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2Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Parc Valrose, Bât. H. FIZEAU, F-06108 Nice, France
3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
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ABSTRACT
Directly imaging exoplanets is challenging because quasi-static phase aberrations in the pupil
plane (speckles) can mimic the signal of a companion at small angular separations. Kernel
phase, which is a generalization of closure phase (known from sparse aperture masking), is
independent of pupil plane phase noise to second order and allows for a robust calibration
of full pupil, extreme adaptive optics observations. We applied kernel phase combined with
a principal component based calibration process to a suitable but not optimal, high cadence,
pupil stabilized L’-band (3.8μm) data set from the ESO archive. We detect eight low-mass
companions, five of which were previously unknown, and two have angular separations of
∼0.8–1.2 λ/D (i.e. ∼80–110 mas), demonstrating that kernel phase achieves a resolution below
the classical diffraction limit of a telescope. While we reach a 5σ contrast limit of ∼1/100
at such angular separations, we demonstrate that an optimized observing strategy with more
diversity of PSF references (e.g. star-hopping sequences) would have led to a better calibration
and even better performance. As such, kernel phase is a promising technique for achieving the
best possible resolution with future space-based telescopes (e.g. James Webb Space Telescope),
which are limited by the mirror size rather than atmospheric turbulence, and with a dedicated
calibration process also for extreme adaptive optics facilities from the ground.

Key words: planets and satellites: detection – planets and satellites: formation – techniques:
high angular resolution – techniques: image processing – techniques: interferometric –
binaries: close.

1 IN T RO D U C T I O N

Direct imaging is vital for studying the outer regions of extrasolar
systems that are inaccessible to transit observations and can only be
revealed by decades-long, time-consuming radial velocity surveys
(e.g. Fischer et al. 2014). It has proven particularly successful in
probing our understanding of the formation of gas giant planets
(e.g. D’Angelo, Durisen & Lissauer 2010), being able to estimate
their mass from their luminosity and age (e.g. Spiegel & Burrows
2012) and resolve their orbit. Although the majority of detected
companion candidates are arguably consistent with being emission
or scattering from disc material (e.g. LkCa 15, Kraus & Ireland
2012; HD 100546, Quanz et al. 2013; HD 169142, Biller et al. 2014),
the recent example of PDS 70 (Keppler et al. 2018) demonstrates
that direct imaging of wide-separation but still Solar-system scale
planets is possible at relatively moderate contrasts in the vicinity of
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young stars. This is spurring an ongoing discussion about the nature
of planet formation and the commonness of gas giant planets with
large orbital distances (e.g. Bowler & Nielsen 2018).

However, direct imaging operates at the resolution and sensi-
tivity limit of the most powerful instruments today (e.g. Pepe,
Ehrenreich & Meyer 2014), placing demanding requirements on
the observing and the post-processing techniques that are used to
uncover faint companions at high contrasts (e.g. angular differ-
ential imaging, Marois et al. 2006; point spread function (PSF)
subtraction, Lafrenière et al. 2007a; principal component analysis,
Amara & Quanz 2012; Soummer, Pueyo & Larkin 2012). Detecting
exoplanets from the ground using these techniques has only been
made possible by the recent development of extreme adaptive optics
systems (e.g. Milli et al. 2016) and is mainly limited by non-
common path aberrations that are not sensed by the wavefront
control system (e.g. Sauvage et al. 2007). These aberrations manifest
themselves as quasi-static speckles on the detector images that can
mimic the signal of a companion and place a strong constraint on the
achievable contrast at small angular separations (e.g. Fitzgerald &
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Graham 2006). Hence, directly imaging and studying the formation
of gas giant planets on Solar-system scales has been extremely
challenging so far (e.g. Bowler 2016) because the nearest star-
forming regions lie �100 pc away (e.g. Loinard et al. 2007) where
such orbital distances correspond to angular separations of only
�200 mas.

In this paper, we explore the capabilities of the kernel phase
technique (Martinache 2010) for high-contrast imaging at the
diffraction limit from the ground. This post-processing technique
can be seen as refinement of sparse aperture masking and the
closure phase technique (Tuthill et al. 2000). By probing only
certain linear combinations of the phase of the Fourier transformed
detector images, kernel phase, and sparse aperture masking allow
for a robust calibration of the time-varying optical transfer function
of the system and a significant mitigation of quasi-static speckles
and achieve an angular resolution of �50 mas in the near-infrared
(i.e. the L’ band, Cheetham et al. 2016). This gives access to
objects on Solar-system scales in the nearest star-forming regions
(i.e. projected separations of ∼40 mas for a Jupiter analogue in
the Scorpius Centaurus OB association, Preibisch & Mamajek
2008) and has proven successful in directly imaging young exo-
planets/disc features (e.g. Kraus & Ireland 2012). The caveat of
sparse aperture masking is that the mask blocks �85 per cent
of the light (for VLT/NACO; Tuthill et al. 2010) and therefore
significantly decreases the sensitivity and hence the contrast limit
of the observations for relatively faint targets. However, kernel phase
uses the light collected by the entire pupil and should perform better
in the high Strehl regime and the bright limit (e.g. Pope et al. 2016;
Sallum & Skemer 2019).

For sparse aperture masking, a mask is placed at the Lyot stop
of an instrument in order to split the primary mirror into a discrete
interferometric array of real sub-apertures (e.g. Readhead et al.
1988). In the Fourier transform of the detector image (hereafter
referred to as Fourier plane), these sub-apertures map on to their
autocorrelation (i.e. their spatial frequencies, Ireland 2016). The
phase φ of each spatial frequency can be extracted and linearly
combined in a way such that the resulting closure phase θ = K · φ

is independent of the pupil plane (or instrumental) phase ϕ to second
order (i.e. terms of first and second order in ϕ are vanishing), where
the matrix K encodes this special linear combination (e.g. Ireland
2016). For observations from the ground, the pupil plane phase
ϕ is affected by noise from atmospheric seeing and non-common
path aberrations that ultimately cause quasi-static speckles. Being
more robust with respect to these systematic effects, sparse aperture
masking achieves a superior angular resolution.

For full pupil kernel phase imaging, there is no mask and the
entire primary mirror is discretized into an interferometric array of
virtual sub-apertures. According to Martinache (2010), it is then
convenient to define a transfer matrix A that maps the baselines
between each pair of virtual sub-apertures on to their corresponding
spatial frequency. In the high Strehl regime, where the pupil plane
phase ϕ can be linearized, we obtain the relationship

φ = R−1 · A · ϕ + φobj + O(ϕ3), (1)

where R is a diagonal matrix encoding the redundancy of the spatial
frequencies (i.e. the baselines of the interferometric array) and φobj

is the phase intrinsic to the observed object. Multiplication with the
left kernel K of R−1 · A yields

θ = K · φ (2)

= K · R−1 · A︸ ︷︷ ︸
=0

·ϕ + K · φobj + O(ϕ3) (3)

= θobj + O(ϕ3)︸ ︷︷ ︸
≈0

; (4)

hence, the kernel θ of the measured Fourier plane phase φ directly
represents the kernel θobj of the phase intrinsic to the observed object
φobj, at least in the high Strehl regime (where O(ϕ3) is negligible).
This is why frame selection based on the Strehl ratio is essential.
Note that the kernel phase is a generalization of the closure phase
to the case of redundant apertures.

For observations from space, which do not suffer from atmo-
spheric seeing, kernel phase has proven to be successful in resolving
close companions at the diffraction limit (Martinache 2010; Pope,
Martinache & Tuthill 2013). It is our goal to determine if, under good
observing conditions, kernel phase also is a competitive alternative
to sparse aperture masking from the ground.

