuum box, together with 25 ml
221	ethanol-free chloroform and exposed for 24 h at room temperature in the dark.
222	Samples were then extracted using the same method for non-fumigated samples.
223	The difference between the two carbon concentrations in the fumigated and non-
224	fumigated soils was considered total microbial biomass carbon.
225	
226	Dehydrogenase activity
227	
228	As a proxy for soil microbial activity (Wlodarczyk, 2000), dehydrogenase activity
229	(DHA) was measured by quantifying the rate of reduction of triphenyltetrazolium
230	chloride (TTC) to triphenyl formazan (TPF) using a modification of the method
231	described in Alef (1995). 2 g fresh weight soil samples were weighed into sterile glass
232	vials in triplicate and mixed with 2 ml 0.7% TTC solution made by diluting $0.7~\mathrm{g}$ TTC in
233	100 ml 100mM Tris (pH 7.5). The samples were shaken on a rotary shaker for 30

234	minutes and incubated in the dark for 24 hours at 30 °C. TPF was extracted by adding
235	10 ml methanol, and incubating at room temperature for 2 hours with regular
236	shaking. Samples were filtered through Whatman Nº1 filter paper and absorbance at
237	485 nm measured on a Multiskan GO Microplate Reader (Thermo Scientific, US).
238	
239	
240	Community-level physiological profile and functional diversity
241	
242	Biolog EcoPlates™ (Biolog, CA) were used to generate community-level physiological
243	profiles (CLPPs) based on the microbial communities' ability to utilise different
244	carbon substrates. EcoPlates can be used to distinguish between communities from
245	different habitats (Gomez, Ferreras, & Toresani, 2006). They contain 31 carbon
246	compounds designed to reflect some of those found in root exudates and soils (in
247	triplicate, plus triplicate controls). A redox-colourant of tetrazolium violet is present
248	in all wells, which undergoes irreversible colour change when a carbon compound is
249	metabolised. Functional diversity can be estimated by the range and extent of
250	carbon compound metabolised.
251	
252	2.5 g of soil (dry weight equivalent) was diluted in 22.5 ml of 0.85% NaCl solution and
253	put on a rotary shaker for 30 minutes. Samples were allowed to settle for 10 minutes
254	before dilution to 10^{2} , and 140 μl of this suspension was used to inoculate each well
255	of the EcoPlates™. Absorbance at 590 nm was measured with a Multiskan GO
256	Microplate Reader, with initial absorbance taken immediately, and then every 24
257	hours for 16 days at which point there was no further change in absorbance.

258	
259	
260	Statistical analyses
261	
262	Microbial biomass and dehydrogenase activity were compared using analysis of
263	variance (ANOVA) on GenStat (VSN International), with Fisher's least significant
264	difference (LSD) for pairwise comparisons. Biomass and DHA data were log
265	transformed to fit the assumptions of ANOVA. Differences between CLPP patterns of
266	carbon substrate utilisation were visualized using nonmetric multidimensional
267	scaling (NMDS) and tested with permutational analysis of variance (PERMANOVA) on
268	PRIMER software (Clarke & Gorley, 2006). Differences in functional diversity, number
269	of functions, homogeneity of multivariate dispersion measures of CLPP were also
270	undertaken in PRIMER. Probabilities for rejecting the null hypothesis below 0.05
271	were considered significant, and between 0.05 and 0.10 were considered marginally
272	significant.
273	
274	
275	Results
276	
277	Soil microbial biomass
278	
279	Restoration type had a significant impact on soil microbial biomass (ANOVA, F =
280	28.97, $P < 0.001$). All treatments were significantly different (LSD, $P < 0.05$; Fig. 1A),
281	with the exception of stockpiled soil and biosolids-amended soils. Unmodified native

