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ABSTRACT

Context. Direct detection of exoplanets requires imaging in a highly dynamic range and exquisite image quality and stability. Wave-
front error (atmospheric errors, manufacturing errors on optics, cophasing residuals, temperature variations, etc.) will limit the effi-
ciency of this endeavor by creating various flavors of speckles that evolve with different timescales. Active wavefront-error correction
using a deformable mirror requires measuring the wavefront aberrations in the science image with high accuracy and in a shorter time
than the duration of the dominant speckle lifetime.
Aims. The self-coherent camera (SCC) is a focal plane wavefront sensor exploiting the coherence of light to generate Fizeau fringes
in the image plane to spatially encode speckles. The SCC combines a coronagraph and a modified Lyot stop to which a reference
channel is added. The conventional SCC is restricted to long-exposure measurements because the light transmitted through the ref-
erence channel is limited. The SCC can correct quasi-static aberrations but precludes short-lived atmospheric aberrations from the
measurement.
Methods. I propose an alternative to the conventional SCC that I call the fast-modulated SCC. It uses a simplified Lyot stop design
and an adequate Fourier filtering algorithm. The theory is established and confirmed by means of numerical simulations.
Results. The SCC theory dictates that the separation between the classical Lyot stop and the reference channel must be larger than
1.5 times the Lyot stop diameter. The fast-modulated SCC allows for the reference channel to be placed anywhere, in particular in
the vicinity of the pupil where the maximum of diffracted light is found. This alternative represents a complete game changer for the
sensor: full compatibility with any type of coronagraph, easy installation in existing instruments, and versatility by accessing short-
and long-time exposure measurements.
Conclusions. While the conventional SCC can almost not be implemented in existing instruments because the optical beam footprint
in the instrument must be wide enough to illuminate the reference channel, which is often seen as a significant shortcoming, the fast-
modulated SCC does not require any constraint on this. The fast-modulated SCC also relaxes the high sampling requirement to resolve
the fringes, which is usually incompatible with the observation of fainter targets because the fringes are larger. The fast-modulated
SCC simultaneously counteracts the two original shortcomings of the SCC concept.

Key words. instrumentation: high angular resolution – instrumentation: adaptive optics – methods: numerical –
techniques: high angular resolution – telescopes

1. Introduction

Observing sequences have shown that high-contrast imaging is
fundamentally limited by speckle noise. Speckle noise comes
from wavefront errors caused by various independent sources
and evolves on different timescales depending on their nature.
Speckles can be divided into three main families: (i) large
dynamical wavefront errors generated by the atmosphere; (ii)
slowly varying instrumental wavefront aberrations (amplitude
and phase errors) of various causes, notably mechanical or
thermal deformations resulting in quasi-static speckles; and
(iii) long-timescale wavefront errors found in the optical train
(e.g., optical quality, misalignment errors, cophasing residuals)
resulting in static speckles. Maintaining nearly aberration-free
wavefront defects (in both phase and amplitude) over time is
essential for any coronagraphic instrument. A high level of
wavefront control (correcting for dynamical, quasi-, and static
aberrations) and wavefront shaping (creating a dark hole of very
deep contrast over a limited area in the field of interest) is
paramount. Various wavefront sensors are available and have
been proposed over the years for adaptive optics, active optics
(telescope and instrument), cophasing optics, etc.

The self-coherent camera (SCC; Baudoz et al. 2006;
Galicher et al. 2008) is a wavefront sensor that can be used for
both instrument wavefront control and wavefront shaping. The
SCC is a powerful tool for exoplanet detection because it works
directly on the coronagraphic image. The SCC creates Fizeau
interferences to spatially modulate the speckle intensity in the
coronagraphic image. From one coronagraphic image it is pos-
sible to retrieve the complex electric field, and thus estimate
accurately the wavefront errors that are found upstream from the
coronagraph (because the SCC is used as a focal plane wave-
front sensor downstream from a coronagraph). Many attempts
have been made to improve the potential of the sensor for active
optics (Galicher et al. 2010; Mazoyer et al. 2013; Mazoyer 2014;
Delorme et al. 2016) and fine cophasing optics (Janin-Potiron
et al. 2016). The SCC is a low-cost sensor benefiting from ele-
gance and simplicity. However, the main design characteristic of
the SCC is also the main drawback of the concept: the additional
use of an off-axis pinhole in the Lyot stop, the so-called refer-
ence channel. The light transmitted through the reference chan-
nel interferes with the main Lyot beam in the downstream focal
plane, creating fringes in the detector image. These fringes retain
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Fig. 1. Effect of the β parameter: 0.4, 0.6, 0.8, and 1.1 from left to right. Top row: segmented piston phase as estimated by the conventional SCC.
Bottom row: corresponding OTFs where the side lobe I− is highlighted by the red circle for clarity.