2 ME T H O D S

2.1 Data reduction

A basic direct imaging data reduction (such as dark, flat, background
subtraction and bad pixel correction) is also essential for the kernel
phase technique (e.g. Sallum & Eisner 2017). For this purpose,
we developed our own data reduction pipeline1 that can be fed the
raw data with their associated raw calibrators from the VLT/NACO
archive.2 Our data reduction pipeline performs the following steps
which are described in more detail in the following sections:

(i) Linearize the raw frames
(ii) Compute master darks and their bad pixel maps
(iii) Compute master flats and their bad pixel maps
(iv) Flag saturated pixels
(v) Apply dark, flat, background and bad pixel corrections
(vi) Perform a dither subtraction
(vii) Reconstruct saturated pixels
(viii) Select frames with sufficient Strehl ratio

2.1.1 Detector linearization correction

Like most photon counting devices, NACO’s infrared detector
CONICA suffers from a non-linear response when the pixel counts
approach the saturation threshold (16 400 counts for uncorrelated
high well depth mode3 according to the NACO Quality Control
and Data Processing,4 with a more conservative 16 000 counts used
in our analysis). As kernel phase is an interferometric technique
for which the fringes are coded spatially on the detector, it is very
important to characterize the pixel to pixel response. Moreover,
many of the data cubes which we analyse in Section 3 feature
saturated PSFs which we want to correct for non-linearity before
re-constructing their core (cf. Section 2.1.6).

In order to compute the detector linearization correction we
download all frames of type ‘FLAT, LAMP, DETCHECK’ and

1https://github.com/kammerje/PyConica
2http://archive.eso.org/wdb/wdb/eso/naco/form
3This is the standard imaging mode in the L’ band (3.8μm) and all data
cubes which we analyse have been taken in this mode.
4https://www.eso.org/observing/dfo/quality/NACO/qc/detmon qc1.html
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Kernel phase imaging with VLT/NACO 641

Figure 1. Left-hand panel: median pixel count in dependence of the integration time t for uncorrelated high well depth mode from the detector monitoring
(blue curve) and the linear (orange curve) and cubic (green curve) polynomials f(t) and g(t) that we fit to it. Right-hand panel: correction curve (blue) f(g) and
the cubic polynomial h (orange curve) that we fit to it and use for linearizing all pixels with measured counts between 8500 and 16 000. In both panels, the solid
red lines mark the end of the linear regime and the saturation threshold. Note that very low (i.e. negative) pixel counts occur due to the use of a narrow-band
filter (�λ = 0.018μm) for the detector monitoring, whereas the L’ science frames are taken with a wide-band filter (�λ = 0.62μm).

uncorrelated high well depth mode from 2016 March 23 and
2016 September 24 (which are closest in time to the observation
of the earliest and the latest data cube which we analyse) from
the VLT/NACO archive. We sort them by integration time and
compute the median pixel count over all frames for each individual
integration time (masking out the broken stripes in the lower left
quadrant of CONICA). Then, we plot the median pixel count in
dependence of the integration time t, fit a linear polynomial f(t) to
all data points with less than 8500 counts (end of the linear regime
for uncorrelated high well depth mode) and a cubic polynomial g(t)
to all data points with less than 16 000 counts (saturation threshold,
cf. the left-hand panel of Fig. 1). We linearize the detector using
a continuously differentiable piecewise polynomial approach h to
the correction curve f(g) with a linear function up to 8500 counts
and a cubic polynomial between 8500 and 16 000 counts (cf. the
right-hand panel of Fig. 1).

2.1.2 Master darks and master flats

For each observation block (OB), we compute master darks from
the associated dark frames as the median of all dark frames with
a unique set of size and exposure time. Then we compute a bad
pixel map for each master dark based on the frame by frame median
and variance of each pixel’s count. Therefore, we first compute two
frames:

(i) The absolute difference between the master dark and the
median filtered master dark.

(ii) The absolute of the median subtracted variance dark.

Then, we identify bad pixels in each of these frames based on
their difference to the median of these frames. For frame (i) we
classify pixels that are above 10 times the median as bad, for frame
(ii) pixels which are above 75 times the median. Note that these
thresholds were identified empirically. From the median subtracted
dark frames, we estimate the readout noise as the mean over each
frame’s pixel count standard deviation.

We proceed similar for the flat frames, but also group them by
filter as well as size and exposure time, subtract a master dark with

matching properties (i.e. similar size and exposure time) from each
master flat, and normalize it by its median pixel count.

2.1.3 Saturated pixels

The data cubes that we analyse in Section 3 consist of 100 frames of
0.2 s exposure. For each data cube, we reject the first frame (which
we find to consistently suffer from a bias), so that there are 99
frames left. Note that NACO appends the median of all 100 frames
at the end of each data cube which is also rejected here. Before
proceeding, we also flag the saturated pixels in each frame that are
all pixels with more than h(16 000) counts.

2.1.4 Dark, flat, background, and bad pixel correction

We clean each frame of a data cube individually by subtracting a
master dark with matching properties (i.e. similar size and exposure
time), dividing it by a master flat with matching properties (i.e.
similar size, exposure time and filter), correcting bad pixels (which
are bad pixels from the master dark or the master flat) with a
median filter of size five pixels and performing a simple background
subtraction by subtracting the median pixel count of the frame from
each pixel. A typical result is shown in the left-hand panel of Fig. 2,
where residual systematic noise (mainly from the detector) is still
clearly visible.

2.1.5 Dither subtraction

In order to mitigate the residual systematic noise from the detector
and the sky background, we perform a dither subtraction. After
cleaning all data cubes within one OB, we find for each data cube
(which we will here call data cube A) the data cube B with the target
furthest away (on the detector) and subtract its median frame from
each frame of data cube A. The new bad and saturated pixel maps
are then the logical sums of those from both involved data cubes.
After this step the residual noise appears like Gaussian random
noise as is shown in the right-hand panel of Fig. 2.
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Figure 2. Left-hand panel: median frame of a data cube of HIP 47425 after
dark, flat and a simple background subtraction. The pixel counts are scaled
by an arcsinh stretch so that both the PSF and the background are visible
in the image. Right-hand panel: same median frame after performing the
dither subtraction described in Section 2.1.5. This second step is essential
to remove residual systematic noise from the detector that can be seen as
grid-like structure in the left-hand panel. Note that the two panels have the
same colour scale.

Our typical performance is a pixel count standard deviation of
∼36 = 4.4 + (158/s · 0.2 s) outside of 10 λ/D from the centre of
the PSF in 0.2 s exposure, where 4.4 is the detector readout noise,
λ is the observing wavelength (3.8μm for the L’ band) and D is the
diameter of the primary mirror (8.2 m for the VLT).

2.1.6 Reconstruction of saturated pixels

Our reconstruction of saturated pixels is based on an algorithm
described in section 2.5 of Ireland (2013). This technique also
identifies and corrects residual bad pixels, with no more than 10
additional bad pixels corrected in a typical frame. First, we crop
all frames to a size of 96 by 96 pixels (∼2.6 arcsec2) centred on
the target. Then, we correct bad and saturated pixels for each frame
separately by minimizing the Fourier plane power |fZ| outside the
region of support Z permitted by the pupil geometry. Let BZ be
the matrix that maps the bad and saturated pixel values x on to the
Fourier plane domain Z, then

f Z = BZ · b + εZ, (5)

where b are the corrections to the bad and saturated pixel values
x (i.e. the corrected pixel values are x − b) and εZ is remaining
Fourier plane noise. We solve for b using the Moore–Penrose
pseudo-inverse of BZ , i.e.

b = B+
Z · f Z = (

B∗
Z · BZ

)−1 · B∗
Z · f Z. (6)

Since a broad-band filter was used for the observations, but we use
a monochromatic central filter wavelength in our analysis and also
blur the edge of the pupil through the use of a windowing function,
we use a slightly larger pupil diameter to define this region Z of 10 m
here. In fact, the only important thing for recovering the Fourier
plane phase is that the Fourier plane power outside the region of
support permitted by the pupil geometry is minimized, so using a
larger pupil diameter just assures this in case of low-quality data
and is a conservative choice, especially in the case of our data which
is far from the Nyquist sampling criterion.

Sometimes, the remaining Fourier plane noise εZ can be signif-
icant, which is why we repeat the entire correction process up to
15 times for each frame. After each iteration, we look for remaining
bad pixels by

(i) computing the Fourier transform of the corrected frame from
the previous iteration;

(ii) windowing this frame by the Fourier domain Z;

Figure 3. Left-hand panel: mean over a horizontal and a vertical cross-
section through the centre of the median frame shown in the right-hand panel
of Fig. 2. Right-hand panel: same cross-section, but after reconstructing bad
and saturated pixels as described in Section 2.1.6. The dashed black line
marks the maximum of the cross-section in the left-hand panel in order to
illustrate the reconstruction of the peak in the PSF core.

Figure 4. Left-hand panels: Fourier plane phase of the median frame shown
in the right-hand panel of Fig. 2 (top). The phase is flat in the centre, but
the cut-off spatial frequency is smaller than the region of support permitted
by the pupil geometry (magenta circle). Median Fourier plane phase at the
spatial frequencies of our pupil model (bottom). Right-hand panels: same
as in the left-hand panels, but after reconstructing bad and saturated pixels
as described in Section 2.1.6. In both upper panels, the magenta line traces
out the spatial frequencies of our pupil model (from left to right) in order to
illustrate how the patterns observed in the lower panels are obtained.

(iii) computing the inverse Fourier transform of this frame; and
(iv) identifying remaining bad pixels in this frame based on their

difference to the median filtered frame.

If no remaining bad pixels are identified, we terminate the
iteration.

A cross-section of a saturated PSF before and after performing
the reconstruction is shown in Fig. 3. Obviously, this reconstruction
cannot reveal any structure or companions hidden behind saturated
pixels, but it allows us to perform our kernel phase analysis on
saturated data cubes that would otherwise suffer from high Fourier
plane phase noise (cf. Fig. 4). Please note that a method from the
class of least squares spectral analysis techniques (i.e. image plane
fringe fitting) may be more robust in dealing with bad pixels, but
would require the simultaneous fitting of all Fourier plane phases
and amplitudes and is therefore beyond the scope of this paper,
although it is a promising approach for future work.

MNRAS 486, 639–654 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/1/639/5421634 by C
N

R
S - ISTO

 user on 30 M
ay 2023



Kernel phase imaging with VLT/NACO 643

Figure 5. Peak count for all 99 frames of a data cube of HIP 116258. The
horizontal red line marks the rejection threshold computed according to
Section 2.1.7. Around frame 70, the observing conditions suddenly become
worse and a clear drop in the peak count can be observed.

Figure 6. Left-hand panel: our VLT pupil model consisting of 140 virtual
sub-apertures sampled on a square grid with a pupil plane spacing of
0.6 m. The cyan circles show the size of the primary mirror and the central
obscuration. Right-hand panel: Fourier plane coverage of the same pupil
model. The magenta circle shows the region of support permitted by the pupil
geometry in the left-hand panel. Since the Fourier transform is symmetric,
we only use the phase measured in one half-plane. Note that only these
Fourier plane positions within 7.0 m from the origin (i.e. these which do not
suffer from low power, cf. Section 2.2.2) are shown.

2.1.7 Frame selection

As explained in the Introduction section, a high Strehl ratio is
essential for the kernel phase technique in order for the mathematical
framework (i.e. the linearization of the Fourier plane phase, cf.
equation 1) to be valid. Therefore, we select frames with sufficient
Strehl ratio based on their peak pixel count. For each data cube, we
first compute the median peak count of the 10 per cent best frames.
Then, we reject all frames with a peak count below 75 per cent of this
value. Using this dynamic threshold is better than simply rejecting
a fixed fraction of the frames (e.g. Law, Mackay & Baldwin 2006)
because it can correctly account for a sudden drop in the Strehl ratio
like shown in Fig. 5. Note that we consider the peak pixel count
after performing the PSF reconstruction (cf. Section 2.1.6) here.

2.2 Kernel phase extraction

2.2.1 VLT pupil model

In order to extract the kernel phase from VLT/NACO data, we first
need to construct a model for the VLT pupil (i.e. split the primary
mirror into an interferometric array of virtual sub-apertures). We
sample 140 virtual sub-apertures on a square grid with a pupil plane
spacing of 0.6 m, which is approximately half the Nyquist sampling
of λ/α ≈ 0.3 m, where λ = 3.8μm is the observing wavelength
and α = 2.610 arcsec is the image size (96 pixels). Our VLT pupil
model is shown in the left-hand panel of Fig. 6 and based on an 8.2 m
primary mirror with a 1.2 m central obscuration. Another advantage
of kernel phase over sparse aperture masking is the dense Fourier
plane coverage which is shown in the right-hand panel of Fig. 6.

Figure 7. Left-hand panels: Fourier plane phase of the median frame of a
data cube of TYC 6849 1795 1 (resolved and bright binary) after imperfect
re-centring of the frames (top). The phase is flat in the centre, but there is
an overall phase ramp from bottom to top caused by the resolved and bright
companion. Median Fourier plane phase at the spatial frequencies of our
pupil model (bottom). Right-hand panels: same as in the left-hand panels,
but after proper re-centring of the frames. The residual Fourier plane phase
is of considerably reduced amplitude and can be properly assembled to form
meaningful kernel phases. The magenta circles and lines represent the same
as in Fig. 4.

2.2.2 XARA

The extraction of the Fourier plane phase and the computation of the
kernel phase rely on a PYTHON package called XARA5 (eXtreme
Angular Resolution Astronomy; Martinache 2010, 2013). XARA
has been designed to process data produced by multiple instruments
assuming that the images comply to the kernel phase analysis
requirements of proper sampling, high-Strehl (boosted by our frame
selection procedure described in Section 2.1.7), and non-saturation
(restored by the procedure described in Section 2.1.6). The discrete
achromatic representation of the VLT aperture (i.e. our pupil model)
is used by XARA to compute the phase transfer matrix A and the
associated left kernel operator K via a singular value decomposition
of A.

With the added knowledge of the detector pixel scale and the
observing wavelength, the discrete model is scaled so that the
Fourier plane phase at the expected (u, v) coordinates can be
extracted by a discrete Fourier transform. For the small aberration
hypothesis to remain valid, the data must be properly centred prior
to the Fourier transform. Failure to do so will leave a residual
Fourier plane phase ramp that can wrap and lead to meaningless
kernel phases (cf. the left-hand panels of Fig. 7). XARA offers
several centring algorithms. It is crucial to carefully choose from the
available options depending on the requirements coming from the
data. For our extensive ground-based data set for example, we find
that minimizing directly the Fourier plane phase which is extracted
by XARA is most robust and the offered sub-pixel re-centring is
very valuable (cf. the right-hand panels of Fig. 7) due to an increased
level of pupil plane phase noise from the atmosphere and the bright
background (if compared to space-borne data).

Moreover, virtual baselines near the outer edge of the Fourier
coverage suffer from low power as they are only supported by very

5https://github.com/fmartinache/xara
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few baselines, i.e. have small redundancy. The phase measured for
these baselines is systematically noisier and needs to be excluded
from the model to prevent the noise to propagate into the estimation
of all kernel phases. This can be achieved using the baseline
filtering option implemented in XARA. In our case, baselines of
length greater than 7.0 m and the corresponding rows of A are
eliminated prior to the computation of K. Some of the theoretically
available kernel phases are lost but the remaining kernel phases can
nevertheless be used just like for the complete model.

Finally, to limit the impact of readout noise in regions of the
image where little signal is present, frames are windowed by a
super-Gaussian (g(r) = exp − (r/r0)4) with a radius r0 = 25
pixels, effectively limiting our field of view to ∼1000 mas. Note
that Section 3.4 will further comment on the effect of this window
and how it can affect contrast estimates for detections at large
separations.

