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ABSTRACT

Image restoration is frequently addressed by resorting to vari-
ational methods which account for some prior knowledge
about the solution. The success of these methods, however,
heavily depends on the estimation of a set of hyperparame-
ters. Deep learning architectures are, on the contrary, very
generic and efficient, but they offer limited control over their
output. In this paper, we present iRestNet, a neural network
architecture which combines the benefits of both approaches.
iRestNet is obtained by unfolding a proximal interior point
algorithm. This enables enforcing hard constraints on the
pixel range of the restored image thanks to a logarithmic
barrier strategy, without requiring any parameter setting. Ex-
plicit expressions for the involved proximity operator, and its
differential, are derived, which allows training iRestNet with
gradient descent and backpropagation. Numerical experi-
ments on image deblurring show that the proposed approach
provides good image quality results compared to state-of-the-
art variational and machine learning methods.

Index Terms— Image deconvolution, proximity operator,
interior point method, neural network, deep unfolding

1. INTRODUCTION

In this paper we focus on non-blind image deblurring prob-
lems matching the following model

y = Hx+ ω, (1)

where x ∈ Rn is the ground-truth vectorized color image,
y ∈ Rn is a blurred noisy version of it, ω ∈ Rn is a real-
ization of an additive zero-mean white Gaussian noise with
standard deviation σ > 0, and H ∈ Rn×n models the cir-
cular convolution with a known blur kernel for each channel
of the color image. Finding an appropriate estimate of x is
an ill-posed problem. An efficient way to tackle it is to adopt
a penalized variational approach introducing prior knowledge
about the sought image. For instance, one can impose bound
constraints on the pixel intensity range, or use a spatial regu-
larization function, such as the total variation and its various

extensions [1]. This leads to the following constrained mini-
mization problem,

minimize
x∈[0,β]n

1

2
‖Hx− y‖2 + λR(x) (2)

where β > 0 is an upper bound on the pixel intensity, λ > 0
is a regularization parameter, and R : Rn → R is a pe-
nalization function. However, solving (2) may require ad-
vanced algorithms, which can be too slow for real-time appli-
cations. Moreover, the optimal choice for λ strongly depends
on the data, and is usually obtained using time-consuming
techniques such as cross validation, discrepancy principle [2],
or Stein unbiased risk estimates (SURE) [3].

Deep Neural Networks (DNNs), in particular Convolu-
tional Neural Networks (CNNs), provide good performance
for restoration problems such as denoising [4], CT recon-
struction [5], or deblurring [6, 7, 8]. However, as detailed in
[9], DNNs are very often preceded by a pre-processing step,
which again amounts to solving a problem of the form (2),
where the setting of the regularization weight requires an ac-
curate knowledge of the noise level, e.g. [7, 10]. Furthermore,
since explicit prior information about the output can hardly be
incorporated into a DNN, the explainability and reliability of
such methods could be questioned [11].

One straightforward way to combine the benefits of varia-
tional approaches and DNNs is to unfold an iterative method
and to untie the parameters of both the model and the algo-
rithm across the layers of the network [12]. For instance,
FISTA, ISTA and ADMM optimizers can be unfolded to per-
form sparse coding [13] and image reconstruction [14, 15,
16], respectively. However, in the aforementioned works, all
operators are learned, which weakens the link between the re-
sulting network and the original algorithm. Up to our knowl-
edge, only a few works so far have considered combining in-
terior point methods (IPMs) with deep learning [17, 18, 19].

In this paper, we propose a novel neural network architec-
ture called iRestNet, which results from unfolding a proximal
IPM, over a finite number of iterations identifying with the
network layers. One key feature of the proposed algorithm
is that it produces iterates inside the feasible domain [0, β]n,
thanks to the introduction of a logarithmic barrier. Hence,



prior knowledge can directly and explicitly be incorporated
into the network. Finally, it allows differentiation and gradi-
ent backpropagation throughout the network, which enables
the stepsize, barrier parameter, and regularization weight to
be untied across the network and learned for each layer.

This paper is organized as follows: in Section 2, we de-
scribe the proposed proximal IPM and derive expressions for
the proximity operator of the barrier and its gradient. In Sec-
tion 3, we present the proposed neural network architecture,
while Section 4 is dedicated to numerical experiments and
comparisons to state-of-the-art methods for image deblurring;
finally, some conclusions are drawn in Section 5.

2. PROXIMAL INTERIOR POINT ALGORITHM

2.1. Notation and assumptions

Let Γ0(Rn) denote the set of functions which take values in
R ∪ {+∞} and are proper, convex, lower semicontinuous on
Rn. The regularization function R ∈ Γ0(Rn) is assumed to
be twice-differentiable. For every g ∈ Γ0(Rn), γ > 0 and
x ∈ Rn, the proximity operator [20] of γg at x is defined as

proxγg(x) = argmin
z∈Rn

1

2
‖x− z‖2 + γg(z). (3)