282	soil contained the greatest microbial biomass, followed by VDT, then biosolids-
283	amended soil and untreated stockpiled soil, the latter being an order of magnitude
284	lower in microbial biomass carbon than the pristine soil (Fig. 1A).
285	
286	
287	Soil dehydrogenase activity
288	
289	Dehydrogenase activity (DHA) significantly differed between treatments (ANOVA, $F = \frac{1}{2}$
290	11.39, $P < 0.001$). Pairwise comparisons (LSD, $P < 0.05$; Fig. 1B) showed that DHA was
291	significantly lower in untreated stockpiled soil than in all other treatments. Activity in
292	biosolids-amended soil did not differ from the unmodified site or VDT. However, VDT
293	had significantly lower rates of DHA than did the unmodified soil. (Fig. 1B). Linear
294	regression analysis (Fig. 1C) indicates that microbial biomass was not correlated with
295	DHA treatment means (n=4).
296	
297	
298	Community level physiological profile and functional diversity
299	
300	Restoration technique significantly affected CLPP of the microbial communities
301	(PERMANOVA, $F = 6.526$, $P < 0.001$; Fig. 2). Pairwise analyses indicate that VDT did
302	not differ from unmodified soil or biosolids-amended soil, but biosolids did
303	marginally differ from unmodified soil (PERMANOVA, $F = 2.023 P = 0.055$). CLPP of
304	stockpiled soil differed significantly from all other treatments (PERMANOVA, $P <$
305	0.05; Fig. 2).

306	
307	Richness and Shannon diversity index of CLPPs significantly differed between
308	treatments (ANOVA, $F_{richness}$ = 25.00, $F_{diversity}$ = 15.51, P < 0.001), where biosolids-
309	amended soils, VDT and unmodified soils did not differ from one another, but all
310	were significantly more rich and diverse than untreated stockpiled soil. Dispersion of
311	CLPP (the distance of points from the centroid within a treatment (Fig. 2), i.e.,
312	variation between samples within a treatment) also differed between treatments
313	(PERMDISP, $F = 7.898$, $P = 0.026$). Biosolids-amended soil did not differ from
314	unmodified soil, while VDT had marginally higher dispersion (PERMDISP, $F = 2.848$, P
315	= 0.061). VDT and biosolids-amended soils did not differ, but all restoration
316	techniques and unmodified soils were significantly less dispersed than untreated
317	stockpiled soil (Fig. 2).
318	
319	
320	Discussion
321	
322	Soil microbial communities can be useful early indicators of restoration success
323	when assessment of plant colonisation or other ecosystem functions may not be
324	suitable or possible (Sparling, 1992; Harris, 2003; Gomez et al., 2006). Short-term
325	monitoring in this study indicates that VDT and biosolids addition consistently
326	restored all measured facets of the soil microbial community towards that of the
327	reference state. Previous work has found strong differences in soil chemical
328	properties between soil from different restoration methods on Stockton mine

(Waterhouse, Boyer, Adair, & Wratten, 2014). The differences observed between

restoration types in this study, therefore, are likely to be due in part to differences in
soil physical and chemical properties arising from how the soil was treated following
excavation (Abdul-Kareem et al., 1984) and from biosolids use (Sullivan,
Stromberger, Paschke, & Ippolito, 2005). Input of restoration resources beyond that
of spreading untreated stockpiled tailings and replanting them with native
vegetation was beneficial to the aspects measured in this study. VDT was the most
effective protocol for restoring microbial biomass and activity as well as preserving a
community composition somewhat similar to native sites. Biosolids amendments
generally gave intermediate results and stockpile soils were least effective for
restoration. The same order is followed for labour and financial burden. On the
whole, our results suggest that such improvements are proportional to the effort
and cost incurred for each restoration technique, i.e., VDT is the most costly, both in
effort and financially, but restores microbial biomass, CLPP and functional diversity
more effectively than do the other techniques.
VDT is a process that relocates areas of intact native ecosystem and therefore is an
ecosystem that has experienced, and is recovering from, an extreme disturbance
event. This may explain the reduction in microbial biomass and DHA compared to
the undisturbed habitat (Peacock, Macnaughton, & Cantu, 2001; Lucas-Borja &
Bastida, 2011), and further study would be required to establish if these measures of
microbial communities return to pre-disturbance conditions in the long-term.
Nevertheless, the current assessment suggests that VDT is the most effective
restoration method deployed at Mt Frederick. In contrast, restoring areas with
stockpiled soils and stockpiled soils mixed with biosolids are examples of habitats

that are being engineered from scratch. For these habitats, measurements in this study are indicative of whether restoration is accelerating ecosystem development rather than recovery from disturbance *per se*. Biosolids have been successfully used to restore microbial communities on copper (Gardner, Broersma, & Naeth, 2010) and coal (Evanylo, Abaye, Dundas, Zipper, Lemus, et al., 2005) mines, and in metal-contaminated mine tailings (Brown, Henry, Chaney, & Compton, 2003), and comparing soils that were amended with biosolids with those that were not shows that the addition of biosolids leads to an acceleration of restoration in the majority of microbial measures in this study.

