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Abstract

In this paper, we study the problem of assign-
ing PhD grants. Master students apply for PhD
grants on different topics and the number of avail-
able grants is limited. In this problem, students
have preferences over topics they applied to and the
university has preferences over possible matchings
of student/topic that satisfy the limited number of
grants. The particularity of this framework is the
uncertainty on a student’s decision to accept or re-
ject a topic offered to him. Without using probabil-
ity to model uncertainty, we study the possibility
of designing protocols of exchanges between the
students and the university in order to construct a
matching which is as close as possible to the opti-
mal one i.e., the best achievable matching without
uncertainty.

1

Matching is a fundamental problem at the intersection of
computer science, mathematics and economics [Manlove,
2013]. The restriction of this problem to bipartite graphs has
attracted lot of attention in the research community. It has
been used to match students with colleges [Goto et al., 2016;
Hamada et al., 2017] or schools [Pathak, 2017], doctors with
hospitals [Roth, 1984; Deng et al., 2017], etc.

In our countries, the market for PhD grants is decentral-
ized!, and each university organizes its own procedure to hire
PhD candidates. The procedure can even vary between the
different disciplines of the same institution. Each university
competes to obtain the most successful candidates in the mar-
ket. A student may apply for different grants in various uni-
versities in order to increase his chances to obtain a grant.
This phenomenon is well documented in economics where
various papers study the strategical aspects of constructing a
portfolio of applications maximizing the chances of obtain-
ing a good position [Chade and Smith, 2006; Chade et al.,
2014]. One obvious conclusion of these works is that it is al-
ways safer for a candidate to apply for various positions. If a
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'As it is the case for the postdoctoral job market for economists
in North America [Roth, 2008], and for college admission in US,
Korea and Japan [Che and Koh, 2016].
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candidate receives multiple proposals, he can choose among
them his most preferred one and reject the others. As a conse-
quence, when a university makes a grant offer to a candidate
in this decentralized market, it faces the uncertainty that this
offer may be rejected in favor of an “outside option”.

This uncertainty on the answer of a candidate to an of-
fer is a special feature of a decentralized market. If the
procedure for assigning students to grants was centralized
among universities, and a stable matching algorithm such as
deferred acceptance [Gale and Shapley, 1962] was in use,
then no offer (or very few) would be rejected by students.
Unfortunately imposing a centralized procedure to the vari-
ous actors of this market is a difficult task. There are var-
ious examples of markets which have failed to impose cen-
tralized procedures, including gastroenterology fellowships
[Niederle et al., 2006], and psychology postdoctoral train-
ing [Bodin er al., 2017]. Economists have identified var-
ious theoretical reasons to explain this phenomenon. One
of them is that it is not always a dominating strategy for
a university to participate in a centralized procedure [Ek-
mekci and Yenmez, 2014] and it may be better off by opt-
ing out. Another one is that even if (student optimal) de-
ferred acceptance is strategy-proof for students, it can be
manipulated in various ways by universities [Sonmez, 1999;
Kesten, 2012]. In fact, there is no stable procedure which
is non-manipulable by both students and universities [Roth,
1984]. Apart from these theoretical reasons, and unless it is
enforced by law, an institute refrains to charge a central au-
thority to choose their PhD candidates as it is perceived as a
loss of autonomy.

In this paper, we study the design of efficient protocols be-
tween some candidates and a university in this decentralized
market. In these protocols, the university offers grants to stu-
dents who may accept or reject the proposals, depending on
their unknown outside options. We assume that the university
has cardinal preferences over possible matchings but we do
not resort to probabilistic models to represent the uncertainty
faced by the university over students’ acceptance. Instead,
we opt for a robust approach [Kouvelis and Yu, 1997] and
we perform a worst case analysis by considering the greatest
“regret” incurred by the protocol. In other words, our objec-
tive is to design protocols returning a matching which is as
close as possible to the best achievable matching without un-
certainty. This framework relies on approximation algorithms



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[Vazirani, 2001] but the barrier is the lack of information in-
stead of the computational complexity.

