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Abstract-Consumers in smart grids are expected to engage demand-response programs by two-way 

communication. This makes smart grids vulnerable to cyber attacks. In this paper, we study the false pricing 

attacks and model the interaction between attackers and defenders using a zero-sum Markov game, where neither 

player has full knowledge of the game model. A multi-agent reinforcement learning method is used to solve the 

Markov game and find the Nash Equilibrium policies for both players. An application to a simple radial power 

distribution system is worked out. The results show that the proposed algorithm can help the players find mixed 

strategies to maximize their long-term return. 
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1. Introduction 

Smart grids (SG) are critical infrastructures (CI), 
which integrate information and communication 
technology (ICT) onto the power grid. The ICT 
enables two-way communications, facilitating 
the control and operation of the SG. Besides all 
the benefits that this brings to the efficient and 
economic operation of SG, it is important to 
consider potential risks associated with it. One of 
the most challenging risks that is emerging with 
the increased usage of ICT is cyber-attacks 
(Liang et al. 2017; Dehghanpour et al. 2019). 

Load altering attack targets the consumer's 
demand-side management (DSM) and demand- 
response (DR) programs (Mohsenian-Rad and 
Leon-Garcia 2011). DR, as one type of DSM, is 
a consumer-driven activity, which improves 
energy system at the side of consumption and 
enables to reshape consumers’ consumption 
patterns by, e.g., real-time pricing (RTP) and 
time-of-use (TOU) pricing (Palensky and 
Dietrich 2011; Deng et al. 2015). With DR 
programs, many types of load are vulnerable to 
load altering attacks, e.g., price-response load 
(Mohsenian-Rad and Leon-Garcia 2011) and 
frequency-response load (Amini, Pasqualetti, and 
Mohsenian-Rad 2018). In the present work, we 
focus on attacks aiming at the price-response 
load, namely false pricing attacks (FPA). The 
assumption behind the price-based DR programs 
is that consumers are rational and eager to save 

money by reshaping their consumption patterns 
with the automated energy management system 
(EMS). Exploiting this, attackers can launch 
effective attacks with false prices, resulting in an 
increase of loads of some consumers and 
eventually cause circuit overflow or other 
malfunctioning in the power grids (Mishra et al. 
2017). 

In price-based DR programs, the price signal 
is transferred by the operator through the Internet 
to a central computer in a local substation where 
the price information is, then, broadcasted to the 
smart meters located at the side of the consumers 
via the Internet or Wi-Fi networks (Liu, Hu, and 
Ho 2014). This makes various parts of the 
communication infrastructure vulnerable to 
attacks, e.g., the central computer, the access 
point of the Wi-Fi network, and the smart meters. 
Interested readers may refer to (Liu, Hu, and Ho 
2014) for more information about the 
communication infrastructure. Smart meters are 
easiest to be attacked because of their weakness 
such as physical exposure, relatively simple 
authentication and encryption procedures, etc. 
(Tellbach and Li 2018). Besides, the attacks can 
be easily carried out with automated and 
distributed software intruding agents (Mishra et 
al. 2017). For these reasons, in the present study 
we specify the attack path in terms of injection 
of false prices by smart meters. 

Various research works have studied the 
problem of FPA. In (Tan et al. 2013), the authors 
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analyze the stability of the power grid subject to 
scaling and delay FPA, from the perspective of 
control theory. The authors in (Giraldo, Cardenas, 
and Quijano 2017) further extend the work to 
arbitrary price signals. In (Zhang et al. 2017), 
integrity attacks to the RTP process are 
considered. The attacks are carried out by 
altering the preference parameters of renewable 
and traditional power resources. Ref. (Mishra et 
al. 2017) assumes that the prices can be modified 
with a price change rate, and the behavior of the 
attacker and protector is modelled as a static 
game. 

The common assumption underpinning the 
above works is that the behavior of the 
consumers is deterministic, and both the 
attackers and protectors have full knowledge of 
the consumers’ response behavior to the 
electricity prices. This is unrealistic since the 
consumers demand-response behavior has an 
intrinsic stochastic element coming from the 
increasing penetration of distributed energy 
resources (DER) and renewable energies 
(Aghajani, Shayanfar, and Shayeghi 2017). 
Besides, the consumers may not respond to 
prices as it would be expected, because of the 
lack of knowledge about how to respond to time-
varying prices (Mohsenian-Rad and Leon-Garcia 
2010). However, consumers may receive 
electricity prices also from other channels like 
social networks (Tang et al. 2019), and 
determine their consumption coordinately. All 
these uncertainties make it hard for attackers and 
protectors to get full knowledge of the demand-
response model. For this reason, in the present 
work, we consider situations in which both 
attackers and defenders have no knowledge of 
the consumers’ response models. 