Although microbial biomass significantly differed between VDT and biosolids-treated stockpile soils, DHA, CLPPs, dispersion and functional diversity did not. The aim of carbon utilisation profiles in this study was not to compare community species composition (Bossio & Scow, 1998), but to assess whether the communities have similar functional diversity and physiological profiles (Garland & Mills, 1991), and comparing these to an unmodified native habitat can provide a useful measure of restoration success (Ruiz-jaen et al., 2005). The results in this study indicate firstly that some input of restoration effort beyond re-spreading and planting stockpiles is necessary for recovery of microbial CLPPs, dehydrogenase activity and microbial biomass carbon; and secondly, that biosolids addition and particularly VDT are especially effective for restoring such functions on the studied site. For example, both VDT and biosolids reduced the dispersion of CLPPs, resulting in communities more similar for plots within those treatments (Fig. 2), producing a similar homogeneity in communities between plots as in the unmodified habitats.

Furthermore, richness and functional diversity based on CLPPs was significantly
increased from untreated stockpiled soils to levels similar to unmodified soils. As
VDT is a relatively recently deployed restoration protocol on the Stockton mine, this
is an important finding showing that microbial activity and functional diversity are
not substantially decreased upon relocation of the VDT sods from unmodified areas.
The availability of carbon can have considerable effects on microbial communities
(Bossio & Scow, 1995), which may explain why the addition of biosolids, containing
high levels of carbon, increased CLPP, functional diversity and activity substantially
compared to stockpiled soil alone (Sharma, Rangger, von Lützow, & Insam, 1998;
Gomez et al., 2006; Zhang et al., 2012).
Dehydrogenase activity at VDT sites were lower than would be expected for the
given biomass, and vice versa for biosolids-treated soil (Fig. 1c). However, similar
functional diversity, richness and CLPP in the two treatments suggests that in
biosolids-treated soil either a larger proportion of the soil microbial biomass in
biosolids was active, or the same proportion was more active and more efficient at
carbon substrate utilization under the conditions used in this study (Haynes & Fraser,
1998).
Soil microbes mediate key ecosystem functions such as nutrient cycling and organic
matter decomposition, which can in turn influence plant community assembly
(Zhang et al., 2011). In the restoration methods employed at Mt Frederick, biosolids-
amended soils and stockpiled soil spreads are often planted with similar planting
schedules of native plants placed approximately 1 m apart, and when VDT is

undertaken, gaps can develop between sods caused by mechanical damage, vegetation dieback, edge erosion and misalignment. Soil quality will be a key determinant in the recolonisation of gaps in planting schedules and between sods by immigrants and subsequent generations. Therefore, organic matter amendment (for example biosolids), should be considered in order to accelerate ecological succession in such gaps by ensuring that soil microbial communities have been adequately restored (Harris, 2009).

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

408

402

403

404

405

406

407

The microbial methods (Biolog EcoPlates, DHA, soil microbial biomass carbon) used to assess soil activity, functional diversity and CLPP throughout this work are subject to some limitations. For example, use of Biolog EcoPlates is a coarse method restricted to carbon substrates and lab-culturability of field microbes (Preston-Mafham, Boddy, & Randerson, 2002; Campbell, Chapman, Cameron, Davidson, & Potts, 2003) and DHA is considered a proxy for general soil activity (Wlodarczyk, 2000). All of these methods were employed as measures for relative comparison between sites within the study, and not as absolute measures of soil microbial community (Preston-Mafham et al., 2002). In spite of the broad nature of rapid CLPP assessment tools (Lalor, Cookson, & Murphy, 2007) these assessments yielded some interesting results distinguishing between treatments and agreeing with the benefits of restoration to microbial communities that has been observed in previous studies (e.g. Sullivan et al. 2005; Rojas-Oropeza et al. 2010; Zhang & Chu 2012). However, variations in microbial community composition can cause substantial differences in function (Strickland, Lauber, Fierer, & Bradford, 2009). Therefore the differences in community similarity for soil microbes may affect soil processes not measured in this