Plan. The different aspects of the model are introduced in
Section 2. Afterwards, two types of protocols are consid-
ered: sequential protocols where offers are issued one by one
(Section 3), and mixed protocols where a first set of offers is
made in parallel, followed by a sequence of offers (Section
4). Some proofs are omitted due to space limitation.

2 Preliminaries

The model proposed in this paper intends to represent the
PhD grant allocation in LAMSADE. A bounded number of
PhD grants, namely k, are offered by the university to the
laboratory in order to hire PhD students. The members of the
department are encouraged to propose topics, and master stu-
dents apply to the grants under different topics. Then, a jury
decides to whom will be given the grants and with which top-
ics. In the current system, a grant is given to a student/topic
pair. Let S = {s1,...,s,} denote the set of students and
T = {t1,...,t,m } the set of topics. Student s; applies for a
subset of topics C; which is his candidacy set; C; C T. The
preference of student s; over the topics of C; is represented
by total preorder Z; such that t; Z; ¢, if and only if student
s; weakly prefers ¢; to t,. The fact that both ¢; 2Z; ¢, and
te i tj (both t; 22; tp and ty Z; t;, respectively) hold is
denoted by t; ~; t; (t; >=; te, respectively). We assume that
students reveal their preferences over topics truthfully and do
not try to manipulate. For any topic ¢; € C;, we denote by
R;(t;) the set of topics that are at least as good as t; accord-
ing to 77;, and we denote by E;(¢;) the ~;-equivalence class
of C; which contains ¢;. More formally, R;(t;) = {t, € C; :
te 7 tj} and Ei(tj) = {tg € C;:ty~y tj} hold.

Actually, each student s; applies to a set of job opportu-
nities J; which is a superset of C;. The job opportunities of
Ji \ C; are either PhD grants proposed by other universities
or other types of positions. The preference -; of student s;
may be extended to J;. Ultimately, student s; will receive
a subset of propositions P; from J; \ C;. Let j; denote the
most preferred job opportunity of student s; inside this set of
propositions P;. Job opportunity j; will define the set of ac-
ceptable topics A; for student s;, which is the subset of C;
containing topics as least as preferred as j; according to 77;.
More formally, A; = R;(j;). The jury knows the candidacy
set C; of each student s; but it does not know his set of job
opportunities 7; as well as his set of acceptable topics A,;.

Let C and A denote sets {(s;,t;) € Sx T : t; € C;}
and {(s;,t;) € C : t; € A;}, respectively. A matching
is a subset of C containing at most k pairs and such that no
student nor topic appears twice. Note that some topics may
not be assigned if & < m. Matching M is acceptable, or
is an A-matching, if M C A. The jury provides its prefer-
ence over matchings through preorder =~ such that M = M’
iff matching M is at least as good as matching M’ accord-
ing to the jury’s preference. The preference of the jury may
model multiple aspects of this problem, including the prefer-
ence over topics that may be selected in the matching. The
jury has preferences over topics for different reasons: a topic
seems more promising than another, the supervising team has
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received (or not) a funding recently, the supervisor represent-
ing a topic has successfully supervised multiple PhD students,
etc. These preferences may also model the synergy over stu-
dent/topic pairs: a student may not be a good match for one
topic but would be a perfect match for another one, according
to his capabilities and skills. Matching M is optimal if there
is no matching M’ such that M’ = M. M is A-optimal if
it is an A-matching and there is no .A-matching M’ such that
M’ = M. Our objective is to find an A-optimal matching.
Thereafter, we denote by M* an 4-optimal matching.

In matching theory literature, it is common to assume that
the preferences over subsets are responsive [Roth, 1985].
In this paper, we further assume that the jury’s preferences
are additive. This means that there exists a value func-
tion v : C — Ry( such that for any matchings M and
M', M 7 M’ if and only if v(M) > v(M’), where
v(M) = Z(si,tj)eM v(si,t;). The use of a value function
leaves the possibility to quantify the relative importance of
a student/topic pair. For example, if v(s;,t;) > v(s¢, tp) +
v(sy,t,) holds then it means that the jury prefers to assign a
single grant to student s; with topic ¢; rather than assigning
two grants to student s, and s, with topics ¢, and ¢, respec-
tively. Furthermore, this value function is a good measure of
the worth of a matching according to the jury [Biro and Gud-
mondsson, 2019], and comparisons between matchings can
be easily done.

For any subset £ C C, let Gg denote the edge-weighted
bipartite graph with vertex set S U T, edge set £/ and where
weights are provided by v. Our objective is therefore to find
an optimal matching M ™ in G 4. This objective would be easy
to achieve if A was known by the jury i.e., the jury knows
which topics are acceptable to the students. However only C
is known by the jury, and this can force them to make offers
that will be rejected by the students. As we will see later,
this can lead the jury to select a matching which is not an A-
optimal matching. Sometimes, no protocol can produce an
A-optimal matching. In that case, we will search for an A-
matching that is as close as possible to the .4-optimal match-
ing M*. An algorithm achieves an approximation ratio of
«a < 1 if for any instance of the problem, it computes an .A-
matching M such that v(M)/v(M*) > .

A matching is constructed through an interaction between
the candidates and the jury, called protocol, where the jury
makes offers to students. In this paper, we consider two types
of offers: fixed and flexible offers. In both cases, some topic,
say t;, is offered to some student, say s;, i.e. s; receives a
grant for working on ¢;. If student s; accepts a fixed offer
then he will be ultimately assigned to topic ¢;. On the other
hand, if student s; accepts a flexible offer he may be assigned
to another topic ¢, under the condition that ¢, Z; ¢; holds.
More formally, offer O; C C; is a subset of topics proposed
to student s;. A fixed offer contains a single topic whereas a
flexible offer may contain several topics. A flexible offer O;
will be of the form R;(t;) for some ¢; € C;. If student s;
accepts offer O; then he is guaranteed to receive one of the
topics of O; at the end of the protocol. By accepting offer
O;, student s; also commits to accept any topic in O;. We
assume that student s; accepts offer O; if and only if it is a
subset of A4;. Once a student has accepted an offer, it is no
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Figure 1: Example with 3 students, 2 topics and 2 grants

longer possible for the jury to make another offer to him. On
the other hand, if a student rejects an offer then the jury can
make other offers to him.

The use of fixed offers looks constraining for the jury, and
one can ask whether only flexible offers can be considered.
However, fixed offers somehow take into account the prefer-
ence of the supervisor of a topic over students. Once an offer
for a given topic ¢; is accepted by student s;, the supervisor
of this topic may disagree to obtain another student s, in or-
der to enlarge the global matching, and especially if student
s; seems to be more suited than student s, for topic ¢;. With
fixed offers, this situation cannot occur.

Example. 1 Consider the instance described in Figure I,
and where two grants are available (k = 2). The set of ap-
plications C contains (s;,t;) for each s; € S and t; € T.
In other words, each student applies to each topic. How-
ever, student so will only accept to and student ss will not
accept any topic. More formally, A1 = {t1,t2}, Ay = {t2}
and Az = 0 hold. If the protocol starts by a fixed offer
01 = {t2} to student sy then he accepts and to must be as-
signed to him. In that case, only topic ty is still available.
Topic t1 is unacceptable for any other student than s, there-
fore any further offer will be rejected. The resulting matching
M = {(s1,t2)} has value 5 whereas the A-optimal matching
M* = {(s1,t1), (s2,t2)} has value 7. On the other hand, if
the protocol starts with flexible offer O1 = {t1,t2} then stu-
dent s1 accepts. Whatever offers are made by the jury there-
after; only offer Oy = {t2} will be accepted, leading to the
A-optimal matching M* which is consistent with the offers.

3 Sequential Protocols

In this section, the protocols under consideration consist of a
single phase of exchanges between the jury and the students.
During this phase, the jury makes offers one by one and waits
for the answer of a student before making a new offer, even
if the new offer is not addressed to the same student. We call
this type of protocols sequential.

In Subsection 3.1, we provide a sequential protocol re-
stricted to fixed offers which achieves the best possible ap-
proximation ratio of 1/2. In Subsection 3.2, we propose a
sequential protocol which provides an A-optimal matching.

3.1 Sequential Protocols with Fixed Offers

The following proposition shows that an approximation ratio
better than 1,/2 cannot be achieved with fixed offers.

Proposition. 1 No sequential protocol restricted to fixed of-
fers achieves a higher approximation ratio than 1/2.
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Figure 2: Value function v equals 1 for each pair of C

Proof: Consider the instance described by Figure 2. As-
sume that two grants are available. Any sequential protocol
restricted to fixed offers starts by proposing a fixed offer to
one of the students. Assume that it first proposes O; = {¢;}
to student s; and he accepts. Let s, be another student who
prefers ¢; to the other topic. If A; = {t1,t2}, A¢ = {t;}
and the set of acceptable topics is empty for the other stu-
dents then M* = {(s;,%3—;), (s¢,t;)} has value 2 whereas
the protocol outputs M = {(s;,t;)} with value 1 since no
student will accept any further offer. Therefore, the protocol
achieves an approximation ratio of at most 1/2. |

Consider now the following sequential protocol, called
Max: by considering each pair (s;,¢;) of C by non-increasing
value of v, the jury proposes O; = {t;} to student s; if s;
did not accept a former offer until either k offers have been
accepted or all pairs of C have been considered. It obviously
returns an A-matching. The following proposition shows that
this protocol achieves the best possible approximation ratio?.

Proposition. 2 Max achieves an approximation ratio of 1/2.

3.2 Sequential Protocols with Flexible Offers

In this subsection, we present a sequential protocol which re-
turns an A-optimal matching. The underlying algorithm re-
lies on the notion of alternating path. A path is assumed to be
a sequence of edges belonging to G¢. For a given matching
M, an alternating path P with respect to M is a path in G¢
whose edges belong alternatively to M and C\ M. We assume
that an alternating path is either a cycle or does not contain
a cycle. In the former case, we refer to it as an alternating
cycle. When it is clear from context, we do not refer to the
assignment associated with an alternating path. An alternat-
ing path is augmenting for M (decreasing for M, resp.) if it
starts from an unassigned student (assigned student, resp.) in
M and ends with an unassigned topic (assigned topic, resp.)
in M. Finally, an alternating path is an even path if it is nei-
ther augmenting, decreasing nor cycle.

For any two sets A, B C C,let AAB = (A\ B)U(B\ 4)
denote the symmetric difference of A and B. Operator A can
be used to construct a new matching from an alternating path
as follows. If M is a matching and P an alternating path then
M AP is a matching constructed from M by replacing the
edges of M N P with the edges of P\ M. Note that M’ =

ZProposition 2 is closely related to the greedy approach for ob-
taining a 1/2-approximation for the maximum matching problem
[Karp er al., 1990]. Its proof is similar and is therefore omitted.
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Algorithm 1 Optimal sequential protocol

Input: Candidacy set C, initial matching M.
1: M+ M°.
2: Compute a M-optimal augmenting path P in G¢.
3: while vj(P) > 0and |M| < k do

4:  Let s; be the unassigned student in M visited by P.

5:  Propose O; = C; to student s;.

6: if s; accepts O; then

7: M +— MAP.

8: else

9: Let E C C; be the 7;-equivalence class containing
the least preferred topics according to 7-;. Remove
E from C; and (s;,t;) from C for any ¢; € E.

10:  Compute M -optimal augmenting path P in Ge.

11: return M.

MAP implies MAM’' = P. More generally, if M and M’
are two matchings then M AM’ contains the set of alternat-
ing paths P; ..., Ps such that M/ = MAP,A... AP;. The
value of alternating path P with respect to M is vy (P)
D sianerm V(Sinti) = D eyemnp V(S t;), and it cor-
responds to the marginal value incurred by switching from M
to MAP. More formally, v(MAP) = v(M) 4+ vy (P). It
is worth noting that M’ = M AP implies that P is an alter-
nating path for both M and M’, and vy (P) = —vp (P).
Augmenting path P for M is M-optimal if there is no aug-
menting path P’ for M such that vy (P’) > vpr(P).

The sequential protocol proposed to obtain an A-optimal
matching is presented in Algorithm 1. The initial matching
M? used in this protocol is (). If no augmenting path exists in
Gec then P = ) with value 0. In order to simplify notation,
we assume that the candidacy set C can be updated, and set
C; for any s; € S, derives from C. In essence, Algorithm 1
starts with an empty matching and at every step augments it
by proposing its candidacy set to the unmatched student vis-
ited by an optimal augmenting path. If he accepts the offer
then he is included in the matching, and otherwise his candi-
dacy set is revised by removing his least preferred topics.

Example. 2 We apply Algorithm 1 to the instance of Ex-
ample 1. Parameter M is set to 0, and initially M =
(). The set of augmenting paths for M is therefore C and
their values correspond to the ones returned by v. The
M-optimal augmenting path is P = {(s1,t2)} with value
5. Offer O1 = (C; {t1,t2} is made to student s,
who accepts since Ay = Cy. Then, matching M becomes
MAP = {(s1,t2)}. The augmenting paths for M of
size 1 are the edges {s2,t1} and {ss,t1}. The augment-
ing paths for M of size 3 are {(s1,t1), (s1,t2), (s2,t2)} and
{(s1,t1), (81,%2), (83, t2) } with values 2 and 0, respectively.
The M-optimal augmenting path is {(s2,t1)} with value 4.
Offer O = {t1,t2} is made to student so who rejects it. Since
to o t1, t1 is removed from Co. During the next iteration, the
M-optimal augmenting path is {(s1,t1), (s1,t2), (s2,t2)}.
Offer O2 = {t1} is made to student so who accepts since
O = Asy. Then, M becomes MAP = {(s1,t1), (s2,t2)}.

The next result states that the corresponding sequential pro-
tocol returns an .4-optimal matching. It is a corollary to
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Proposition 6 which is given and proved in Subsection 4.2.

Corollary. 1 Algorithm 1 describes a sequential protocol
which returns an A-optimal matching when M° = ().

An M -optimal augmenting path can be computed through
the incremental digraph which is an oriented version of G¢
where each edge (s;,t;) of M is oriented from topic to stu-
dent with weight —v(s;,t;), and each edge (s;,t;) of C \ M
is oriented from student to topic with weight v(s;,t;). An
oriented path from an unmatched student to an unmatched
topic corresponds to an augmenting path for M. If P is an al-
ternating path then the sum of its weights in the incremental
digraph is equal to v/ (P). Hence, finding an optimal aug-
menting path for M/ amounts to finding an oriented path in the
incremental digraph of maximum weight. This problem is in
general NP-hard. However, it is easy to show that the incre-
mental digraph does not contain a cycle with positive weight.
Therefore, a generalized version of Bellman-Ford algorithm
[Gondran and Minoux, 2008] can be used to compute the ori-
ented path of maximum weight.

4 Mixed Protocols

In practice, a sequential protocol may require a lot of time
in order to fill the k grants. This could be problematic if not
enough offers are accepted before the market closure (for PhD
grants’ allocation, it would be before the start of the academic
year). This problem, called congestion, is well documented
in the matching literature [Roth, 2008]. In order to reduce the
duration of the process, it is natural to try to make multiple
offers in parallel. However, since the jury commits to give a
grant to every accepted offer, parallel offers should be issued
carefully. Moreover, we will see that parallelization has an
impact on the performance guarantee.

The mixed protocols under consideration in this section
comprise two different phases of exchanges between the jury
and the students. As opposed to sequential protocols, multi-
ple offers are made in parallel, but only during the first phase.
Phase one ends when the students who received an offer have
answered. A second phase is initiated if at least one student
declined. In the second phase, offers are made to the students
who did not receive any offer or declined. As for the sequen-
tial protocol, the jury makes offers sequentially: one waits for
a student’s answer before making a new offer. Mixed proto-
cols are similar to the procedures used in the American entry-
level market for clinical psychologists [Roth and Xing, 1997].

During the first phase, a set of offers O = {O;,,...,0;,}
will be made in parallel to students 71,...,7,. We will say
that a matching M complies with a set of offers O if for ev-
ery O; € O, student s; is matched in M with a topic of O;. A
matching M compliant with a set of offers O is optimal if no
other matching M’ compliant with O has greater value. Thus,
the optimal compliant matching is what we can best do if all
offers are accepted. A set of offers O is said to be feasible if
it satisfies 3 requirements: (¢) each student receives at most
one offer, (i7) at least one matching is compliant with O, and
(¢i1) for any superset O’ of O, no matching compliant with
O’ has a greater value than the optimal matching compliant
with O. In other words, requirement (#7¢) implies that there
is no additional offer, made to a student who did not receive
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Figure 3: Two available grants, d < c is an arbitrary positive value

any, which can be added to a feasible set in order to improve
the value of the optimal matching compliant with it. To il-
lustrate this property, consider an instance with two students,
two topics and two grants such that C; = {t1,¢2}, Co = {t2},
to >1 t1, ’U(Sl,tl) = ’U(Sg,tg) = 1and U(Sl,tg) = 3. The
set of offers O = {0}, where O; = {(s1,t2)}, is feasible
since an additional offer to student s would lead to a com-
pliant matching {(s1, 1), (s2,t2)} which has a strictly lower
value than {(s1,t2)}.

In this work, we will only consider feasible sets of offers
O for the first phase. Each time a student accepts an offer, the
jury commits to assign him a topic of the offer. If all answers
to O are positive, then the protocol returns an optimal match-
ing compliant with O, and the second phase can be skipped.
The goal of the second phase is to complete and improve the
optimal matching compliant with the accepted offers.

In Section 4.1, we show that no constant approximation ra-
tio can be achieved by a mixed protocol if either a student
applies to less than k topics or the protocol is restricted to
fixed offers. In Section 4.2, we provide an upper bound of
1/+/2 for the approximation ratio achievable by a mixed pro-
tocol when each student applies to at least k topics, and we
provide a mixed protocol with approximation ratio 1/2.

4.1 Cases of Unbounded Approximation Ratio

The following proposition shows that no mixed protocol
achieves a constant approximation ratio.

Proposition. 3 For any constant ¢ < 1, no mixed protocol
achieves an approximation ratio of c.

Under the light of this impossibility result, we consider an
additional constraint on the instances leading to constant ap-
proximation ratios. We assume in the remaining of the section
that the number of candidacies for each student is at least k.
This assumption is realistic since the jury can invalidate a stu-
dent’s application if it comprises less than k topics. The fol-
lowing proposition shows that even with this restriction, no
mixed protocol restricted to fixed offers achieves a constant
approximation ratio.

Proposition. 4 For any constant ¢ < 1, no mixed protocol
restricted to fixed offers achieves an approximation ratio of c,

even if |C;| > k holds for all s; € S.

Proof: Consider the instance described by Figure 3. During
phase one, either (O; = {¢;} and Oy = {t2}) or (O1 = {t2}
and Oy = {t1}) are proposed. In the former case, if A,
and As = {t1, 2} then s; declines and s accepts. In the lat-
ter case, if A; = {t1,t2} and Ay = 0 then s; accepts but so
declines. In both cases, topic ¢; remains unassigned whereas
it could be assigned to the student who accepted the offer.
Therefore, the resulting matching has value 1/d whereas M*

134

has value 1/d?. This implies that no mixed protocol restricted
to fixed offers achieves a better approximation ratio than d
and d < c. ]

4.2 Mixed Protocol with Flexible Offers

The following proposition provides an upper bound on the
approximation ratio for a mixed protocol with flexible offers.

Proposition. 5 No mixed protocol achieves an approxima-
tion ratio larger than 1/+/2, even if |C;| > k for any s; € S.

Finally, we present a mixed protocol, called Max-sum,
which achieves an approximation ratio of 1/2. During phase
one, the protocol starts by computing an optimal matching
M¢ in Ge. Let S denote the set of students matched in Me.
The set of offers O contains offer O; := C; for each student
s; € S. Let A C S denote the set of students who accept their
offer, and let O 4 be the set of offers that they have received.
For each student s; € S \ A, candidacy set C; is updated
by removing the topics contained in his least preferred =;-
equivalence class. Let M 4 be an optimal matching compliant
with O 4. During phase two, Algorithm 1 is used with input
Cand My4.

Let M 4 be the set of all A-matchings such that each stu-
dent s; € Ais assigned a topic of C;. We are going to see that
using Algorithm 1 with input M4 leads to an .A-matching
of maximum value within M 4. This is more general than
Proposition 1 (input M° = M, instead of M° = () which is
a corollary to the following result.

Proposition. 6 Algorithm 1 with input C and M 4 returns an
A-matching of maximum value within M 4.

Proof: By definition, A is a subset of C. During its execu-
tion, Algorithm 1 prunes some elements of C\.A. Eventu-
ally, the set of candidacies is equal to C’, and C D C' D A
holds. Let M/, be the set of matchings in G+ such that each
student s; € A is assigned a topic of C;. Note that an A-
matching which is optimal within M/, is also optimal within
M 4. Therefore, our proving strategy is to show that Algo-
rithm 1 with input C and M 4 provides a matching which is
optimal within M’,.

Let M* denote the current solution during the execution
of Algorithm 1. More precisely, M 0 is the initial solution.
Each time the solution is modified (in line 7), its index is
incremented. Thus, M* contains |[M°| + ¢ edges. We show
by induction on ¢ that M* is (¢)-optimal i.e., optimal within
M, restricted to the matchings of size at most |M°| + £.

Base case (¢ = 0): By construction, M? is (0)-optimal.

Induction step: By induction hypothesis, M?* is (¢)-
optimal. We show that M**! is (¢ + 1)-optimal. Let P de-
note the M*-optimal augmenting path computed at the end
of iteration ¢ and such that M*+t! = M‘AP. Note that
v(M) = v(M*) 4+ vy (P) > v(M*) holds, and therefore
M**1is (¢)-optimal. By contradiction, assume that there ex-
ists a matching M’ € M/, of size [M°| + ¢ + 1 such that
v(M') > v(M**1). Without loss of generality, we assume
that M’ is (¢ + 1)-optimal and as close as possible to M* i.e.,
there is no matching M in M/, of size |[M°| + ¢ + 1 such
that v(M) = v(M’) and M* N M’ C M* N M hold. Let
Py, ..., P, be the alternating paths of M EAM’. Note that



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

each of these paths belongs to G/ since both M* and M’
belong to G¢:.

We claim that no alternating path P; is a cycle or an even
path. By contradiction, assume that P; is either a cycle or
an even path. Let M be the matching in G¢/ of size |M°| +
¢ + 1 such that M = M'AP;. Note that M belongs to M’ 4
since both M* and M’ belong to M. If v (P;) < 0 then
(M) = v(M) — vap(Py) = v(M) + vppe () < v(M)
implies that M is also (¢ 4 1)-optimal, a contradiction since
M is closer to M* than M. On the other hand, if vy (P;) >
0 then matching M*AP; of size |M*| has value v(M*) +
vpre(P;) > v(M?), a contradiction with the fact that M* is
(¢)-optimal since M*AP; belongs to M.

Since [M*| < |M’|, there must be at least one augmenting
path P; for M* in M'AM?*. We claim that M'AM?* does
not contain any decreasing path for M*. The existence of a
decreasing path P, for M* leads to a contradiction. This can
be shown by using the same argument as above (replace P;
by P. U P;). Since M ¢AM’ only contains augmenting paths
for M*¢ and |M’| = |M*| 4+ 1, M'AM? contains a single
path P;. Therefore, v(M') = v(M*) + vy &Pl) holds and it
implies vyze (P1) > vpze (P) since both v(M*H1) = v(M*)+
vpre(P) and v(M') > v(M**T1) hold, a contradiction with P
is M*-optimal since P; belongs to Ge.

Now we know that M* is (¢)-optimal. If the while loop of
Algorithm 1 stops because |M*| = k, then M* is outputted
and must be optimal within M’; because k is the maximum
cardinality of a matching. If the while loop of Algorithm 1
stops because v;¢(P) < 0 for every augmenting path P for
MY then we shall see that M* is optimal within M 4. As-
sume by contradiction that there exists a matching M’ within

', of size greater than |M*| such that v(M') > v(M?).
With arguments similar to the ones used in the above in-
duction, we can check that M*AM’ contains only augment-
ing paths P1, P, ..., Papj—are| for M*. Since v(M')

’ 4
o(MY) + Sy (P and w(M?) > v(MY) hold,
there must be at least one augmenting path P; for M* such
that vy (P;) > 0, a contradiction since P; belongs to Ge.

Proposition 6 shows that the second phase of Max-sum suf-
fers from no loss of value. Bad decisions can be made during
the first phase, but their impact is limited.

Proposition. 7 The approximation ratio of Max-sum is 1/2.

5 Related Work

The problem of assigning PhD grants to students is closely
related to the student-project allocation problem [Abraham
et al., 2007; Abu El-Atta and Moussa, 2009] where projects
are proposed by lecturers who have preferences over stu-
dent/topic pairs. The main novelty of our model lies in the
fact that it is decentralized and the preferences of the students
(i.e., the set of topics that they may accept) are unknown when
the jury builds the matching. The model proposed by Che
and Koh [2016] shares also some similarity with our prob-
lem. They study a decentralized college admission problem
where the students’ preferences are unknown and they define
the equilibria in the related games.
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Matching problems where parameters are unknown or par-
tially observable have already been investigated in the liter-
ature. One of the closest model to our problem is the stable
matching with partially observable preferences [Drummond
and Boutilier, 2013] (see also Rastegari et al. [2013; 2014]).
The notion of maximum regret used to quantify the quality
of a solution is close to our notion of approximation. Prob-
abilistic models have also been used to represent uncertainty
over the preferences of agents for stable matchings [Aziz et
al., 2017a] and assignment problems [Aziz et al., 2017b].

Another related matching problem has been proposed by
Anshelevich and Sekar [2016] where we know how the edges
compare but the exact edges’ weights are unknown. Another
problem close to ours is the stochastic matching problem
[Blum et al., 2015] which aims at finding a maximum match-
ing in a graph where the existence of the edges is only proba-
bilistically known. Similarly to our problem, the matching is
constructed through a protocol which checks at each step the
existence of a given edge. However, the fact that the protocol
checks the existence of a given edge does not imply that one
of its extremities should be selected if the edge exists.

Finally, the mixed protocols presented in this paper bear
resemblance with the robust matching problem [Hassin and
Rubinstein, 2002]. This problem consists in finding a match-
ing whose restriction to its k-best edges provides a good ap-
proximation of the optimal matching of size k, for any inte-
ger k. The authors show that no algorithm achieves a bet-
ter approximation than 1/+/2, and they provide an algorithm
achieving this ratio. A robust matching is not necessarily a
good candidate for the first phase of a mixed protocol because
it may contain edges of large value which are unacceptable,
and edges of low value which are acceptable. However, the
algorithm to produce a robust matching is a good candidate
to design an efficient mixed protocol.

6 Conclusion and Future Works

In this paper, we have proposed a decentralized matching
model for the problem of assigning grants to PhD candidates
where the answers of students are not known in advance by
the university. This setting can cover other applications (e.g.
allocation of internships in a company). We have provided a
theoretical analysis of the best approximation ratio achievable
by a protocol of exchanges between the jury and the students.

An open question is whether the 1/2-approximation can be
improved for mixed protocols (in polynomial time or not). It
would also be interesting to relax the notion of feasible set
of offers imposed during the first phase of a mixed protocol.
For example, a feasible set could be instead the largest set of
offers that can be made to students without losing the possi-
bility to obtain an A-optimal matching.
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