2.2.3 Kernel phase uncertainties

For estimating the uncertainties, we compute the kernel phase
covariance �θ for each frame d from its photon count variance
�d = g · w2 · (d + b) in units of (photo-electrons)2, where g is the
detector gain (g = 9.8 for uncorrelated high well depth mode), w is
the super-Gaussian window, d is the cleaned and re-centred frame,
and b is its background (from the simple background subtraction,
cf. Section 2.1.4). Therefore, we first need to find a linear operator
B that maps each frame g · w · d in units of photo-electrons to its
kernel phase θ . The linear discrete Fourier transform F and the
kernel K of the pupil model R−1 · A are already linear operators,
and the Fourier plane phase φ(z) (of a complex number z) can be
approximated as Im(z)/|z| for small angles. Hence, we compute

B = K · Im(F)∣∣F · g · w · d
∣∣ . (7)

Note that B · g · w · d would be a small-angle approximation for
the kernel phase. Then, we obtain an estimate for the kernel phase
covariance by propagating the photon count variance according to

�θ = B · �d · BT . (8)

Now, we have a kernel phase θ and a kernel phase covariance
�θ for each frame. In order to save computation time for the model
fitting (cf. Section 2.4), we compute a weighted mean θ̄ of the kernel
phase for each data cube. Therefore, we first compute the average
kernel phase covariance �̄θ over all frames di of a data cube via

�̄θ =
(∑

i

�−1
θ,i

)−1

, (9)

and then the weighted mean θ̄ of the kernel phase (cf. Fig. 8) via

θ̄ = �̄θ ·
∑

i

�−1
θ,i · θ i . (10)

For the rest of this paper, we omit the bar for better readability, i.e.

θ̄ → θ , (11)

�̄θ → �θ . (12)

Note that this kernel phase covariance model includes the
contribution of shot noise only. Any residual calibration errors not
taken into account in the following section are therefore expected
to increase the reduced χ2 of any model fitting, potentially to much

Figure 8. Measured mean kernel phase θ̄ over all data cubes of HIP 47425
(typical calibrator) and TYC 6849 1795 1 (resolved and bright binary) as
well as of its best-fitting binary model θbin = K · φbin (cf. Section 2.4.1).
Data and model agree very well, so that the green curve overlaps with the
orange curve. Note that we normalize each kernel phase by the norm of its
corresponding row of K and that the raw binary parameters reported here
are not corrected for the windowing.

more than 1.0 in the case of high signal-to-noise data with highly
imperfect calibration.

2.3 Kernel phase calibration

Under perfect conditions the closure phase of a point-symmetric
source, such as an unresolved star, is zero (e.g. Monnier 2007).
The same holds for the kernel phase, which is a generalization of
the closure phase (e.g. Ireland 2016). Practically, however, one is
limited by systematic errors caused by third-order phase residuals
(e.g. Ireland 2013) and even point-symmetric sources have non-zero
kernel phase.

For this reason, calibration is of fundamental importance when
analysing interferometric measurables (like closure or kernel
phase). The systematic errors are expected to be quasi-static (e.g.
Ireland 2013), i.e. slowly varying with time, so that the kernel phase
of a well-known point source measured close in time to that of the
science target can serve as a calibrator. The simplest calibration
technique would be to subtract the kernel phase of a well-known
point source from that of the science target. This technique was for
example used successfully in Martinache (2010), but here we want
to go beyond this approach.

We use principal component analysis in the framework of a
Karhunen–Loève decomposition (Soummer et al. 2012; Pueyo
2016) in order to subtract the statistically most significant phase
residuals of the calibrator kernel phase from that of the science
target. Note that the following technique is new, but very similar
to the POISE observables in Ireland (2013). We start by computing
the covariance matrix ERR of the kernel phase θ cal, i of all calibrator
data cubes i via

ERR,(i,j ) = θT
cal,i · θ cal,j . (13)

Then, we compute an eigendecomposition of this matrix in order
to obtain its sorted (in descending order) eigenvalues wk and eigen-
vectors vk. Finally, we compute the Karhunen–Loève transform Z

of shape (number of kernel phases, number of calibrator data cubes)
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Kernel phase imaging with VLT/NACO 645

via

Z(n,k) = 1√
wk

∑
p

v
p

k · θn
cal,p, (14)

where v
p

k is the pth component of the kth eigenvector of ERR and
θn

cal,p is the nth kernel phase of the pth calibrator data cube.
From the Karhunen–Loève transform Z, we obtain a projection

matrix P via

P = I − Z′ · Z′T , (15)

where I is the identity matrix and Z′ is obtained from the first
Kklip columns of Z. Kklip is an integer representing the order of
the correction, i.e. how many eigencomponents of the calibrator
kernel phase should be corrected for. The projection matrix P is
of shape (number of kernel phases, number of kernel phases), but
it has Kklip zero eigenvalues by construction. In order to properly
represent the dimensions, we compute another eigendecomposition
of P and obtain a new projection matrix P′, whose columns are
those eigenvectors of P which correspond to non-zero eigenvalues.
The projection matrix P′ is of shape (number of ‘good’ kernel
phases, number of kernel phases), where ‘good’ means statistically
independent of systematic errors, and can be used to project the
measured kernel phase θ and its covariance �θ into a sub-space of
dimension (number of ‘good’ kernel phases), which is more robust
with respect to quasi-static errors, via

θ ′ = P′ · θ , (16)

�′
θ = P′ · �θ · P′T . (17)

For the rest of this paper, we omit the prime for better readability,
i.e.

θ ′ → θ , (18)

�′
θ → �θ . (19)

2.4 Model fitting

From equations (2)–(4), it becomes clear that the measured kernel
phase θ directly represents the kernel phase intrinsic to the observed
object θobj. Hence, we can infer information about the spatial
structure of the observed object by fitting models for θobj = K · φobj

to θ .

2.4.1 Binary model

In order to search for companion candidates, we use the binary
model

rbin · eiφbin = 1 + c · exp

(
−2πi ·

(
�RA · u

λ
+ �DEC · v

λ

))
, (20)

where c is the contrast ratio between secondary and primary, u
and v are the coordinates of the sampled Fourier plane positions
(i.e. the spatial frequencies of the pupil model), λ is the observing
wavelength and

�RA = −ρ · sin(ϑ − ϑ0), (21)

�DEC = ρ · cos(ϑ − ϑ0), (22)

where ρ is the angular separation between primary and secondary,
ϑ is the position angle of the secondary with respect to the primary,
and ϑ0 is the detector position angle during the observation. Fig. 8
shows the best-fitting binary model for the measured kernel phase
of TYC 6849 1795 1 (resolved and bright binary).

2.4.2 Uncertainties from photon noise

Using the kernel phase covariance �θ estimated from photon noise
according to Section 2.2.3, we compute the best-fitting contrast
cfit and its uncertainty σcfit for the binary model θbin = K · φbin on
each position of a discrete 500 × 500 mas square grid with spacing
13.595 mas (which is half the detector pixel scale of CONICA). In
some cases, where we suspect a companion candidate at a larger
angular separation, we also extend the grid to 1000 × 1000 mas.

In the high-contrast regime (where c 	 1), the phase φbin is
approximately proportional to the contrast c of the binary model, so
is its kernel phase θbin (because K is a linear operator). Hence, the
χ2 of the binary model χ2

bin can be approximated as

χ2
bin = (� − c · �bin,ref)

T · �−1
� · (� − c · �bin,ref), (23)

where � and �bin,ref are vertical stacks of the kernel phase θ i and
the reference binary model θbin,ref,i of each data cube i and �−1

� is
a block-diagonal matrix whose diagonal elements are the inverse
kernel phase covariances �−1

θ,i of each data cube i, i.e.

� =

⎛
⎜⎝

θ1

θ2

...

⎞
⎟⎠, �−1

� =

⎛
⎜⎝

�−1
θ,1 0 · · ·
0 �−1

θ,2 · · ·
...

...
. . .

⎞
⎟⎠. (24)

The reference binary model θbin,ref is the binary model θbin evaluated
for and normalized by a reference contrast cref = 0.001, i.e.

θbin,ref = θbin(c = cref)

cref
. (25)

Finally, we obtain the log-likelihood ln L for the binary model θbin

as

ln L = −1

2
χ2

bin. (26)

The best-fitting contrast cfit for the binary model θbin is then
obtained by maximizing ln L for each grid position, i.e.

∂

∂c
ln L

∣∣∣∣
cfit

= 0, (27)

⇒ cfit = �T
bin,ref · �−1

� · �

�T
bin,ref · �−1

� · �bin,ref
, (28)

and its uncertainty is the square root of its variance, i.e.

σcfit = 1√
�T

bin,ref · �−1
� · �bin,ref

. (29)

Finally, the detection significance based on photon noise SNRph is
computed for each grid position as

SNRph = cfit

σph
= cfit

σcfit ·
√

χ2
r,bin,min

, (30)

where we scale the uncertainty of the best-fitting contrast σcfit by the
square root of the minimal reduced χ2 of the binary model of the
entire grid (χ2

r,bin,min). Assuming that kernel phase is proportional to
contrast, this is equivalent to scaling the kernel phase covariance
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646 J. Kammerer et al.

�θ so that the minimal reduced χ2 is 1.0. This step is necessary
because kernel phase is still affected by third (or higher) order pupil
plane phase noise [cf. equations (2)–(4)], so that the uncertainties
from photon noise σcfit significantly underestimate the true errors.
Note that there can be various sources of higher order phase noise
(e.g. Ireland 2013), but studying those in detail is beyond the scope
of this paper.

The final parameters pfit for the best-fitting binary model are
then obtained from a least squares search that maximizes the
log-likelihood ln L of the binary model under varying angular
separation, position angle, and contrast simultaneously. For the
least squares search, we use the grid position with the maximal
log-likelihood as prior and restrict the search box for the angular
separation ρ to 50 mas ≤ ρ ≤ 1000 mas.

The uncertainties of the best-fitting parameters σpfit follow from
the likelihood function L for Gaussian errors (which are applicable
to high confidence detections)

ln L(p|x) = −1

2
χ2

bin (31)

= −1

2
(� − �bin(p))T · �−1

� · (� − �bin(p)), (32)

where p represents the three-dimensional parameter space of an-
gular separation, position angle, and contrast. Differentiating twice
and neglecting terms containing second-order derivatives of a single
parameter yields

H(i,j ) = ∂2

∂pi∂pj

ln L(p|x) (33)

≈ ∂�bin(p)

∂pi

· �−1
� · ∂�bin(p)

∂pj

(34)

= −(J · �−1
� · JT )(i,j ), (35)

where J and H are the Jacobian and the Hessian matrix of the binary
model �bin. Hence, the covariance matrix of the model parameters
�p can be obtained via

�p = (−H)−1 = (J · �−1
� · JT )−1, (36)

and the uncertainties of the model parameters for the best-fitting
binary model σpfit are

σpfit = √
diag(�pfit ). (37)

We also compute the correlation of the best-fitting model parameters
as

corr = �pfit

σT
pfit

· σpfit

, (38)

where ·
· denotes element-wise division.

2.4.3 Empirical uncertainties

Using only the uncertainties from photon noise, it is still difficult to
distinguish between residual speckle noise (i.e. third order phase
noise in the pupil plane) and real detections at small angular
separations. This is the case because the data set which we analyse
in Section 3 is very limited in terms of diversity of calibrator PSFs.
For this reason, we use an empirical approach as the primary method
to determine whether a detection is real or not.

First, we split our targets into candidate detections and calibrators
based on their detection significance from photon noise SNRph (cf.
Section 3.2.2). For each of the calibrators, we then compute two
contrast curves:

(i) The azimuthal average crms of the root mean square (rms)
best-fitting contrast cfit

(ii) The azimuthal average csub
RMS of the rms best-fitting contrast

csub
fit after subtracting the best-fitting binary model θbin from the

measured kernel phase θ

Here, the assumption is that the calibrators are single stars so that
the ratio of the two rms contrast curves computed above, i.e.

fspeckle(ρ) = cRMS(ρ)

csub
RMS(ρ)

, (39)

is a correction factor for the relative contrast of the residual speckle
noise. This is illustrated in the left-hand panel of Fig. 9.

For each of the candidate detections, we only compute the
azimuthal average csub

RMS of the rms best-fitting contrast csub
fit after

subtracting the best-fitting binary model θbin (which might or might
not be a real detection) from the measured kernel phase θ . Then,
we multiply this rms contrast curve with the mean of the relative
speckle contrast fspeckle of all calibrators, i.e.

σemp(ρ) = f̄speckle(ρ) · csub
RMS(ρ), (40)

where the bar denotes the mean, in order to obtain an empirical
contrast uncertainty σ emp as a function of the angular separation
ρ for each candidate detection (cf. the right-hand panel of Fig. 9).
We classify a candidate detection as real if its empirical detection
significance SNRemp is above the 5σ threshold, i.e.

SNRemp = cfit

σemp
> 5. (41)

Furthermore, we obtain empirically motivated uncertainties on
the best-fitting parameters pfit by multiplying the uncertainties
from photon noise σpfit with the ratio ferr of the empirical contrast
uncertainty σ emp to the contrast uncertainty from photon noise σ ph

(at the position of the best-fitting binary model θbin).
The kernel phase analysis tools described in Sections 2.2–2.4 are

available on GitHub.6 We put a strong focus on applicability to other
instruments and an exchangeable kernel phase fits file format.

3 R ESULTS AND DI SCUSSI ON

3.1 Target list

We test our methods on an archival data set because the kernel phase
technique is optimized for detecting companions at much smaller
angular separations to their host star than conventional high-contrast
imaging techniques (such as ADI and reference star differential
imaging, i.e. RDI). Hence, the parameter space that we are looking
at is still unexplored. We search the VLT/NACO archive for L’-band
RDI surveys and decide to analyse programme 097.C-0972(A) (PI:
J. Girard) due to a large number of observed targets and therefore
potential calibrators. A target list together with our detections is
reported in Table 1.

6https://github.com/kammerje/PyKernel
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Kernel phase imaging with VLT/NACO 647

Figure 9. Left-hand panel: mean of the azimuthal average crms of the rms best-fitting contrast cfit of all non-detections of OB 2 (cf. column ‘Det’ of Table 1)
before (solid blue curve) and after (dashed blue curve) subtracting the best-fitting binary model from the measured kernel phase. The dotted black curve
represents the correction factor for the relative contrast of the residual speckle noise fspeckle. Right-hand panel: same as in the left-hand panel, but for HIP
50156 (close binary). The empirical 1σ detection limit that we use for our analysis (solid green curve) is obtained by multiplying the azimuthal average csub

RMS
of the rms best-fitting contrast csub

fit after subtracting the best-fitting binary model from the measured kernel phase (dashed orange curve) with the correction
factor fspeckle.

3.2 Detected companion candidates

Before we search the targets in Table 1 for close companion
candidates, we perform a basic vetting procedure by visually
inspecting the cleaned data for wide companion candidates (cf.
Section 3.2.1). In the field of view, which is limited to ∼1 arcsec
due to the windowing, we find six wide companion candidates (cf.
the upper section of Table 2). Three of them are already known and
we classify our detections as confirmed, whereas the other three
have not been reported before and therefore are new detections.
Note that we correct the contrast of the wide companion candidates
for the windowing (cf. Section 3.4).

After detecting and subtracting off the signal induced by the
wide companion candidates, we use the kernel phase technique in
order to search for closer and fainter objects (cf. Section 3.2.2).
We find two companion candidates with an empirical detection
significance above the 5σ threshold, i.e. SNRcan

emp > 5 (cf. lower
section of Table 2). One of them is already known and we classify
our detection as confirmed, whereas the other one has not been
reported before and therefore is a new detection. For HIP 13008,
we note that the empirical detection significance is 9.4σ when using
only HIP 116384 as calibrator, but only 1.9σ when using HIP 12925
due to high residuals and a very large ferr correction. Therefore,
HIP 12925 seems to be a bad calibrator and we do not report any
best-fitting parameters for HIP 13008 due to a lack of credibility.
Follow-up observations are required to confirm the true nature of
this object. Also note that OBs 6–11 contain only one or two targets
and are not analysed with the kernel phase technique because the
diversity of kernel phase amongst calibrators is essential for our
empirical detection method. As there are systematic differences
between the individual nights in the measured kernel phase, for this
paper we are only analysing OBs which contain at least two PSF
calibrators (observed in the same night). Although this choice was
made for simplicity and it might be possible to calibrate targets
over longer time-scales, this adds significant additional complexity
which is beyond the scope of this paper.

From the targets for which we detect neither a wide nor a
close companion candidate, we compute a contrast curve (i.e. the

detection limit as a function of the angular separation) for the kernel
phase technique (cf. Section 3.3).