426	study. Assessment of additional soil functions (e.g. decomposition, nutrient cycling
427	etc.) should be considered in future work, and over longer time periods to assess
428	long-term recovery.
429	
430	
431	Conclusion
432	
433	Using soil microbial communities as early indicators of restoration success in this
434	study indicates that on the studied site these communities have benefited from
435	channeling resources into ecological restoration, including VDT and the addition of
436	biosolids to stockpiled soils, rather than replanting in untreated stockpile spreads.
437	Biosolids have received substantial research attention in the context of ecological
438	restoration, and the results of this study tend to agree with those of others, finding
439	beneficial effects on the microbial community. VDT, however, has not yet been
440	implemented globally or on a large scale, and yet shows great promise for ecological
441	restoration. Ongoing assessment is required to ensure that this recovery is
442	consistently benefitting soil functions, followed by assessment of other ecosystem
443	processes (plant and animal recolonisation, biomass production etc.) to quantify
444	further advanced recovery in the coming years. In the meantime, utilising the
445	responsiveness of microbial communities can be a valuable tool in monitoring early
446	recovery of ecosystems following mining.
447	
448	
449	Acknowledgements

450	
451	This study was undertaken on an active opencast coal mine and the authors are
452	grateful to Solid Energy New Zealand Ltd and Stockton Alliance for logistical
453	assistance and mine access and MBC Consulting Ltd for mine escort and sampling
454	assistance. The project was principally funded by the Miss E. L. Hellaby Indigenous
455	Grassland Research Trust, with additional financial support from Solid Energy New
456	Zealand Ltd and the Bio-Protection Research Centre.
457	
458	
459	References
460	
461	Abdul-Kareem, A. W., & McRae, S. G. (1984). The effects on topsoil of long-term
462	storage in stockpiles. <i>Plant and Soil, 76,</i> 357–363.
463	Alef, K. (1995). Dehydrogenase activity. Methods in Applied Soil Microbiology and
464	Biochemistry. Academic Press, London.
465	Bossio, D., & Scow, K. (1995). Impact of carbon and flooding on the metabolic
466	diversity of microbial communities in soils. Applied and Environmental
467	Microbiology, 61, 4043–4050.
468	Bossio, D., & Scow, K. (1998). Impacts of carbon and flooding on soil microbial
469	communities: phospholipid fatty acid profiles and substrate utilization patterns.
470	Microbial Ecology, 35, 265–78.
471	Boyer, S., Wratten, S., Pizey, M., & Weber, P. (2011). Impact of soil stockpiling and
472	mining rehabilitation on earthworm communities. <i>Pedobiologia</i> , <i>54</i> , S99–S102.
473	Brown, S., Henry, C., Chaney, R., & Compton, H. (2003). Using municipal biosolids in
474	combination with other residuals to restore metal-contaminated mining areas.
475	Plant and Soil, 249, 203–215.
476	Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S., & Potts, J. M.
477	(2003). A rapid microtiter plate method to measure carbon dioxide evolved
478	from carbon substrate amendments so as to determine the physiological
479	profiles of soil microbial communities by using whole soil. <i>Applied and</i>
480	Environmental Microbiology, 96, 3593–3599.
481	Clarke, K. R., & Gorley, R. N. (2006). PRIMER v.6: User Manual/Tutorial. PRIMER-E,
482	Plymouth, UK.
483	Emmerling, C., Liebner, C., & Haubold-Rosar, M. (2000). Impact of application of
484	organic waste materials on microbial and enzyme activities of mine soils in the
485	Lusatian coal mining region. <i>Plant and Soil</i> , 129–138.