In recent research, (partially observable) 
Markov decision processes (MDP) and game 
theory have been applied to model the attacker 
and defender’s strategies. In (Hao, Wang, and 
Chow 2018), the intruder’s strategy is modelled 
by an MDP and the optimal attack policy is 
solved from the intruder’s perspective, based on 
which the attack likelihood is, then, analyzed. In 
the case where the attackers are only able to 
observe part of the environment, the behavior of 
the attacker can be modelled as a partially 
observable MDP (Chen et al. 2018), and single-
agent reinforcement learning can be adopted to 
solve the attack policies. However, these works 
have not incorporated the defender’s policies.  

In other research works, game-theoretic 
approaches have been used to model the strategic 
interaction between attackers and defenders 
(Deng, Xiao, and Lu 2017; Chen, Hong, and Liu 
2018; Wei et al. 2018). In (Deng, Xiao, and Lu 
2017), a two-player zero-sum game is proposed 
to model the strategies of the attacker and 

defender. The attacker tries to minimize the 
attack cost whereas the defender aims to 
maximize the least budget of attacking by 
allocating the defending resources. However, 
this static game is one-shot and ignores the 
dynamic evolvement. In (Chen, Hong, and Liu 
2018), a Markov game is adopted to model the 
competitive intrusion and defense policies for 
control of the substations. A stochastic game is 
introduced to determine the optimal resources 
allocation of attackers and defenders (Wei et al. 
2018). All these game-theoretic approaches are 
based on the assumption that both the attacker 
and the defender have full knowledge of the 
environment. In this paper, we propose a 
stochastic game where the players have only 
partial knowledge of the environment and solve 
the optimal policies of the players by multi-agent 
reinforcement learning (MARL). 

The rest of the paper is organized as follows: 
the power grid model and the Markov game 
model are introduced in Section 2; Section 3 
presents the proposed multi-agent reinforcement 
learning algorithm to solve the Markov game 
and applied to an illustrative power system in 
Section 4. The work is concluded in Section 5. 

2. model description 

Nomenclature 
� (! ,") power grid with vertex set !  and edge set " 

#$% power flow from vertex & to ' 

*,+, *- numbers of nodes, edges and demand nodes 

. power demand  

/ electricity price 

012 price change rate 

0 probability of response to electricity price 

3 load shedding 

""45 expected energy not supplied 

6 set of states of the system 

71,72 action sets of the attacker and defender 

:, :′ actions of attacker and defender 

ℛ1, ℛ2 reward sets of the attackers and defenders  

2(3, :, :′)  

2′(3, :, :′) 
reward of attacker and defender at state 3 with 

joint action (:, :′)  

>1, >2 resources allocation sets of attacker and 

defender  

Acronym 
SG            smart grids 

CI critical infrastructures 

ICT information and communication technology 

DSM demand-side management 

DR demand-response 

RTP real-time pricing 

TOU time-of-use 

FPA false pricing attacks 

EMS energy management system 

DER distributed energy resources 

MDP Markov decision processes 

MARL multi-agent reinforcement learning 



Proceedings of the 29th European Safety and Reliability Conference 3287

2.1 Power grid model 

We consider a power grid represented by a 
directed graph � (� ,�) , where the vertex set 
� = {!1, !2,… , !$}  represents the generators, 
transformers and demand nodes in the power 
grid and the edges set � = {%1, %2,… , %&} 
represents the distribution lines. The numbers of 
the nodes and edges are ' and *, respectively, 
and the number of demand nodes are represented 
by '+. The power flow can be modeled by the 
classical LinDistFlow model (Baran and Wu 
1989): 

-./ = ∑ -/11:(/,1)∈5
+ 7/  ∀(9, :) ∈ � ( ) 

where -./ is the power flow through distribution 

line ( 9, : ); 7/  represents the power demand at 

node : . Normally, the power demand of a 

consumer is dependent to the electricity price ; 

and it is automatically controlled by the EMS 

located in the smart meters. 
In this paper, we follow the demand response 

rule in (Mishra et al. 2017)  

(1 + >.) ⋅ @. ≥ 7/ ⋅ ; ( ) 

where @. represents the consumer’s targeting bill 
amount and >. is the sensitivity of the consumers 
to the billing amount. 

As a consequence of the renewable energy 
penetration and the uncertain behavior of 
consumers, the consumer's energy consumption 
can be modeled as a binary state at each time, 
i.e., elastic (responsive to price signals) or 
inelastic (unresponsive to price signals) (Ghosh, 
Sun, and Zhang 2012). In the present study, for 
simplicity, we assume that there is a probability 
B. that at each time the consumers respond to the 
price signals in one way or the other. In the case 
of B. = 0, the consumers demand is independent 
to the prices and determined only according to 
the consumers’ needs. 

The attacker can control consumers’ 
consumption indirectly by FPA, where the 
electricity price is modified with a price change 
rate (BDE). For instance, an attacker can inject a 
false price lower than the real one, i.e., ; ⋅ (1 −
BDE)  to a consumer’s smart meter and the 
consumer may change the load according to the 
false price and the probability B.. 

In case of overload, the operator will respond 
immediately to shed some load and minimize the 
impact of the attack: 

min ∑ G.

$H

.=1
( ) 

s. t.  0 ≤ G. ≤ 7. ( ) 

−-./
max ≤ -./ ≤ -./

max ( ) 

�NOPQ9R* (1) 
The impact of the attack can be quantified by 

the Expected Energy Not Supplied (EENS). 

��VW =
G9
79

'7

9=1

2.2 Markov game model 

In reality, both the attacker and the defender have 
limited available resources to attack and protect 
the power grid. The resources that the attacker 
can utilize include the hackers, technical and 
economic resources. Similarly, the resources of a 
defender include the personnel, the technical 
resources, e.g., software and hardware security 
elements (Y. Yan et al. 2012) and economic 
resources. The problem for the attacker and 
defender is how to utilize their resources to 
achieve their goals at most. The decision process 
of the attacker and defender can be modeled as a 
two-player zero-sum Markov Game, which is 
represented as a tuple X� = ⟨Z,[,\,ℛ⟩. 
 Z = {G1, G2, … , G_}  is the finite set of 

environment states; 
 [ = {[1,[2} represents the joint action of 

the attacker and defender, where [1 and [2 
represent the attacker’s and defender’s 
action spaces, respectively, and  
represents the number of actions that the 
player can choose; 

 \ represents the state transition probability 
function.  

 ℛ = {ℛ1, ℛ2}  represents the player’s 
reward function, where ℛ1 and ℛ2 represent 
the attacker’s and defender’s rewards, 
respectively. 

The game is played for a sequence of discrete 
time steps. At each time step, some 
representation of the state of the environment, 
G ∈ Z, can be observed by the players. Based on 
the state of the environment, the players choose 
their actions (P, P’) ∈ [ independently; then, as 
a consequence, in the next time step, the 
environment’s state transits to G′  with 
probability \(G′|G, P, P′) . Meanwhile, the 
attacker and the defender get a reward 
E(G, P, P′) and E′(G, P, P′) , respectively. Since 
the game is a zero-sum game, E(G, P, P′) +
E′(G, P, P′) = . Each part of the game is 
defined as follows: 
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2.2.1 The state of the environment  

In the perspective of the attacker, the goal is to 
inject false price information in the demand 
response process of consumers and cause failure 
to the power grid. For this reason, we use the 
EENS to define the state of the power system:  

� =
�1,    !!"# = 0
�2,    !!"# > 0  

The state of the power grid can be solved by 
Eq. (3). The information that the attacker 
requires to know is the consumers’ usages at 
each time step, the topology information of the 
power grid and the capacity of the distribution 
lines. We assume that the attacker has access to 
all the consumers and knowledge of the related 
information. 

2.2.2 The action space of the agents 

Suppose the maximum price change rate that 
cannot be detected is  and an action of the 
attacker can be modeled as $ =
{&'(1, &'(2,… , &'(+-

},  where &'( ∈
[0, &'(+34] . As in (Mishra et al. 2017), we 
assume that there is a cost associated to the price 
change, i.e. '5 = 6 &'(5 , and consider a linear 
cost function 6(⋅) , Then, the attack resource 
targeting each consumer is :1 =
{'1, '2,… , '+-

}  and the total resource of the 
attacker at any time is limited as '+34 , i.e., 
∑ '<

+-

<=1
≤ '+34 . Similarly, the defender can 

allocate his defense resources to protect the 
smart meters from being attacked: :2 =
{'′

1, '
′
2,… , '′

+-
} and ∑ '′

<
+-

<=1
≤ '′

+34. 

2.2.3 The immediate reward of players 

In the present work, the attacker aims to find the 
optimal resource allocation policies to cause the 
power system overload, whereas the defender 
tries to allocate the limited defending resources 
to protect it. Thus, the immediate reward of the 
attacker at a state  with the joint action of 
the attacker can be calculated as: 

( �, $, $′ = !!"#  

and the immediate reward of the defender is the 
negative value of that of the attacker. 

2.2.4 The state transition probability 

In previous works, the state transition probability 
is derived from empirical information. However, 
practically, the players have no historical 
information to get the explicit expression of the 
transition probability. Theoretically, in order to 
obtain this probability, both the demand response 
models of all the consumers and the probability 

of demand response need to be known. However, 
the response model is normally private (Samadi 
et al. 2010) and the probability of demand-
response are difficult to know. Therefore, in the 
present work, we assume that the state transition 
probability is unknown to the players.  

3. Minimax-Q learning algorithm 

Generally, the players in the game try to find the 
optimal policy to maximize the expected long-
term return from every state of the environment: 

B$CD � = !D EF ⋅ (F+1|�0 = �
∞

F=0

 

where D = {D1, D2}  is the joint policy of the 
players and E ∈ [0,1]  is the discount factor, 
which represents the degree of interest of the 
future reward. Choosing a value of E close to 1 
means that the agent regards every immediate 
reward nearly equal important. On the contrary, a 
E close to 0 favors the immediate reward. 

The policy of an agent is a mapping from the 
state of the environment to a probability 
distribution over the associated actions in the 
state. For instance, the policy of the attacker 
D1(�, $)  is a probability distribution of each 
action in every state and satisfies: 

D1 �, $ = 1   ∀� ∈ J 
$∈K1

 

As the definition of the concepts in the game 
is similar for both players, in this paper we 
analyze the game from the perspective of the 
attacker. In reinforcement learning, the attacker 
acts to the environment and receives one-step 
feedback. Then, the quality of the action taken 
by the attacker, i.e., the immediate reward, the 
action of the defender $′ ∈ K2 can be observed. 
Thus, the agent can maximize its long-term 
return by calculating the optimal value of the Q 
function at each time step: 

L �, $, $′ = !D EF ⋅ ( �, $, $′

"

F=0

 

In the present study, the defender tries to 
minimize the return of the attacker whereas the 
attacker tries to maximize it. The best policy of 
them is to achieve a Nash Equilibrium. At the 
Nash Equilibrium, each player is maximizing its 
rewards and any changes in strategy would make 
it worse or stay the same.  

To achieve Nash Equilibrium, the Minimax -
Q algorithm (Littman 1994) and the temporal-
difference (TD) learning method (Sutton and 
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Barto 2011) can be adopted. Minimax-Q is 
proven to converge to the equilibrium value 
function (Littman and Szepesvári 1996). In the 
maximum-Q algorithm, the �(�, �, �′)  is 
recursively updated: 

�(�, �, �′) = �(�, �, �′) +
 ⋅ " �, �, �′ + $ ⋅ %�& �′ − � �, �, �′  

where  is the learning rate. 
Thus, the policy of the attacker can be 

derived: 

%�&(�) = 
max

-1
min

/′∈22
∑ 51(�, �) ⋅ �(�, �, �′)

/∈21

( ) 

The aim of the defender is to minimize the Q 
value of the attacker, whereas the attacker wants 
to maximize it. Thus, the policy of the defender 
can be derived by: 

%�&(�) = 
min
-2

max
/∈21

∑ 52(�, �′) ⋅ �(�, �, �′)
/′∈22

(12) 

At each time step, the agent can choose its 
action according to the policy already learned 
(exploitation) or randomly (exploration). A 
challenge in reinforcement learning is to balance 
exploration and exploitation. A common method 
is the - greedy policy (Sutton and Barto 2011), 
where  represents the probability of exploration 
and the probability of exploitation is . The 
proposed algorithm is presented in Table 1. 

Table 1. Proposed algorithm. 

Algorithm 1: Proposed MARL for FPA process 

Initialization:  

∀� ∈ ;, � ∈ <1, �′ ∈ <2 

�(�, �, �′) = 1, %�&(�) = 1, 51(�, �) = 1/|<1| 
Let  = 1 

Loop 

In state � 

Choose a random action � from <1 with probability ? 

Otherwise, choose action � with probability 51(�, �) 

Derive consumers’ demand-response according to Eq. (2) 

In state �′ 

Observe the defender’s action �′, derive "(�, �, �′) according 

to Eq. (3)-(4) 

Update �(�, �, �′) according to Eq. (10) 

Derive the optimal attack policy according to Eq. (11). 

 =  ⋅ @AB�C 

End loop 

 

4. Case study  

We use a 5-bus power distribution system 
modified from a 6-bus test feeder (Kocar and 
Lacroix 2012), as an example to illustrate the 
application of our proposed model. In Fig. 1, 
node 1 is the infinite bus and nodes 2, 3, 4 and 5 
are demand nodes. The capacities of lines L1, 
L2, L3 and L4 are 1600 kW, 3500 kW, 8000 kW, 
and 4000 kW, respectively. The electricity price 
at the initial time of learning is 35 cents/kW. The 
probability of consumers responding to the price 
is uniformly assumed to be 0.7. 

 
Fig. 1 5-bus test feeder considered. 

We set the exploration probability ? as 0.3, the 
learning rate  to be 0.1 and the discount factor 
$ to be 0.9, following the common setting in (J. 
Yan et al. 2017). We assume the resources of the 
attacker and defender are 4 and 3, respectively. 
For feasibility, we assume that the attacker 
chooses DB" from {0, 0.1, 0.3} and the defender 
chooses B′  from {0, 0.3}. If no defense is 
allocated to a consumer, the attack is successful; 
otherwise, the attack fails. In each trial, the 
attacker tries the action randomly or following 
the learned policies until the state of the system 
becomes �2 . This process is denoted as an 
episode. We try 100 episodes and get the 
following results. 

Fig. 2 Result of learned �(�, �, �′) of the attacker. 

The result of the learned �(�, �, �′)  of the 
attacker is presented in Fig. 2. It can be seen that 
at the beginning, the attacker searches the policy 
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randomly and the learning efficiency is quite low 
since the value of �(�, �, �′) is nearly 0. After 6 
episodes of learning, the attacker agent starts to 
learn the policy quickly and when the episode 
reaches 50, the agent learns the best policy and 
the game converges to the approximate Nash 
Equilibrium.  

The mixed policies of attacker and defender 
are shown in Fig. 3 and Fig. 4, respectively. 
There are totally 15 actions available to the 
attacker and 5 actions available to the defender. 
The contents of the mixed policy of attacker and 
defender are listed in Table 2 and Table 3, 
respectively. It can be observed that the attacker 
distributes his resources to nodes 2 and 3 or 
nodes 1 and 4, or just attack node 2. This is the 
best policy for the attacker since the defender 
can only protect one node at each time and the 
districting the attack resources to different 
consumers with small  !"  rather than only on 
one consumer with a large  can avoid getting 
nothing if the attacked node is protected by the 
defender. To minimize the value of �(�, �, �′) of 
the attacker, the defender can protect node 3 or 
node 4 or do nothing. Since the defender can 
only allocate the defense resources to one 
consumer at most, the defender can choose one 
of the attackers’ policies to protect, i.e., choose 
to protect node 3 considering the action 8 of the 
attacker, and choose to protect node 4 
considering the action 12 of the attacker. 

 
Fig. 3 Policy of attacker. 

 
Fig. 4 Policy of defender. 

Table 2 Policy of attacker. 

action     

7 0 0.2 0 0 

8 0 0.2 0.2 0 

12 0.2 0 0 0.2 

Table 3 Policy of defender. 

action     

1 0 0 0 0 

2 0 0 0 0.3 

3 0 0 0.3 0 

5. Conclusion  

In this paper, the interaction between the attacker 
of a power grid by FPA and the defender who 
allocates protections with limited resources is 
modeled as a Markov game, where neither of the 
players has full knowledge of the game model as 
a result of the uncertainty in the consumers’ 
consumption of energy. The Minimax-Q learning 
algorithm is adopted to find the approximate 
Nash Equilibrium solution for each player. The 
proposed framework is demonstrated on an 
illustrative 5-bus radial power system. The result 
shows that by learning from the interaction with 
the environment, the players can get mixed 
strategies to maximize their long-term return 
given the other player’s policy. 
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