3.2.1 Wide companion candidates

The wide companion candidates reported in the upper section
of Table 2 are all detected by visually inspecting the cleaned
data. When we find a companion candidate, we use a grid search
followed by a least squares search in order to find its best-fitting
binary model θbin for the measured kernel phase θ . Then, we
compute the empirical detection significance SNRvis

emp for the best-
fitting binary model θbin (cf. right-hand panels of Figs 10 and 11).
This is achieved using a simplification of the empirical detection
method (cf. Section 2.4.3). Since the wide companion candidates
all have a sufficiently large angular separation (i.e. �200 mas)
and are sufficiently bright (otherwise we could not detect them
by eye), we can skip the use of any calibrators and compute the
empirical detection significance SNRvis

emp as the best-fitting contrast
cfit divided by the azimuthal average csub

RMS of the rms best-fitting
contrast csub

fit after subtracting the best-fitting binary model θbin

from the measured kernel phase θ . Note that we do not use
any Karhunen–Loève calibration for this step either, i.e. θ ′ = θ

(cf. Section 2.3).
Before we search for closer and fainter objects, we subtract

the signal induced by the wide companion candidates from the
measured kernel phase, i.e.

θ → θ − θbin, (42)

so that the measured kernel phase of all targets is free of wide
detections. The detected wide companion candidates are shown in
the left-hand panels of Figs 10 and 11 and are described in more
detail in the following paragraphs.

HIP 36985 B, TYC 7401 2446 1 B, TYC 5835 0469 1 B.
These objects are new companion candidates which were not
reported before. They have L’-band contrasts of 2.619 ± 0.005,
1.318 ± 0.004, and 2.399 ± 0.003 mag, respectively, and therefore
are candidates for stellar mass companions.
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648 J. Kammerer et al.

Table 1. Target list grouped by OB for the VLT/NACO programme 097.C-0972(A) (PI: J. Girard). For each target, we report the spectral type (SpT), the
distance (d), the apparent K-band magnitude (K), and the total integration time after frame selection (Tint). Whether we find any wide (visual) companion
candidates, close (kernel phase) candidate detections, and real detections is highlighted in columns ‘Vis’, ‘Can’, and ‘Det’. We further report the empirical
detection significance for the wide (visual) companion candidates (SNRvis

emp), the detection significance from photon noise for all targets (SNRph) and the
empirical detection significance for the close (kernel phase) candidate detections (SNRcan

emp).

OB Target SpT d (pc) K (mag) Tint (s) Vis SNRvis
emp SNRph Can SNRcan

emp Det

1 HIP 68994 F3/5V 71.7 6.715 395.8 N – 46.6 Y 4.7 N
HIP 63734 F7/8V 54.1 6.436 389.2 N – 44.3 N – N
HIP 55052 K7V 23.7 6.808 389.2 N – 45.1 N – N

2 HIP 44722 K7V 14.5 5.757 395.6 N – 22.1 N – N
HD 108767 B K0V 26.7 6.235 310.2 N – 21.4 N – N

HIP 47425 M3V 9.6 6.056 388.8 N – 32.4 Y 1.0 N
HIP 50156 M0.7V 23.4 6.261 395.2 N – 292.7 Y 33.2 Y
HD 102982 G3V 53.2 6.605 316.6 N – 23.9 N – N
HIP 58029 G7V 42.2 6.78 395.8 N – 32.9 Y 1.4 N
HIP 61804 G3V 59.2 6.869 395.8 N – 27.1 N – N
HD 110058 A0V 130.0 7.583 383.4 N – 30.3 N – N
HIP 72053 G3V 59.7 6.994 382.4 N – 29.4 N – N

3 HIP 58241 G4V 35.5 6.24 256.0 N – 16.7 N – N
TYC 8312 0298 1 K0II 804.5 6.475 162.0 N – 18.0 N – N

HIP 78747 F5V 41.1 4.859 280.8 N – 22.8 Y 2.0 N
4 HIP 37918 K0IV-V 34.4 6.275 389.2 N – 336.5 Y 20.3 Y

HIP 36985 M1.0V 14.1 5.934 334.4 Y 182.2 31.1 N – N
TYC 7401 2446 1 K0V 42.2 6.778 117.4 Y 195.0 14.4 N – N

5 TYC 6849 1795 1 K5V 27.6 6.911 305.4 Y 250.1 13.3 N – N
HIP 92403 M3.5V 3.0 5.370 750.8 N – 39.1 Y 2.5 N

HIP 94020 B K5V 29.1 6.999 657.0 N – 23.9 N – N
6 BDp19 3532 K0 240.2 5.842 1361.2 N – – N – N

HIP 108085 B8IV-V 64.7 3.45 401.8 N – – N – N
7 HIP 116231 B9.5III 53.4 4.611 285.2 Y 4.3 – N – N

HIP 116258 K2V 34.0 6.685 367.0 N – – N – N
8 HIP 11484 B9III 60.4 4.392 279.6 N – – N – N
9 HIP 3203 B K5V 26.5 6.834 181.6 N – – N – N
10 TYC 5835 0469 1 G8V 60.9 6.997 465.0 Y 95.8 – N – N

TYC 9339 2158 1 K3V 30.3 6.712 461.2 N – – N – N
11 HIP 7554 M0V 22.2 6.621 637.4 N – – N – N

HIP 13754 K2V 38.6 6.883 503.8 N – – N – N
12 HIP 116384 K7V 20.8 6.044 739.4 Y 99.7 26.2 N – N

HIP 12925 F8 57.1 6.52 595.4 N – 24.0 N – N
HIP 13008 F5V 39.1 5.442 617.8 N – 127.4 Y N/A N

13 HIP 14555 M1V 19.6 6.367 609.6 N – 35.1 N – N
HIP 20737 G9.5V 35.6 6.742 626.6 N – 31.1 N – N
HIP 22506 G9V 50.8 6.876 620.0 N – 35.8 Y 4.3 N
HIP 23362 B9V 60.5 4.974 311.8 N – 28.7 N – N

Notes. OBs 6–11 contain only one or two targets and cannot be analysed with the kernel phase technique due to a lack of calibrators. Spectral types (SpT),
distances (d), and apparent K-band magnitudes (K) are taken from Simbad (Wenger et al. 2000).

Table 2. Wide companion candidates (CC) detected by visually inspecting the cleaned data (upper section) and close companion candidates detected only by
the kernel phase technique (lower section). We estimate the apparent L’-band magnitude (L’) by adding the contrast (c) to the apparent K-band magnitude of
the host star (K, cf. Table 1). We report the angular separation (ρ) and the position angle (ϑ) of our best-fitting binary model θbin, the ratio of the empirical
errors (which are reported here) to the errors from photon noise (ferr) and the reduced χ2 of our best-fitting binary model (χ2

r,bin) and the raw kernel phase

(χ2
r,raw). Whether a detection is new or known is highlighted in column ‘New’ and a reference for known detections can be found in column ‘Ref’.

Target CC L’ (mag) c (pri sec−1) ρ (mas) ϑ (deg) ferr χ2
r,bin χ2

r,raw New Ref.

HIP 36985 B 8.553 ± 0.005 (8.96 ± 0.04)e−2 441.5 ± 0.2 133.77 ± 0.02 21.66 61.6 6311.3 Y –
TYC 7401 2446 1 B 8.096 ± 0.005 (2.97 ± 0.01)e−1 425.8 ± 0.3 89.23 ± 0.03 8.10 7.1 1238.9 Y –
TYC 6849 1795 1 B 8.363 ± 0.004 (2.63 ± 0.01)e−1 223.5 ± 0.4 203.29 ± 0.05 14.29 13.0 6090.0 N G16
HIP 116231 B 9.04 ± 0.02 (1.69 ± 0.03)e−2 874.6 ± 0.8 254.70 ± 0.05 58.19 667.5 696.7 N S10
TYC 5835 0469 1 B 9.396 ± 0.003 (1.097 ± 0.003)e−1 717.9 ± 0.2 37.62 ± 0.01 23.56 17.1 1883.7 Y –
HIP 116384 C 8.732 ± 0.001 (8.412 ± 0.008)e−2 842.90 ± 0.07 346.614 ± 0.004 9.18 40.6 186.4 N M03

HIP 50156 B 8.17 ± 0.03 (1.72 ± 0.05)e−1 77.3 ± 0.8 338.7 ± 0.2 19.75 22.1 1195.7 N B15
HIP 37918 B 9.56 ± 0.05 (4.9 ± 0.2)e−2 122 ± 5 9.4 ± 0.8 46.55 17.3 1104.6 Y –

Notes. G16: Galicher et al. (2016), S10: Schöller et al. (2010), M03: Martı́n (2003), B15: Bowler et al. (2015).
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Kernel phase imaging with VLT/NACO 649

Figure 10. Left-hand panels: median frame of a cleaned data cube of the targets for which we detect a wide companion candidate. The magenta star indicates
the position of the host star and the magenta circle indicates the position of the companion candidate, obtained from a least squares fit of the binary model
θbin to the measured kernel phase θ . Note that the colour scale is logarithmic, reaching from 1e+1.5 to 1e+3.5 pixel counts. Right-hand panels: map of the
empirical detection significance SNRvis

emp (cf. Section 3.2.1) for the same targets as in the left-hand panels. The number in the lower left corner of each panel
reports the empirical detection significance at the position of the best-fitting binary model θbin (note that this is not necessarily the position with the highest
detection significance) and the dashed cyan circle indicates the 99 per cent threshold of the super-Gaussian window (i.e. the brightness of objects outside this
circle is decreased by more than 1 per cent by the windowing).
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650 J. Kammerer et al.

Figure 11. Left-hand panels: median frame of a cleaned data cube of the targets for which we detect a wide companion candidate. The magenta star indicates
the position of the host star and the magenta circle indicates the position of the companion candidate, obtained from a least squares fit of the binary model
θbin to the measured kernel phase θ . Note that the colour scale is logarithmic, reaching from 1e+1.5 to 1e+3.5 pixel counts. Right-hand panels: map of the
empirical detection significance SNRvis

emp (cf. Section 3.2.1) for the same targets as in the left-hand panels. The number in the lower left corner of each panel
reports the empirical detection significance at the position of the best-fitting binary model θbin (note that this is not necessarily the position with the highest
detection significance) and the dashed cyan circle indicates the 99 per cent threshold of the super-Gaussian window (i.e. the brightness of objects outside this
circle is decreased by more than 1 per cent by the windowing).

MNRAS 486, 639–654 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/1/639/5421634 by C
N

R
S - ISTO

 user on 30 M
ay 2023



Kernel phase imaging with VLT/NACO 651

TYC 6849 1795 1 B. This object was already detected in 2005
by Galicher et al. (2016) at an angular separation of ∼220 mas, a
position angle of ∼201 deg and a H-band contrast of ∼1.6 mag. We
find an L’-band contrast of 1.450 ± 0.004 mag and an angular sep-
aration (223.5 ± 0.4 mas) and a position angle (203.29 ± 0.05 deg)
that are in agreement with Galicher et al. (2016), i.e. we can confirm
the bound nature of the object.

HIP 116231 B. This object was already detected in 2004 by
Schöller et al. (2010) at an angular separation of 641 ± 4 mas,
a position angle of 240.2 ± 0.6 deg, and a K-band contrast of
2.75 ± 0.01 mag. We find a L’-band contrast of 4.43 ± 0.02 mag, a
slightly larger angular separation of 874.6 ± 0.8 mas, and a slightly
different position angle of 254.70 ± 0.05 deg, but (allowing for
orbital motion) we can confirm the bound nature of the object.
Note that there is a huge disagreement in the contrast, but a brief
look at the raw data from Schöller et al. (2010) shows a significant
PSF halo and confirms our result of ∼4 mag.

HIP 116384 C. This object was first detected in 2002 by Martı́n
(2003) who found HIP 116384 (GJ 900) to be a triple system
with a 510 ± 10 mas (HIP 116384 B, �K = 1.61 ± 0.03 mag)
and a 760 ± 10 mas (HIP 116384 C, �K = 2.38 ± 0.04 mag)
component. Lafrenière et al. (2007b) resolved the system again in
2004 and 2005, finding HIP 116384 B at an angular separation
of 611 ± 2 and 673 ± 2 mas, respectively, and HIP 116384 C at
an angular separation of 733 ± 2 and 722 ± 2 mas, respectively.
In the cleaned data, we only find HIP 116384 C at a slightly
larger angular separation of 842.90 ± 0.07 mas, but a position angle
(346.614 ± 0.004 deg) and a L’-band contrast (2.688 ± 0.001 mag)
that are in agreement with Martı́n (2003) and Lafrenière et al.
(2007b), so that we can confirm the bound nature of the object.
Looking at the raw data, we also find HIP 116384 B (which is the
brighter of the two companions), noticing that it has moved to an
angular separation of ∼1200 mas being too far away in order to be
visible in our cleaned data (due to the windowing).

3.2.2 Close companion candidates

The close companion candidates reported in the lower section
of Table 2 are all detected only by the kernel phase technique.
For each target in Table 1, we use a grid search followed by a
least squares search in order to find the best-fitting binary model
θbin for the measured kernel phase θ . Then, we compute the
detection significance from photon noise SNRph (cf. Section 2.4.2)
at the position of the best-fitting binary model θbin from the least
squares search. For this step, we always use all other targets that
were observed in the same OB as calibrators for the Karhunen–
Loève calibration, fixing Kklip = 4.7 Knowing that the majority of
VLT/NACO targets do not have any close companions, we then
classify the ∼1/3 of the targets with the highest SNRph in each OB
as candidate detections (cf. column ‘Can’ of Table 1) for the next
step and the remaining targets as calibrators.

For the next step, we compute the empirical detection significance
SNRcan

emp (cf. Section 2.4.3) for each of the candidate detections
from the previous step. For this step, we always use all remaining

7For simplicity, we fix Kklip = 4 for all targets and regardless of the
number of calibrators. Various testing has shown that subtracting off the
four statistically most significant eigencomponents of the kernel phase of
the calibrators mostly yields the smallest amount of significant detections,
i.e. calibrates the data best. A more rigorous investigation of this relationship
is foreseen for a future publication.

Figure 12. Map of the empirical detection significance SNRcan
emp for the

targets for which we detect a close companion candidate. The cyan star
indicates the position of the host star and the solid cyan circle indicates the
position of the companion candidate, obtained from a least squares fit of
the binary model θbin to the measured kernel phase θ . The number in the
lower left corner of each panel reports the empirical detection significance at
the position of the best-fitting binary model θbin and the dashed cyan circle
indicates the 99 per cent threshold of the super-Gaussian window (like in
Fig. 10).

targets that were classified as calibrators in the previous step for
the Karhunen–Loève calibration, again fixing Kklip = 4. If the
empirical detection significance is above the 5σ threshold, i.e.
SNRcan

emp > 5, we classify the candidate detection as real. If not,
we add the candidate detection to the list of calibrators and redo
the computation of the empirical detection significance (this time
with one calibrator more than before). We repeat this process until
all candidate detections are real. The detected close companion
candidates are shown in Fig. 12 and are described in more detail in
the following paragraphs. Please note that we report the correlation
of the best-fitting parameters in Appendix A and present model-data
correlation plots in Appendix B.

HIP 50156 B. This object was already detected in 2011 by
Bowler et al. (2015) at an angular separation of ∼90 mas and a
K-band contrast of ∼1.8 mag. Just nine month later, Brandt et al.
(2014) cannot resolve this companion and report an upper limit of

MNRAS 486, 639–654 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/1/639/5421634 by C
N

R
S - ISTO

 user on 30 M
ay 2023



652 J. Kammerer et al.

∼20 mas for its angular separation. We find HIP 50156 B at an
angular separation of 77.3 ± 0.8 mas and an L’-band contrast of
∼1.91 ± 0.03 mag, confirming the detection and notable orbital
motion.

HIP 37918 B. This object is a new companion candidate that was
not reported before. It has an L’-band contrast of ∼3.29 ± 0.05 mag,
and therefore is a candidate for a stellar mass companion. Further-
more, HIP 37918 (M ≈ 0.98 M�) is known to have a ∼23.1 arcsec
companion of almost equal mass (HIP 37923, M ≈ 0.95 M�,
Desidera et al. 2006). Together with our companion candidate, this
would make the system triple.

3.3 Detection limits

In Section 2.4.3, we present our empirical approach to find mean-
ingful detection limits for the data analysed in this paper. Based on
this approach, we compute the contrast limit of the kernel phase
technique as a function of the angular separation as the azimuthal
mean of the rms best-fitting contrast crms of all targets for which
we do not detect any companions with the kernel phase technique
(i.e. all non-detections, cf. column ‘Det’ of Table 1). Note that we
already subtracted off the signal induced by the wide companion
candidates. The mean, the best and the worst contrast limit are
shown in the left-hand panel of Fig. 13.

At the small angular separations that are inaccessible by classical
high-contrast imaging techniques (i.e. within ∼200 mas in the
L’ band), the kernel phase technique achieves contrast limits of
∼1e−2. This is not yet deep enough to detect companions in the
planetary-mass regime, which would start between 1e−3 and 1e−4
for young (∼10 Myr) gas giants (e.g. Bowler 2016). However, our
closest detections prove that the resolution which is required to
resolve Solar-system scales in the nearest star-forming regions can
be achieved with the kernel phase technique. At larger angular
separations, our best contrast limit is comparable with the limits
achieved by RDI (e.g. Cantalloube et al. 2015). The large spread
in the contrast limit comes from the fact that the amplitude of the
background noise is nearly the same for all data cubes, whereas the
peak value of the PSF varies heavily due to the PSF reconstruction
(cf. Section 2.1.6).

3.4 Windowing correction

As mentioned in Section 2.2.2, we window all frames by a super-
Gaussian (with an FWHM of 1240 mas) in order to minimize
edge effects when computing their Fourier transform. Due to this
windowing, the brightness of companions at angular separations
�215 mas deviates by more than 1 per cent from the true value. In
order to correct for this effect, we again assume that kernel phase is
proportional to contrast in the high-contrast regime, so that we can
obtain the true contrast of a companion by dividing its measured
contrast (i.e. the best-fitting contrast from the binary model) by
the value of the super-Gaussian windowing function. We are aware
that this method has its limits, as each PSF has a spatial extent on
the detector and assuming that the entire PSF is multiplied by the
same value is an oversimplification of the problem. Nevertheless,
this method agrees fairly well with the contrasts that we measure
in the cleaned fits files and we use it to correct the contrast of all
wide companion candidates (cf. the right-hand panel of Fig. 13).
We add an additional contrast correction error in quadrature based
on injection-recovery tests to companions wider than 500 mas to
account for limitations in this technique.

4 C O N C L U S I O N S

We use the kernel phase technique in order to search for close
companions at the diffraction limit in an archival VLT/NACO RDI
L’-band data set. Therefore, we develop our own data reduction
pipeline for VLT/NACO data, which performs a basic dark, flat, bad
pixel and background (i.e. dither) subtraction, but also reconstructs
saturated PSFs in order to reduce their Fourier plane noise. Further-
more, we select frames with sufficiently high Strehl ratio, which is
essential for the kernel phase technique as it relies on a linearization
of the Fourier plane phase. Then, we use XARA for extracting the
kernel phase and improve its re-centring algorithm in the case of
resolved and bright companions. Furthermore, we apply a principal
component analysis based calibration to the data (i.e. Karhunen–
Loève decomposition; Soummer et al. 2012) and develop a suite of
analytic model fitting algorithms in order to search for point source
companions with the kernel phase technique.8

For the archival data set that we analyse in Section 3, we find
that our kernel phase covariance model (which only takes into
account shot noise) is not sufficient and significantly underestimates
the true errors. This is still the case after calibrating the data,
because the diversity of calibrator PSFs is not sufficient. Hence,
we develop an empirical method for estimating the relative contrast
of the residual speckle noise and finding meaningful detection limits
for the data. With this empirical approach, we detect six wide
companion candidates by visually inspecting the cleaned data and
two close (∼80–110 mas) companion candidates that are detected
only by the kernel phase technique. All eight companion candidates
lie in the stellar-mass regime and five of them were previously
unknown.

In order to reach the planetary-mass regime, a better library of
calibrator PSFs is required. Therefore, it is extremely important
that the targets and their calibrators are observed as close in time
as possible. This becomes very clear from the archival data set that
we analyse, where there are in fact multiple calibrators observed in
one night, but not close enough in time, so that the kernel phase
calibration does not reduce the quasi-static errors satisfyingly. In
order to make better use of our principal component analysis based
calibration, we propose star-hopping sequences of ∼6 targets, and
to revisit each target at least twice. Star-hopping is an observing
strategy for which the instrument (and in particular the AO system)
acquisition is only performed once at the beginning of each
sequence. Then, one slews (‘hops’) from target to target without
interrupting the AO system. Furthermore, we aim to examine more
extensive Keck data sets where we are hopeful that the significant
investment of telescope resources gives adequate calibrator diversity
to characterize the systematic errors and possibly use Bayesian
Monte Carlo techniques.

In this paper, we have shown that kernel phase is able to achieve
a resolution below the classical diffraction limit of a telescope
under good observing conditions (i.e. sufficiently high Strehl ratio).
This is of particular interest for future space-based observatories,
such as the James Webb Space Telescope, as it gives access to
an exciting parameter space that could otherwise not be explored
due to the limited mirror size (and therefore resolution). Space-
based telescopes do not suffer from atmospheric turbulence, what
makes the calibration much less challenging than for the ground-
based VLT/NACO data (e.g. Martinache 2010). Nevertheless, with

8https://github.com/kammerje/PyKernel
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Kernel phase imaging with VLT/NACO 653

Figure 13. Left-hand panel: 5σ empirical contrast limit, i.e. rms contrast curve crms(ρ) multiplied by 5, for all non-detections (cf. column ‘Det’ of Table 1).
Shown are the mean, the best and the worst contrast limit. Right-hand panel: value of the super-Gaussian windowing function depending on the angular
separation. The brightness of companions outside of ∼200 mas is decreased significantly. We use this curve to recover the true contrast of the detected wide
(visual) companions (cf. the upper section of Table 2). For reference, their position on this curve is indicated by the circles.

an optimized observing strategy, kernel phase is also a competitive
high-contrast imaging technique from the ground.

The application of kernel phase is of course not limited to imaging
telescopes. One concept that aims to push the kernel phase technique
towards higher contrasts is the VIKiNG instrument (Martinache &
Ireland 2018), which proposes kernel phase nulling interferometry
with the VLTI. By combining kernel phase with a high-contrast
booster (i.e. a nulling interferometer), it would allow for self-
calibrating the observables and achieving a better robustness with
respect to residual wavefront errors. This would in turn also be
an option to reduce the demanding stability requirements on space-
based nulling interferometers, such as the LIFE concept (Kammerer
& Quanz 2018; Quanz et al. 2018), which aims to detect dozens of
Earth-like exoplanets in the solar neighbourhood.
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APP ENDIX A : PARAMETER CORRELATION

See Fig. A1.

Figure A1. For the targets for which we detect a close companion candidate
(i.e. HIP 50156, top and HIP 37918, bottom) we report the correlation
of the best-fitting parameters using a corner plot from Foreman-Mackey
(2016). Here, we use an MCMC technique (emcee, Foreman-Mackey et al.
2013) with six random walkers initialized at the best-fitting position and a
temperature of f 2

err in order to find the best-fitting parameters including their
correlated uncertainties by maximizing the log-likelihood ln L of the binary
model.

APPENDI X B: C ORRELATI ON PLOTS

See Fig. B1.

Figure B1. Correlation of the measured kernel phase and the best-fitting
binary model kernel phase for the targets for which we detect a close
companion candidate in blue. The presented errorbars are computed based
on photon noise (cf. Section 2.2.3) and scaled up by ferr according to our
empirical uncertainties (cf. Section 2.4.3). The orange line indicates the
identity which would represent perfect agreement between measured and
model kernel phase. Similar to Fig. 8, we normalize each kernel phase by the
norm of its corresponding row of P′ · K since we are dealing with calibrated
kernel phase here.
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