- Evanylo, G. K., Abaye, A. O., Dundas, C., Zipper, C. E., Lemus, R., et al. (2005).
 Herbaceous vegetation productivity, persistence, and metals uptake on a
 biosolids-amended mine soil. *Journal of Environmental Quality*, 34, 1811–1819.
- 489 Gardner, W., Broersma, K., & Naeth, A. (2010). Influence of biosolids and fertilizer 490 amendments on physical, chemical and microbiological properties of copper 491 mine tailings. *Canadian Journal of Soil Science*, *90*, 571–583.
- Garland, J., & Mills, A. (1991). Classification and characterization of heterotrophic
 microbial communities on the basis of patterns of community-level sole-carbon source utilization. Applied and environmental microbiology.
- Gomez, E., Ferreras, L., & Toresani, S. (2006). Soil bacterial functional diversity as
 influenced by organic amendment application. *Bioresource Technology*, *97*,
 1484–1489.
- 498 Grant, C., & Ward, S. (2007). Return of ecosystem function to restored bauxite mines 499 in Western Australia. *Restoration Ecology*, *15*, 94–103.
 - Harris, J. (2003). Measurements of the soil microbial community for estimating the success of restoration. *European Journal of Soil Science*, 801–808.
 - Harris, J. (2009). Soil microbial communities and restoration ecology: facilitators or followers? *Science*, *325*, 573–574.
 - Harris, J. A., Birch, P., & Short, K. C. (1989). Changes in the microbial community and physico-chemical characteristics of topsoils stockpiled during opencast mining. *Soil Use and Management*, 5, 161–168.
 - Haynes, R., & Fraser, P. (1998). A comparison or aggregate stability and biological activity in earthworm casts and undigested soil as affected by amendment with wheat or lucerne straw. *European Journal of Soil Science*, 49, 629–636.
 - Izquierdo, I., Caravaca, F., Alguacil, M. M., Hernández, G., & Roldán, a. (2005). Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. *Applied Soil Ecology*, 30, 3–10.
- Lalor, B. M., Cookson, W. R., & Murphy, D. V. (2007). Comparison of two methods
 that assess soil community level physiological profiles in a forest ecosystem. *Soil Biology and Biochemistry*, *39*, 454–462.
 - Lucas-Borja, M., & Bastida, F. (2011). The effects of human trampling on the microbiological properties of soil and vegetation in Mediterranean mountain areas. Land Degradation & Development, 394, 383–394.
- Ohsowski, B. M., Klironomos, J. N., Dunfield, K. E., & Hart, M. M. (2012). The potential of soil amendments for restoring severely disturbed grasslands. Applied Soil Ecology, 60, 77–83.
- Peacock, A., Macnaughton, S., & Cantu, J. (2001). Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long-leaf pine habitat. *Ecological Indicators*, *1*, 113–121.
- Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial
 community functional diversity using sole-carbon-source utilisation profiles a
 critique. FEMS Microbiology Ecology, 42, 1–14.
- Rojas-Oropeza, M., Dendooven, L., Garza-Avendaño, L., Souza, V., Philippot, L., et al. (2010). Effects of biosolids application on nitrogen dynamics and microbial
- structure in a saline-sodic soil of the former Lake Texcoco (Mexico). *Bioresource*
- 532 *Technology*, 101, 2491–2498.