both phase and amplitude information from the complex electric
field of a star. Because the amount of light transmitted through
the reference channel is limited, present-day SCC only works on
long exposures that preclude the correction of fast-living atmo-
spheric aberrations. In contrast with laboratory operation, on-sky
operation of the SCC suffers from the reference flux-limitation
(Delorme 2016).

A recent study (Gerard et al. 2018) showed that one way to
increase the amount of light in the reference channel is to modify
the design of the coronagraph and revise the SCC Fourier filter-
ing algorithm. The modification of the SCC is referred to as the
fast atmospheric SCC technique (FAST). In this paper, I propose
another approach to solve the same issue by revising the Lyot
stop design and the SCC Fourier filtering algorithm. The pro-
posed solution is called the fast-modulated SCC and represents
a complete game changer because it allows for placing the refer-
ence channel anywhere, in particular at the maximum flux posi-
tion in the Lyot plane. The constrain on the separation between
the reference channel and the Lyot stop with the conventional
SCC is removed with the fast-modulated SCC.

The paper is structured as follow: in Sect. 2 I briefly recall the
principle of the SCC, reference channel properties, and system
parameters, and discuss practical limitations. In Sect. 3 I detail
the fast-modulated SCC. Section 4 concludes on the gain offered
by the fast-modulated SCC strategy.

2. Self-coherence camera

2.1. Principle

This section briefly recalls the main steps for measuring wave-
front errors with the SCC. More details can be found in
Baudoz et al. (2006) and Galicher et al. (2008) and subsequent
papers. The detailed formalism of the SCC is summarized in
Appendix A.

To calibrate speckles, the SCC uses a modified classical Lyot
stop by adding a small hole called reference channel that picks
up a small amount of stellar light. The science and the refer-
ence channels interfere in a Fizeau scheme, and the SCC spa-
tially modulates the stellar speckles on the detector, but it does
not affect a potential companion image because its light is not
coherent with stellar light.

Pupil plane and focal plane variables are denoted ε and α,
respectively. The symbol λ expresses the observing wavelength.
Fourier transform of a function f is noted F ( f ) , and the inverse
Fourier transform is expressed as F −1 ( f ). The cross denotes the

product operator, while the cross in a circle denotes the convo-
lution product. The required pupil separation between the refer-
ence and the science channels, to avoid any overlap of the peaks
in the spatial frequency plane, Fourier transform of the SCC
image (I), the complex-valued optical transfer function (OTF),
is denoted ε0 (see Fig. 1 bottom right image). With these nota-
tions, the SCC interferential image is expressed as

I(α, λ) = |AS|
2 + |AR|

2 + |AP|
2 + A∗SAR exp

(
−2iπαε0

λ

)

+ ASA∗R exp
(

2iπαε0
λ

)
, (1)

where the first three terms refer to the coronagraphic residuals
(stellar, reference, and planet images). The two last terms refer
to the modulation components that represent the spatial speckle
modulation through interferences with a λ/ε0 interfringe.

To estimate wavefront errors, the modulated parts of I(α, λ)
denoted I−(α, λ) and I+(α, λ) need to be isolated because they
contain a linear combination of AS and AR. Their inverse Fourier
transform leads to

F −1[I](ε, λ) = F −1[IS + IR + IP] + F −1[A∗SAR] ⊗ δ
(
ε −
ε0
λ

)
+ F −1[ASA∗R] ⊗ δ

(
ε +
ε0
λ

)
, (2)

where IS = |AS|
2, IR = |AR|

2, and IP = |AP|
2 are intensities of the

speckles. The image obtained after this inversion is composed
of three entities centered in u = [−ε0/λ, 0, ε0/λ]. The two lat-
eral peaks are referred to as F −1[I−] and F −1[I+]. One of the
two lateral peaks is extracted and Fourier transformed. Wave-
front errors upstream of the coronagraph can thus be estimated
(φest) from the OTF expression of I. It is expressed as

φest = F −1
[

I−
A∗RM

]
(ε, λ), (3)

where M is the coronagraphic mask function. The imaginary and
real parts of φest give access to the phase and amplitude parts of
the wavefront error.

2.2. Reference properties and limitations

The diameter of the pupil and the reference channels are denoted
DL and dR, respectively, and γ is the ratio parameter such that

γ =
DL

dR
· (4)
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Fig. 2. Illustration of the SCC Lyot
stop (left) assuming γ= 20 and diffracted
intensity in the Lyot plane with a four-
quadrantphasemaskcoronagraph(right).
In both images the area inside the red
circle (β= 1.0) symbolizes the precluded
reference positions. The purple, yellow,
blue, and green circles correspond to ref-
erence positions for which β is equal to
0.4, 0.6, 0.8, and 1.1, respectively.

As demonstrated in Galicher et al. (2010), the separation
required for ε0 to not overlap the side peaks and the central peak
is

ε0 = β (1.5 + 0.5/γ) DL, (5)

where β cannot be lower than unity and is usually set with a
10% margin (β = 1.1). If β is lower than unity, the phase esti-
mation is compromised and the SCC does not work properly
(Fig. 1, the estimated residual increases and is more strongly
corrupted with decreasing β ). Thus the reference channel has
to satisfy a restrictive condition on its position: the center of the
pupil and reference channels are at least separated by more than
1.5 × DL because otherwise the central and lateral peaks would
be misidentified (Fig. 1).

Pending the application, the reference must satisfy another
condition on its dimension dR that can be expressed with γ as
well. I describe this below.

– When the SCC is used as a cophasing sensor (Janin-Potiron
et al. 2016), the condition that must be satisfied by γ is

γ ≥ 4Nseg + 2, (6)

where Nseg represents the number of segment rings that com-
prise the telescope pupil. The higher the number of segments
or rings (Nseg), the higher the γ value, and the lower the sig-
nal in the reference. The higher the value of γ, the lower
the fringe contrast. This translates into typical γ values of
10 or 14 for the James Webb Space Telescope (JWST) and
the Keck telescope, respectively. For the 798 segments over
16 rings of the Extremely Large Telescope (ELT), the condi-
tion transforms into γ ≥ 66, which will undoubtedly lead to
a very poor signal-to-noise ratio (S/N). Expressing the con-
straint on dR leads to

dR ≤
DL

4Nseg + 2
· (7)

– When the SCC is used for the correction of quasi-static aber-
rations with a deformable mirror (DM) to guarantee a cor-
rection at sufficient S/N, the maximum reference diameter is
(Mazoyer 2014)

dR ≤ 1.22 ×
√

2
DL

Nact
, (8)

where Nact is the number of DM actuators across the pupil.
This leads to the following condition:

γ ≥
Nact

1.22 ×
√

2
. (9)

Typical values of γ would be 29–37 for 1 K or 2 K actuator
DM, respectively. The higher the actuator count, the lower
the γ value, and the lower the signal in the reference. The
reference size drives the area in the focal plane that the DM
can correct for.

The SCC system includes several fundamental limitations: (i)
because the SCC spreads light into fringes, it requires sufficient
sampling to detect the fringes that encode the residual speckles;
(ii) to optimize the fringe contrast, it is critical to match the inten-
sity distributions and fluxes of pupil and reference channels; (iii)
to avoid any overlap of the peaks in the Fourier signal domain,
the reference must be distant enough from the pupil channel; and
(iv) to guarantee measurement and correction upon application,
the size of the reference must be small enough. These limita-
tions prevent a high S/N because the coronagraph diffracts light
mainly in the vicinity of the pupil channel where the reference
channel is not.

3. Fast-modulated SCC

3.1. Breaking the rules

The SCC theory dictates that the reference cannot be placed
in the vicinity of the pupil channel for the reasons mentioned
above (in Fig. 2, left, the red circle symbolizes the limit under
which the reference cannot be placed). The maximum diffracted
energy from the coronagraph can be found in the vicinity of the
pupil channel. Figure 2 (right) shows that to obtain the max-
imum intensity, β ∼ 0.4 is required, while the conventional
SCC imposes β > 1.0; the image assumes a four-quadrant phase
mask coronagraph (Rouan et al. 2000). The general idea of the
fast-modulated SCC is to accommodate the SCC with a refer-
ence channel closer to the edge of the pupil channel because it
resolves the S/N issue of the concept: it relaxes constraints on
(ii), suppresses the condition on (iii), and enables the use of the
SCC for wider applications in a broader context (iv). It would
also relax the requirement on (i) because the fringes are larger
when the reference channel is closer (the interfringe is inversely
proportional to ε0).

3.2. Fast-modulation Fourier filtering algorithm

The principle of the fast-modulated SCC is simple, and the for-
malism is detailed in Appendix B. Two SCC images are recorded
almost simultaneously using a motorized Lyot stop that closes
and opens the reference channel at a high rate. When the refer-
ence channel is open, the SCC image is fringed, and it does not
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Fig. 3. Fast-modulated SCC Fourier filtering algorithm principle. Two SCC images are obtained (sequentially or simultaneously) with a pupil
channel without a reference channel (top, image without fringes) and with a pupil channel with a reference channel (bottom, fringed image) to
isolate different SCC image terms in spatial frequency in order to isolate the side lobe of the second OTF.

have a fringe when the channel is closed. The Lyot stop modula-
tor exchanges the two configurations at a high frequency rate dic-
tated by the application, considering integration time and speckle
lifetime. This way, the detector can integrate the two component
images quasi-simultaneously over various frame exposure times,
using the same detection pixels. Both images are subject to exactly
the same aberrations and noises. Two OTFs are then computed:
one with the three entities, and one with the central entity only. The
subtraction of the two allows for recovering the side lobes even for
theoretically invalidβ values (Fig. 3). The rest of the Fourier filter-
ing algorithm is similar to the classical SCC data post-processing.
Low β value are now possible, for instance, β = 0.4 (Fig. 2,
left), for placing the reference in the vicinity of the pupil channel
where a maximum of energy is found. This way, the SCC can inte-
grate the two component images quasi-simultaneously over low
frame exposure times. Alternatively, another way to implement
the modulated SCC is to consider a differential imaging mode:
using two arms where the two Lyot stops (with and without the
reference channel) would be installed. Images are recorded simul-
taneously, but on different detector pixels. In both cases (fast-
modulation imaging or differential imaging modes), the Fourier
filtering algorithm is the same. Numerical evidence that mirror
fine-phasing can be achieved with the fast-modulated SCC is pre-
sented in Appendix C.

3.3. Fast-modulated multireference SCC

The multireference SCC (MRSCC) has been proposed as an
upgrade of the SCC to use the sensor in polychromatic light
(Delorme et al. 2016). A unified view of the SCC would consider
combining the MRSCC and the fast-modulated SCC principle
for simultaneous multitimescale speckle correction. While the
fast-modulated SCC suppresses the constraint on the reference
position, the multireference SCC would consider placing vari-
ous references of different sizes, that is, for different applications
(atmospheric optics, active optics, cophasing optics, etc.) in the
vicinity of the pupil channel. From one set of images with and
without fringes the fast-modulated MRSCC would simultane-
ously work as a cophasing, atmospheric, and dark hole wavefront
sensor (assuming that a common exposure integration time can
be found). This way, the SCC turns into a complete integrated

solution for focal plane wavefront sensing. It paves the way for
simultaneous multiple wavefront error measurement or correc-
tion regardless of the coronagraph design.

4. Conclusion

The conventional SCC offers various major advantages: science
image direct measurement with a limited amount of hardware
(no dedicated optical path). The fast-modulated SCC retains
these advantages and adds one major benefit: while the conven-
tional SCC can almost not be implemented in existing instru-
ments because the optical beam in the instrument must be wide
enough to illuminate the reference channel that is installed at a
farther distance than three times the pupil radius from the pupil
center (which is often seen as a significant shortcoming), the
fast-modulated SCC does not place any constraint on this. The
fast-modulated SCC only requires a motorized Lyot stop with
a modulator on the reference hole. It can therefore be installed
in all major present-day high-contrast imaging instruments at
almost no cost. Because the reference channel distance to the
pupil channel is no longer constrained, the reference channel
S/N will outperform the conventional SCC S/N. It thus allows
for accessing both short- and long-exposure time applications.
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Appendix A: Formalism of the self-coherent camera

In the following, I recall the SCC formalism (Baudoz et al. 2006;
Galicher et al. 2008; Mazoyer et al. 2013) that leads to the main
equations discussed in Sect. 2. It is assumed that the star is on-
axis, and no planet signal is considered for the sake of simplicity.
Fourier transform of a function f is noted F ( f ) and the inverse
Fourier transform is expressed as F −1 ( f ). The cross denotes the
product operator, while the cross in a circle denotes the convo-
lution product. The pupil P is defined as the telescope aperture
function, M is the coronagraphic focal plane mask function, and
L is the Lyot stop function. Pupil plane variables (εx, εy) are
described by the vectorial form (ε). Similarly, α denotes the focal
plane variables. The symbol λ expresses the observing wave-
length. The quantity ψ denotes the wave complex amplitude. The
function φ (ε, λ) represents the phase aberrations that are located
in the pupil.

Under these assumptions, the pupil function defined over a
diameter DP is

P (ε) =

{
1 if |ε | ≤ DP

2
0 otherwise.

Similarly, the Lyot stop function defined over a diameter DL can
be expressed as

L (ε) =

{
1 if |ε | ≤ DL

2
0 otherwise.

The SCC uses a small reference hole in addition to the classical
Lyot stop (L). The separation between the classical Lyot stop
and the reference hole is denoted ε0 (from center to center), and
γ expresses the ratio between DL (the Lyot stop diameter) and
the diameter of the reference hole. Under these conditions, the
SCC Lyot stop can be expressed as

L′ (ε) = L (ε) + R (ε) ⊗ δ (ε − ε0) , (A.1)

where

R (ε) =

{
1 if |ε | ≤ DL

2×γ
0 otherwise.

The complex amplitude field inside the pupil denoted ψA(ε, λ)
can be expressed as

ψA(ε, λ) = P × exp (iφ). (A.2)

Under the Marechal approximation, exp (iφ)≈ 1 + iφ, leading to

ψA(ε, λ) = P + iφP. (A.3)

In the first focal plane where the focal plane mask M is inserted,
the complex amplitude ψB(α, λ) is expressed as

ψB(α, λ) = F (ψA(ε, λ)) × M(α), (A.4)
ψB(α, λ) = (F (P) + iF (φP)) × M(α). (A.5)

In the Lyot plane where the Lyot mask is inserted, the complex
amplitude ψC(α, λ) is expressed as

ψC(ε, λ) = F −1 (ψB(α, λ)) × L′(ε), (A.6)

ψC(ε, λ) =
(
(P + iφP) ⊗ F −1 (M(α)

)
× [L (ε) + R (ε) ⊗ δ (ε − ε0)] .

(A.7)

In the Lyot plane it is interesting to note that ψC(ε, λ) can be
expressed as the sum of two terms

ψC(ε, λ) =
(
(P + iφP) ⊗ F −1 (M(α)

)
× L (ε)

+
(
(P + iφP) ⊗ F −1 (M(α)

)
× R (ε) ⊗ δ (ε − ε0) ,

(A.8)

where the first term is the complex amplitude as in a classical
coronagraphic process, and the second term is the contribution
added by the reference hole. Finally, in the detector plane the
final complex amplitude ψD(α, λ) is

ψD(α, λ) = F (ψC(ε, λ)) , (A.9)

which can be written as

ψD(α, λ) =
[
(F (P) + iF (φP)) × M(α)

]
⊗ F (L (ε) + R (ε) ⊗ δ (ε − ε0)) ,

(A.10)

and finally can be expressed such as

ψD(α, λ) =
[
(F (P) + iF (φP)) × M(α)

]
⊗ F (L (ε))

+
[
(F (P) + iF (φP)) × M(α)

]
⊗ F (R (ε)) × e−

i2π
λ αε0 .

(A.11)

It is interesting to note that the complex amplitude in the detector
plane can be separated into two parts,

ψD(α, λ) = AS + AR × e−
i2π
λ αε0 , (A.12)

where AS is the complex amplitude as defined in classical coro-
nagraphy (AS = AD + AA), where

AD = (F (P) × M(α)) ⊗ F (L(ε)) , (A.13)

(the term is independent of the aberration φ), and

AA = i (F (φP) × M(α)) ⊗ F (L(ε)) , (A.14)

which depends on φ. Following these notations,

AR =
[
(F (P) + iF (φP)) × M(α)

]
⊗ F (R (ε)) . (A.15)

Finally, the intensity of the on-axis star in the detector plane
I(α, λ) is expressed as the square modulus of ψD(α, λ)

I(α, λ) = |AS +AR×e−
i2π
λ αε0 |2 = |AD +AA +AR×e−

i2π
λ αε0 |2. (A.16)

The only difference with the intensity as defined in classical
coronagraphy is the last term. Because the last term is complex,
the square modulus is expressed as the product of the term by its
conjugate (the asterisk denotes the conjugate). The intensity is

I(α, λ) = |AS + AR × e−
i2π
λ αε0 | × |A∗S + A∗R × e

i2π
λ αε0 |, (A.17)

and becomes

I(α, λ) = |AS|
2 + |AR|

2 + ASA∗R × e
i2π
λ αε0 + A∗SAR × e−

i2π
λ αε0 . (A.18)

The intensity in the detector plane is composed of two main
terms:

IC(α, λ) = |AS|
2 + |AR|

2, (A.19)

which expresses the sum of the square modulus of the complex
amplitude in the Lyot pupil and the reference. Because these
quantities are intensities, we cannot access the wavefront error
(φ) term they contain. For the second term left in the intensity
expression, the quantities are arbitrarily expressed as I+ = ASA∗R
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and I− = A∗SAR, where it is straightforward to see that I+ is the
conjugate of I−, and vice versa. Therefore the intensity in the
detector plane can be rewritten as

I(α, λ) = IC(α, λ) + I+ × e
i2π
λ αε0 + I− × e−

i2π
λ αε0 , (A.20)

where the two last terms express the modulation of the speck-
les and represent the interference term, where the interfringe is
defined by the quantity λ/ε0.

From the fringed coronagraphic image recorded by the
detector, the SCC data post-processing starts by numerically
computing the inverse Fourier transform (numerical, not optical)
of the image, corresponding to the OTF, where

F −1 (I(α, λ)) = F −1 (IC(α, λ)) + F −1 (I+) ⊗ δ (ε − ε0)

+ F −1 (I−) ⊗ δ (ε + ε0) . (A.21)

The central entity is expressed in the previous equation by the
first term F −1 (IC(α, λ)) and refers to the sum of the autocor-
relation of the electric field in the classical Lyot stop and the
reference. The diameter of the central peak is 2 × DL

λ
. The two

lateral peaks correspond to the correlation between the stellar
electric fields in the classical Lyot and the reference hole. The
two peaks are conjugated, and thus contain the same informa-
tion. The diameter of these two lateral peaks is DL(1+1/γ)

λ
.

The term F −1 (I−) is then isolated because it is equivalent to
F −1

(
ASA∗R

)
. Because γ � 1, we can assume A∗R constant such

that A∗R = A0, and thus I− ∼ AS and F −1 (I−) ∼ F −1 (AS).
FromF −1 (I−) we can recover AS using the Fourier transform

of F −1 (I−) because F
(
F −1 (I−)

)
= I− ∼ AS.

We know from Eq. (9) that

AS =
[
(F (P) + iF (φP)) × M(α)

]
⊗ F (L (ε)) , (A.22)

from which we wish to extract φ. Multiplying AS (measured by
the SCC) by the inverse of the mask function (× 1

M ) and applying
the inverse Fourier transform to the result such that

F −1
(
AS ×

1
M

)
= (P + iφP) × L (ε) , (A.23)

the imaginary and real parts of the result give direct access to the
phase and amplitude error, respectively. The estimator φest of the
SCC can be written as

φest =

[
F −1

(
I−

A0M

)]
× P. (A.24)

Appendix B: Principle of the fast-modulated SCC

The fast-modulated SCC works with two images: a fringed SCC
image (I1, reference channel opened) and an image without
fringe (I2, reference channel closed). The OTF that corresponds
to the first image is

F −1 (I1(α, λ)) = F −1 (IC(α, λ)) + F −1 (I+) ⊗ δ (ε − ε0)

+ F −1 (I−) ⊗ δ (ε + ε0) , (B.1)

and the second OTF that corresponds to the second image is

F −1 (I2(α, λ)) = F −1 (IC(α, λ)) . (B.2)

The subtraction of the two allows recovering the side lobes
even for theoretically unauthorized ε0 positions for which in
F −1 (I1(α, λ)) the lateral terms overlap the central one,

F −1 (I+) ⊗ δ (ε − ε0) + F −1 (I−) ⊗ δ (ε + ε0) + Θ (I1 − I2)

= F −1 (I1(α, λ)) − F −1 (I2(α, λ)) , (B.3)

where Θ (I1 − I2) refers to the residual left from a potential
imperfect subtraction of the central peak from the two OTFs dur-
ing the interval of acquisition time (∆t) between the two images.
This term is likely negligible because the detector integrates both
images (I1 and I2) quasi-simultaneously using the same detection
pixels, meaning that both images are subject to exactly the same
aberrations and noises. It is understood that ∆t must be shorter
than the dominant speckle lifetime that the system aims to cor-
rect for. Multiplying the result by a binary mask allows isolating
one OTF side lobe, for instance, F −1 (I−). Afterward, the post-
processing steps are similar to the conventional SCC process in
order to obtain φest.

Appendix C: Cophasing demonstration

To demonstrate that the fast-modulated SCC works properly, a
cophasing close-loop operation is discussed with numerical sim-
ulations. Simulations assume a segmented hexagonal telescope
composed of 169 segments over seven hexagonal rings without
any central obscuration or secondary mirror supports. Simula-
tions make use of simple Fraunhofer propagators between pupil
and image planes, which are implemented as fast Fourier trans-
forms (FFTs) generated with a Matlab code. Matrices are 1024×
1024 pixels, and the focal plane sampling is about 4.5 pixels per
λ/D, where D is the entrance pupil diameter. No dynamical
aberrations are included, and the system is free of aberrations
with a spatial frequency that is smaller than the segment size.
Monochromatic light of wavelength λ = 600 nm is used, and the
coronagraph is a four-quadrant phase mask.

A close-loop performance evaluation was addressed to con-
sider piston errors (Fig. C.1, left) and tip-tilt errors (Fig. C.1,
right). The same set of a cophasing error maps (70 nm rms) was
used in all β parameter cases: 0.4, 0.6, 0.8, and 1.1. The latter
corresponds to the conventional operation of the SCC, while the
three first values are not acceptable by the regular SCC (the SCC
diverges at the very first iteration in any cases).

The fast-modulated SCC results demonstrate that the system
can work with any β value. Convergence is always obtained for
piston and tip-tilt errors. Figure C.2 shows that the wavefront
error is invariably measured because the modulation term can
be algorithmically isolated in spatial frequency, that is, the side
lobes of the OTF are constantly recovered.

It is worth noting that the fast-modulated SCC naturally
enhances the sky coverage of the SCC cophasing sensor (SCC-
PS). This was formerly seen as a significant drawback (Janin-
Potiron et al. 2016).

Finally, it is important to note that the accuracy of the fast-
modulated SCC and regular SCC depend on both the size of the
reference channel and the S/N. In the case of the fast-modulated
SCC, decreasing the β parameter increases the S/N and should
translate into a difference in the residual phase that is estimated
at each iteration between different β configurations. This is not
readily observable in Figs. C.1 and C.2 because the simulation is
noise free and made for illustration purposes only.
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P. Martinez: Fast-modulation imaging with the self-coherent camera

Fig. C.1. rms value evolution of the aberrations over the pupil as function of the iteration number in the case of piston aberrations only (left) and
for tip-tilt errors (right). The starting rms value is 70 nm rms and the β values are given in the captions.

Fig. C.2. Effect of the β parameter: 0.4, 0.6, 0.8, and 1.1 from left to right. Top row: segmented piston phase as estimated by the fast-modulated
SCC. Bottom row: corresponding OTF where the side lobe I− is highlighted by a red circle for clarity.
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