2.2. Interior point method

In the interior point framework, problem (2) is solved through
a sequence of unconstrained subproblems of the form

minimize
x∈Rn

1

2
‖Hx− y‖2 + λR(x) + µB(x) (4)

where µ > 0 is the so-called barrier parameter, which van-
ishes along the minimization process, and B ∈ Γ0(Rn) is the
logarithmic barrier with unbounded derivative at the boundary
of the feasible domain: (∀x ∈ Rn) B(x) =

∑n
i=1− ln(β −

xi) − ln(xi) if x ∈]0, β[n, +∞ otherwise. Although stan-
dard IPMs require the inversion of an n × n linear system at
every iteration, these computationally expensive steps can be
avoided by combining the interior point method with a proxi-
mal strategy, leading to very competitive solvers [21, 22]. We
propose to combine the proximal IPM in [23] with a forward-
backward step, which leads to the following update,

xk+1 = proxγkµkB(xk − γk(H
>(Hxk − y) + λk∇R(xk)))

(5)

= A(xk, µk, γk, λk) (6)

It can be noted that the regularization parameter is allowed to
vary along iterations for more flexibility. The proximity op-
erator of the barrier in (5) can be deduced from Proposition 1
below, using separability.

Proposition 1 Let b defined as (∀u ∈ R) b(u) = − ln(β −
u) − ln(u) if u ∈]0, β[, +∞ otherwise. Then, (∀u ∈ R)

Fig. 1. iRestNet global architecture.

(∀α > 0) ϕ(u, α) = proxαb(u) is the unique solution in
]0, β[, of the following cubic equation,

0 = v3 − (β + u)v2 + (βu− 2α)v + βα. (7)

In addition, the partial derivatives of ϕ are given by

∂ϕ

∂u
(u, α) =

ϕ(u, α)(ϕ(u, α)− β)
3ϕ(u, α)2 − 2ϕ(u, α)(β + u) + βu− 2α

, (8)

∂ϕ

∂α
(u, α) =

2ϕ(u, α)− β
3ϕ(u, α)2 − 2ϕ(u, α)(β + u) + βu− 2α

. (9)

For sake of length, the proof of Proposition 1 is not provided
here, but the main ingredients rely on [24, Example 4.15] and
on the implicit function theorem.

3. PROPOSED ARCHITECTURE

We propose to unfold (6) over K iterations, and to use a su-
pervised learning strategy in order to determine, from a train-
ing set of images, an optimal setting for the hyperparameters
(µk, γk, λk)0≤k≤K−1. For every k ∈ {0, . . . ,K−1}, the k-th
layer Lk is built as the association of three hidden structures,
L(µ)
k , L(γ)

k and L(λ)
k , used to infer the barrier parameter µk,

the stepsize γk and the regularization weight λk, respectively;
which are followed by the updateA. Note that our framework
allows the use of a post-processing step, that will be denoted
as Lpp. The resulting architecture is depicted in Figure 1.

3.1. Hidden structures

For every k ∈ {0, . . . ,K−1}, the outputs (µk, γk, λk) of the
structuresL(µ)

k , L(γ)
k , andL(λ)

k are made positive thanks to the
Softplus function [25], defined below, which can be viewed as
a smooth approximation of the ReLU activation function,

(∀u ∈ R) Softplus(u) = ln(1 + exp(u)). (10)

Unlike ReLU, the gradient of Softplus is never strictly equal
to zero, which helps propagating the gradient through the net-
work. The stepsize is estimated as follows,

γk = L(γ)
k = Softplus (ak) , (11)

where ak is a scalar parameter learned during training. The
barrier parameter is obtained using two convolutional layers



Fig. 2. Architecture of L(µ)
k .

followed by a fully connected layer, as depicted in Figure 2.
The regularization parameter λk is inferred from the image
statistics and the following estimation of the noise level [26],

σ̂(y) = median (|WHy|) /0.6745, (12)

where |WHy| is the vector gathering the absolute value of the
diagonal coefficients of the first level Haar wavelet decom-
position of the blurred image y. The proposed architecture
does not require any prior knowledge about the noise level,
in particular it does not have to be constant over the dataset.
The expression of L(λ)

k is problem-dependent since it is built
upon the chosen regularization strategy. A specific example
will be given in Section 4 for the total variation regularization
function. The architecture of the post-processing layer Lpp,
which is depicted in Figure 3, is inspired from [4]: it is made
of 9 convolutional layers with different dilation factors, so as
to widen the receptive field without creating memory issues.
The artifacts that remain in the image after going through the
K blocks of iRestNet map a small space, which is well cap-
tured by residual learning, hence the presence of a skip con-
nection between the input of Lpp and its output.

Fig. 3. Architecture of Lpp. BN: batch normalization.

To train the network presented in Figure 1 using gradient
descent, the chain rule, combined with automatic differentia-
tion, can be applied for all steps in the network except for A,
whose gradient is directly derived from Proposition 1, since
∇R is assumed to be differentiable. For applications involv-
ing high risk and legal responsibility, it is critical to guarantee
that the performance of neural networks remain acceptable
when the input is perturbed. Explicit conditions securing the
robustness of the proposed iRestNet architecture can be de-
rived, using the recent work [27].

4. NUMERICAL EXPERIMENT

Numerical experiments are performed on a set of image de-
blurring problems. The total variation like function defined
below is used as a regularizer,

(∀x ∈ Rn) R(x) =

n∑
i=1

√
(Dvx)2i + (Dhx)2i

δ2
+ 1, (13)

where Dv ∈ Rn×n and Dh ∈ Rn×n are the vertical and
horizontal gradient operators, respectively, and δ = 0.01 is
a smoothing parameter. The depth of iRestNet is fixed at
K = 40. For every k ∈ {0, . . . ,K − 1}, the regularization
parameter is inferred from the image statistics as follows,

λk = L(λ)
k (xk) =

σ̂(x0)Softplus(bk)

η(xk) + Softplus(ck)
, (14)

where (bk, ck) is a pair of scalars learned by the network and
η(xk) is the standard deviation of the concatenated spatial
gradients of xk,

[
(Dvxk)> (Dhxk)>

]>
.

4.1. Dataset and experimental settings

The training set is made of 200 RGB images from the Berke-
ley segmentation (BSD500) training set, and of 1000 RGB
images from the COCO training set. We use the BSD500
validation set, which is made of 100 images, to monitor the
training. The performance of iRestNet is evaluated on the 200
images from the BSD500 test set, which have been center-
cropped using a 256 × 256 window. Blurry images are pro-
duced using the following 25× 25 blur kernels and noise lev-
els: (i) a Gaussian kernel, with a standard deviation of 1.6,
and a Gaussian noise standard deviation of σ = 0.008; this
configuration is denoted as GaussA; (ii) the same kernel is
used when σ is uniformly distributed between 0.01 and 0.05,
the latter is denoted as GaussB; (iii) the Gaussian kernel with
a standard deviation of 3, with σ = 0.04, denoted as GaussC;
(iv) the third motion test kernel from [28], with σ = 0.01, de-
noted as Motion; (v) the square uniform kernel of size 7× 7,
with σ = 0.01, this configuration is referred to as Square.

4.2. Training

For each degradation model, one iRestNet is trained. The first
30 layers are trained individually for 40 epochs, with a de-
creasing learning rate multiplied by 0.9 every 10 epochs. This
training strategy is chosen with regards to its low memory re-
quirement. The rest of the network, Lpp ◦ L39 · · · ◦ L30, is
trained in an end-to-end fashion during 200-600 epochs, de-
pending on the test configuration. We use the ADAM method
to minimize the training loss defined as the opposite of the
structural similarity measure (SSIM) [29]. The SSIM is a
popular perceptual measure in image processing. Codes are
implemented in Pytorch. All trainings are conducted using a



Fig. 4. Sorted SSIM gain on the test set, negative when iRestNet performs better. Left to right: GaussA, GaussC, Square.

GeForce GTX 1080 or 1070 GPU. The training takes approx-
imately 3 to 4 days for each configuration.

4.3. Evaluation metrics and competitors

The restoration is evaluated based on the SSIM. The recon-
struction given by iRestNet is compared with a solution to
Problem (2) obtained using the projected gradient algorithm
[30] with (λ, δ) manually set so as to yield the best SSIM.
This solution, referred to as VAR, gives an upper bound on the
image quality that one can expect by solving (2). We also use
the following deep learning methods for comparison: EPLL
[31], MLP [7], and IRCNN [4]. When the setting is not rel-
evant for these methods, no score is provided. Since MLP,
EPLL and IRCNN require the knowledge of the noise level,
we use the estimation σ̂ from (12) for GaussB, as the noise
level is unknown in that case.

4.4. Results and discussion

The average SSIM obtained with the different methods for
the various configurations on the test set can be found in Ta-
ble 1. The mean SSIM achieved with iRestNet is greater than
those obtained with the other methods for all configurations.
For completeness, the SSIM of all images of the test set are
plotted in Figure 4 for three configurations. As one can see,
iRestNet performs well in terms of SSIM on almost all im-
ages. An example of the visual results obtained with the dif-

ferent methods can be found in Figure 5 for one test image
degraded with GaussB. One can see from inspecting Figure 5
that the contrast and the details are better retrieved with iRest-
Net than with its competitors on this image.

GaussA GaussB GaussC Motion Square

Blurred 0.675 0.522 0.326 0.548 0.543
VAR 0.804 0.724 0.585 0.829 0.756
EPLL 0.799 0.709 0.564 0.838 0.754
MLP 0.821 0.734 0.608 - -
IRCNN 0.841 0.768 0.618 0.907 0.833
iRestNet 0.850 0.786 0.638 0.911 0.839

Table 1. SSIM results on the test set.

5. CONCLUSION

This paper presents a novel architecture based on a deep un-
folded IPM with untied parameters. Range constraints are en-
forced on the solution thanks to a logarithmic barrier, which
provides more control over the output of the network. Other
contributions include the expression of the gradient of the re-
quired proximity operator. A direction for future work is to
extend the method to situations in which the blur kernel is not
fully known, so as to address blind deconvolution problems.

Ground-truth VAR: 0.838 EPLL: 0.842 MLP: 0.862 IRCNN: 0.842 iRestNet: 0.887

Fig. 5. Visual results and SSIM obtained with the different methods on one test image degraded with GaussB.
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