500

501

502

503

504

505

506

507

508

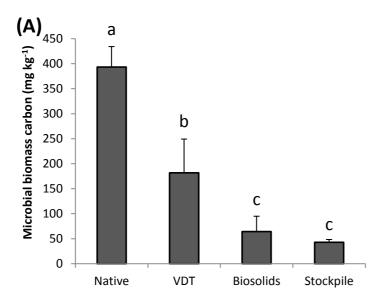
509

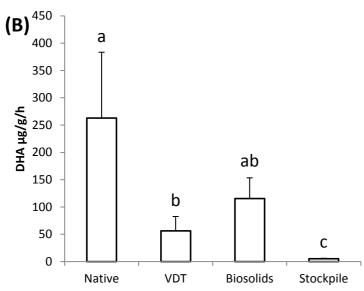
510

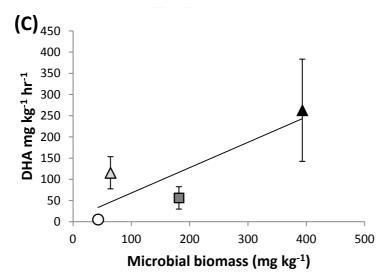
511

512

513


517518


- Ros, M., Hernandez, M. T., & García, C. (2003). Bioremediation of soil degraded by sewage sludge: effects on soil properties and erosion losses. *Environmental Management*, *31*, 741–7.
- Ross, C., Simcock, R., & Williams, P. (2000). Salvage and direct transfer for
 accelerating restoration of native ecosystems on mine sites in New Zealand. In
 New Zealand Minerals and Mining Conference Proceedings
- Ruiz-jaen, M. C., & Aide, T. M. (2005). Restoration success: how is it being measured? *Restoration Ecology*, *13*, 569–577.
- Sharma, S., Rangger, A., von Lützow, M., & Insam, H. (1998). Functional diversity of
 soil bacterial communities increases after maize litter amendment. *European Journal of Soil Biology*, 34, 53–60.
- Sheoran, V., Sheoran, A., & Poonia, P. (2010). Soil Reclamation of Abandoned Mine
 Land by Revegetation: A Review. *Journal of Soil, Sediment and Water*, 3, Article
 13.
- Simcock, R., Toft, R., Ross, C., & Flynn, S. (1999). A case study of the cost and
 effectiveness of a new technology for accelerating rehabilitation of native
 ecosystems. In *Prceedings of the 24th Annual Minerals Council of Australia* Environmental Workshop (pp. 234–251).
- Society for Ecological Restoration. (2013). http://www.ser.org/resources/resources detail-view/ecological-restoration-a-means-of-conserving-biodiversity-and sustaining-livelihoods.
- Sparling, G. (1992). Ratio of microbial biomass carbon to soil organic carbon as a
 sensitive indicator of changes in soil organic matter. *Australian Journal of Soil Research*, 30, 195.
- 557 Strickland, M. S., Lauber, C., Fierer, N., & Bradford, M. A. (2009). Testing the 558 functional significance of microbial community composition. *Ecology*, *90*, 441– 559 51.
- Sullivan, T. S., Stromberger, M. E., Paschke, M. W., & Ippolito, J. A. (2005). Long-term
 impacts of infrequent biosolids applications on chemical and microbial
 properties of a semi-arid rangeland soil. *Biology and Fertility of Soils*, 42, 258–
 266.
- Vance, E., Brookes, P., & Jenkinson, D. (1987). An extraction method for measuring soil microbial biomass C. *Soil biology and Biochemistry*, *19*, 703–707.
- Waterhouse, B. R., Boyer, S., Adair, K. L., & Wratten, S. D. (2014). Using municipal
 biosolids in ecological restoration: What is good for plants and soil may not be
 good for endemic earthworms. *Ecological Engineering*, 70, 414–421.
- Wlodarczyk, T. (2000). Some of aspects of dehydrogenase activity in soils.
 International Agrophysics, *14*, 365–376.


- Wortley, L., Hero, J.-M., & Howes, M. (2013). Evaluating Ecological Restoration Success: A Review of the Literature. *Restoration Ecology*, 1–7.
- Zhang, H., & Chu, L. M. (2012). Early Development of Soil Microbial Communities on
 Rehabilitated Quarries. *Restoration Ecology*, *21*, 490–497.
- Zhang, H., & Chu, L. (2011). Plant community structure, soil properties and microbial
 characteristics in revegetated quarries. *Ecological Engineering*, *37*, 1104–1111.

1	Figure legends
2	
3	Fig. 1: A) Soil microbial biomass (± SE); (B) soil dehydrogenase activity (DHA) (± SE);
4	(C) DHA (\pm SE) was not correlated with microbial biomass (r = 0.742, F = 5.75, P =
5	0.139). Unmodified native habitat ($lacktriangle$), VDT ($lacktriangle$), biosolids-amended soils (Δ) and
6	untreated stockpiled soil (\bigcirc).
7	
8	Fig. 2: Nonmetric multidimensional scaling (NMDS) plot based on Bray-Curtis
9	similarities of carbon substrate utilisation patterns: unmodified native habitat ($lacktriangle$),
10	vegetation direct transfer (VDT) (\blacksquare), biosolids-amended stockpiled soil ($ abla$),
11	untreated stockpiled soil (\mathbf{O}). Unmodified and VDT patterns did not differ, biosolids
12	amended soil and VDT did not differ, but biosolids did differ marginally from
13	unmodified soil. All other pairwise comparisons significantly differed. Stress 0.15.
14	
15	

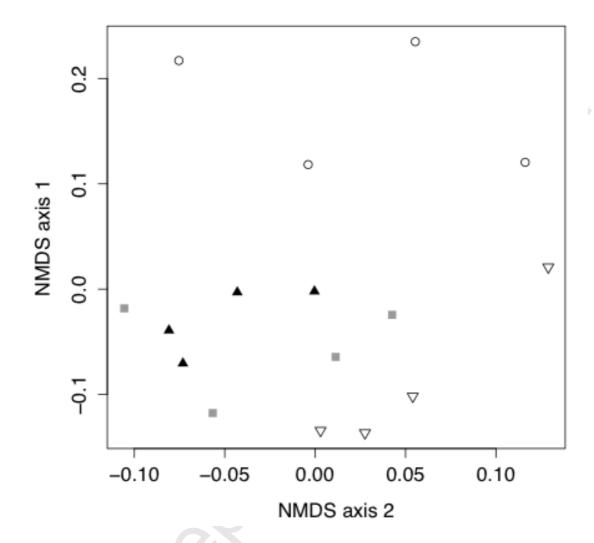

Figure 1:

Figure 2:

