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ABSTRACT

Context. Understanding the origin of the initial mass function (IMF) of stars is a major problem for the star formation process and
beyond.
Aims. We investigate the dependence of the peak of the IMF on the physics of the so-called first Larson core, which corresponds to
the point where the dust becomes opaque to its own radiation.
Methods. We performed numerical simulations of collapsing clouds of 1000 M� for various gas equations of state (eos), paying
great attention to the numerical resolution and convergence. The initial conditions of these numerical experiments are varied in the
companion paper. We also develop analytical models that we compare to our numerical results.
Results. When an isothermal eos is used, we show that the peak of the IMF shifts to lower masses with improved numerical resolution.
When an adiabatic eos is employed, numerical convergence is obtained. The peak position varies with the eos, and using an analytical
model to infer the mass of the first Larson core, we find that the peak position is about ten times its value. By analyzing the stability
of nonlinear density fluctuations in the vicinity of a point mass and then summing over a reasonable density distribution, we find that
tidal forces exert a strong stabilizing effect and likely lead to a preferential mass several times higher than that of the first Larson core.
Conclusions. We propose that in a sufficiently massive and cold cloud, the peak of the IMF is determined by the thermodynamics of
the high-density adiabatic gas as well as the stabilizing influence of tidal forces. The resulting characteristic mass is about ten times
the mass of the first Larson core, which altogether leads to a few tenths of solar masses. Since these processes are not related to the
large-scale physical conditions and to the environment, our results suggest a possible explanation for the apparent universality of the
peak of the IMF.

Key words. ISM: clouds – ISM: structure – turbulence – stars: formation

1. Introduction

Star formation is believed to have major consequences on the
structure of our Universe. In spite of sustained efforts, the origin
of the initial mass function (IMF) in particular is still a matter
of debate (e.g., Offner et al. 2014). While the gravo-turbulent
fragmentation of cold dense molecular gas is a widely accepted
scenario of star formation, it is in apparent contradiction with the
observed IMF exhibiting no significant variation among different
environments (e.g., Kroupa 2001; Chabrier 2003; Bastian et al.
2010; Offner et al. 2014), although Dib et al. (2017) found more
variations than are commonly assumed.

In particular, the physical origin of the peak of the IMF,
around 0.3 M�, is still uncertain. Several ideas have been pro-
posed, which fall into three categories that are not mutually
exclusive. First, it has been proposed that the thermodynamics
of the gas could provide a particular density to which a Jeans
mass is associated. For example, Larson (1985) computed the gas
temperature in dense core conditions and concluded that owing
to molecular cooling, the effective adiabatic exponent, γad, is
expected to be on the order of 0.7 for densities below '105 cm−3,
while at higher densities, γad ' 1 as a result of gas-dust coupling.

Since the fragmentation sensitively depends on γad, the question
arises as to whether the change of the effective equation of state
at '105 cm−3 could lead to a particular Jeans mass, which for a
temperature of 10 K is ∼0.3 M�. A similar, though not identical,
line of explanations has been put forward by Elmegreen et al.
(2008): the thermodynamics of the gas in various environments
could result in a Jeans mass that weakly depends on the gas den-
sity. The second category of explanations has been proposed by
Bate (2009b), Krumholz (2011), and Guszejnov et al. (2016). The
idea is that because of the heating from the accretion luminosity,
the gas temperature increases in the vicinity of the protostar, and
therefore the local increase of the Jeans mass leads to a possible
self-regulation. Again, these studies infer that the Jeans mass has
a weaker dependence on the gas density than in an isothermal
gas. Finally, the third category of explanations invokes a com-
pensation between the density and the velocity dispersion, which
vary in opposite directions with clump masses through Larson
relations (Hennebelle 2012; Lee & Hennebelle 2016b). Consid-
ering clumps of increasingly higher mass, the density decreases
with the mass, which in turn increases the Jeans mass, while
the increasing Mach number tends to create denser gas through
shocks, yielding a slowly varying characteristic mass. None of
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these explanations is well established yet. For example, while it
has been suggested by various simulations (e.g., Jappsen et al.
2005; Bate 2009b) that thermodynamics influences the mass
spectrum of the objects that form, there is no well-established
set of simulations demonstrating the invariance of the peak of
the IMF for a broad range of physical conditions.

In the companion paper (Lee & Hennebelle 2018, here-
after Paper I), we conduct a systematic exploration of the initial
conditions by varying the initial density and turbulence of the
molecular cloud. The physics is greatly simplified at this stage
because our goal is to identify the physical processes at play.
At relatively high densities (&105 cm−3), the shape of the stellar
distribution, including the peak position and the high-mass end
slope, becomes no longer dependent on the global density of the
parent molecular cloud. This means that some physical mecha-
nisms are operating at local scales and do not depend on the large
ones, such as the collapsing clump itself. This result is surprising
at first because the mean Jeans mass changes by more than one
order of magnitude in our series of simulations. Moreover, the
thermodynamics treated in these simulations assumes that the
gas remains isothermal up to a density of a few 1010 cm−3, where
the gas becomes adiabatic. While in the context of a collapsing
clump, the isothermal regime does not provide any character-
istic mass, the adiabatic regime does, because the Jeans mass
increases with increasing density. The lowest Jeans mass, esti-
mated at the density where the gas becomes adiabatic, is a few
10−3 M� (Rees 1976; Whitworth et al. 2007) and therefore is
almost two orders of magnitude lower than the peak position of
the stellar distribution around 0.1 M� observed in the simula-
tions. Consequently, the origin of a characteristic mass in our
simulations is not obvious and needs to be elucidated. For this
purpose, we perform in this paper a series of simulations with
initial conditions identical to those in Paper I, while altering the
gas equation of state (eos). With the variation of the stellar distri-
bution peak position (around 0.1 M�) with respect to the varying
eos, we try to shed light on the mechanisms that determine the
IMF peak mass.

In the second section, we present the numerical setup we
employed, including the initial conditions and the various eos
used throughout the paper. In the third section, we present the
results of the numerical simulations. In the fourth section, we
infer the mass of the first Larson cores for various eos, and we
study its correlation with the mass spectrum peak in the sim-
ulations. In the fifth section, we develop an analytical model
that accounts for the factor, on the order of ten, between the
mass of the first Larson core and the peak of the stellar distribu-
tion obtained from numerical simulations. In the sixth section,
we provide a discussion of our results. The seventh section
concludes the paper.

2. Numerical setup and initial conditions

2.1. Numerical setup and runs

We used the adaptive mesh refinement (AMR) magnetohydro-
dynamics code RAMSES (Teyssier 2002; Fromang et al. 2006)
to evolve the hydrodynamical equations. Simulations were ini-
tialized with a Bonner-Ebert-like spherical molecular cloud with
a density profile ρ(r) = ρ0/

[
1 + (r/r0)2

]
, where r0 is the size

of central plateau and r the distance to the cloud center, as
described in Paper I (see more details therein).

Run C1 in Paper I is used as the canonical run here and
is labeled C10h, as we present below. The cloud has 1000 M�

and 0.084 pc radius, with the simulation box twice the size of
the cloud. The central density n0 = ρ0/(µmp) ' 6 × 107 cm−3,
where µ = 2.33 is the mean molecular weight and mp is the
atomic hydrogen mass. We note that this density is very high
and may not be realistic to describe most Milky Way clouds.
However, our goal here is to investigate the physical processes
rather than performing a detailed comparison with observations.
A turbulent velocity field following a Kolmogorov spectrum with
random phases was seeded, and a relaxation phase without self-
gravity was run during ∼30% of the turbulence-crossing time on
the base grid (28) to prepare for coherent density and velocity
fluctuations. Initially, the turbulence was a mix of compres-
sive and solenoidal modes with an energy ratio 1:2. The AMR
scheme requires that the local Jeans length is always resolved by
ten cells. The canonical run had a maximum refinement of 14
levels, corresponding to 4 AU resolution, while higher and lower
resolution runs were also performed. The simulation parameters
are listed in Table 1.

2.2. Equation of state

In a dense core, the temperature is about 10 K, except at high
density, where the gas is optically opaque to its own radiation and
is nearly adiabatic (e.g., Masunaga et al. 1998; Vaytet et al. 2012;
Vaytet & Haugbølle 2017). The temperature T , which depends
on the gas density ρ, is described with the eos

T = T0

[
1 + (ρ/ρad)(γ−1)

]
, (1)

where the isothermal temperature T0 at low density is set to 10 K.
We studied the effect of the eos by varying the critical turnover
density ρad, which designates the change between isothermal
behavior and adiabatic heating, and the polytropic index γ, which
describes the heating rate. The polytropic index of molecular
hydrogen is γ1 =5/3 and γ2 =7/5 before and after the excitation
of rotation modes of hydrogen molecules at around 100 K. At
∼1000 K, the H2 molecules start to dissociate and γ drops to
γ3 ∼ 1.1. In this study, we aim to examine the effect of thermo-
dynamics on the final mass a star can reach. We therefore also
considered a more complete description of a full eos,

T = T0

1+
(ρ/ρad)(γ1−1)[

1 + (ρ/ρad,2)(γ1−γ2)n (
1 + (ρ/ρad,3)(γ2−γ3)n)]1/n

 , (2)

where n = 3 is a smoothing parameter. This barotropic eos is
employed for convenience. It signifies effectively T ∝ ργ−1 with
γ = 1 for ρ < ρad, γ = γ1 for ρad < ρ < ρad,2, γ = γ2 for
ρad,2 < ρ < ρad,3, and γ = γ3 for ρ > ρad,3. In the following
studies, we fixed ρad,2 = 30 ρad and ρad,3 = 1000 ρad,2.

As shown in Table 1, nad = ρad/(µmp) is varied between
109 cm−3 and 1010 cm−3, while using a hard eos γ = 5/3 or a soft
one γ = 4/3. We also study the effects of a full eos that describes
the transition of γ from 1 to 5/3, 7/5, and then 1.1. The two latter
transitions correspond roughly to T = 100 and 1000 K. We also
set nad = 1013 cm−3 in run I, that is practically isothermal since
such high density is hardly reached at this resolution.

2.3. Sink particle algorithm

We used the sink particle algorithm from Bleuler & Teyssier
(2014) (see also Krumholz et al. 2004; Federrath et al. 2010),
and we briefly describe it here. Sink particles are formed at
the highest refinement level. The algorithm first identifies local
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Table 1. Simulation parameters.

Label nad (109 cm−3) nsink (109 cm−3) γ lmax Resolution (AU)

C10h 10 10 5/3 14 4
C10h+ 10 10 5/3 15 2
C10h– 10 10 5/3 13 8
C10h– – 10 10 5/3 12 17
C3h– 3 1 5/3 13 8
C1h 1 1 5/3 14 4
C1h– 1 1 5/3 13 8
C1h–* 1 1 5/3 13 8
C1h– – 1 1 5/3 12 17
C1hd–o 1 100 5/3 13 8
C10s– 10 1 4/3 13 8
C1s– 1 1 4/3 13 8
C10f 10 10 5/3, 7/5, 1.1 14 4
C1f 1 10 5/3, 7/5, 1.1 14 4
C10fd 10 300 5/3, 7/5, 1.1 14 4
I 104 10 1 14 4
I– 104 1 1 13 8
I– – 104 1 1 12 17

Notes: Columns are: the label, the density nad at which the eos switches from isothermal to adiabatic as defined in Eq. (1), the minimum density nsink
at which the sink is introduced, the polytropic index γ, the maximum refinement level lmax, and the physical resolution. The temperature remains
10 K at density below nad. When the full eos is used, the second and third adiabatic index switches occur at 30 nad and 30 000 nad, corresponding
roughly to 100 K and 1000 K, respectively. In the labels, “C/I” stands for adiabatic/isothermal eos, the number is the value of nad, “h/s/f” stands for
hard/soft/full eos, “+/–” is for higher/lower resolution, “d” stands for higher sink density threshold, the asterisk represents a stricter clump merging
scheme, and “o” stands for density threshold criteria for sinks alone.

density concentrations, which are referred to as clumps, above
a given density threshold (we typically used 1/10 of the density
threshold for sink particles nsink). Connected clumps are merged
if the density contrast between the peak and the saddle point
is less then two. The final clumps are then passed on for a sink
formation check.

The clump peak undergoes several criteria before a sink for-
mation site is flagged. First, a density threshold is imposed such
that the peak must have a density higher than nsink, which we
varied between 1010 and 3 × 1011 to investigate its influence.
Second, additional criteria are used to check whether the clump
is virially bound and has a converging flow. A sink particle is
placed at the density peak when all criteria are satisfied. Sim-
ple density thresholding was used in runs C1hd–o to study the
numerical effects of the algorithm. The sink then interacts grav-
itationally with the gas component as well as other sinks and
accretes from the surrounding with a threshold scheme. When
the cells surrounding the sink particle exceeds nsink, 75 percent
(this numerical factor seems not to have a crucial effect on our
results, see Appendix A) of the excessive gas mass in the cells is
accreted onto the sink particle.

2.4. Missing physics

The physics was deliberately simplified because we tried to con-
duct a systematic set of simulations to clarify the influence of
the initial conditions, eos, and resolution. Other processes not
included here nonetheless play significant, possibly dominant
roles. This is particularly the case for the accretion luminos-
ity that emanates from the protostars (Krumholz et al. 2007b;
Bate 2009b; Commerçon et al. 2011) and heats the gas, which
in turn increases the thermal support. The magnetic field is

another important process (Hennebelle et al. 2011; Peters et al.
2011; Myers et al. 2013) that likely affects the fragmentation of
clusters through magnetic braking and magnetic support; we do
not consider this here.

3. Results: mass spectra in numerical simulations

3.1. Isothermal runs

The sink distributions displayed in Fig. 1 present a well-defined
peak and a power law at high masses that is roughly ∝ M−1.
The isothermal runs show that the stellar distribution peak moves
from 0.05 to 0.01 M� when we change the resolution from 17 to
4 AU. As the collapse of isothermal gas is self-similar, there is no
characteristic scale or mass in such simulations at high density.
Roughly speaking, when we double the resolution, the high-
est density that can be described increases by a factor of about
23 = 8. We therefore may expect that the peak position shifts by
'
√

64 = 8 when two more refinement levels are introduced. This
is compatible with the trend observed in Fig. 1.

The mass of sink particles therefore depends on the numer-
ical resolution. This is likely what occurs in simulations that
recovered the stellar distribution in a collapsing massive and
isothermal cloud (e.g., Bonnell et al. 2006; Girichidis et al. 2011;
Ballesteros-Paredes et al. 2015). Typically, the dependence of
the peak position is expected once the collapsing cloud is suf-
ficiently cold. It is worth emphasizing that this is not a statement
about the absence of convergence of isothermal calculations in
general. As shown in Girichidis et al. (2011) and in Paper I,
initial conditions matter greatly. For example, Gong & Ostriker
(2015) did obtain numerical convergence in their colliding flow
calculations.
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Fig. 1. Stellar distribution of isothermal runs with varied resolutions
of 17, 8, and 4 AU in colored histograms, with time and total accreted
mass shown in the legend. Lognormal fits are presented with dashed
thin curves. Power laws of M−3/4 and M−1 are shown for comparison
with black and gray lines, respectively. The characteristic mass of the
stellar distribution shifts to lower values with increasing resolution.

3.2. Runs with γ = 5/3

With γ = 5/3, the fiducial run (C10h) in Fig. 2 very quickly
shows a well-defined stellar distribution that peaks at '0.1 M�.
The runs with four resolutions, 2, 4, 8, and 17 AU, show that the
peak position is robust and does not change significantly with
the resolution. This is a noticeable difference to the isothermal

case. There is nevertheless some significant evolution of the
mass spectra when the spatial resolution improves. First of all,
the number of objects near the peak increases when the resolu-
tion improves from 17 to 4 AU (from log10(dN/d log M) ' 1.6
to '2.1 at the time when 200 M� have been accreted), while
this number does not seem to change significantly between the
two highest resolutions (two bottom panels). As in the isothermal
simulations, the high-mass part is also described by a power law
∝ M−1, although this is much clearer in the highest resolution
runs.

Figure 3 reveals that nad has an effect on the peak position.
With nad = 109, sinks are completely prevented from forming
at the resolution of 4 AU (C1h, no mass spectra available).
Decreasing the resolution allows sink particles to form. The run
at 8 AU resolution (C1h–) produces top-heavy spectra with a
loosely defined peak at '1 M�, while a coarser resolution at
17 AU (C1h– –) shifts the peak to '0.3 M� and more sinks
are formed. This effect results from the excessive heating at
high densities, where the approximated expression of one sin-
gle γ value stops being physical, and the high-temperature gas
is thus always thermally supported against collapse at the finest
resolution scale and sink particles hardly form. This behav-
ior is interpreted more quantitatively in Sect. 4. The run with
nad = 3 × 109 at 8 AU resolution (C3h–) produces mass spectra
that peak at lower mass than that of run C1h– at same resolution.

These results suggest that the eos has a strong effect on the
characteristic mass of the stellar distribution. Moreover, we find
that the stellar distribution peak is significantly higher than the
Jeans mass at which the gas becomes opaque to its radiation
(typically on the order of 10−3 M�) or even the mass of the
first Larson core (a few 10−2 M�). The link between the two is
addressed in Sect. 4 and Sect. 5.

3.3. Runs with γ = 4/3

As revealed by Fig. 4 for runs using γ = 4/3, the peak shifts to
slightly lower masses and the stellar distribution is slightly wider
than with γ = 5/3. The run with nad = 109 cm−3 (C1s–) yields a
slightly higher peak mass than that with nad = 1010 cm−3 (C10s–)
since the heating starts at lower density, and thus the higher
temperature at the same density provides more support against
gravity. With γ = 4/3, the gas heats up less quickly as density
increases than at γ = 5/3, and the high-density region suffers
less from overheating (more sinks form in C1s– than C1h–).

3.4. Runs with a full eos

The first panel of Fig. 5 shows a very similar behavior to the
fiducial run (C10h) and suggests that the γ = 5/3 part of the
eos matters the most. To test the influence of the sink particle
scheme, we have performed a run for which nsink = 3×1011 cm−3

(C10fd, second panel). Applying higher threshold for sinks does
not affect the peak mass, while the low-mass end becomes less
populated. This shows that the exact moment where the sink
particles are introduced does not control the peak position, but
has some influence on the distribution of low masses. This is
compatible with the eos being the most important process that
determines the peak position.

Finally, we also considered nad = 109 cm−3 using the full
eos. The shift of the peak is as obvious with a full eos (C10f and
C1f) as that with γ = 5/3. We note that in run C1f we overcome
the overheating problem at high resolution that we encountered
in run C1h. Gas is allowed to collapse and form sink particles
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Fig. 2. Stellar distribution of runs with a smoothed two-slope polytropic eos with γ = 5/3 and nad = 1010 cm−3, with varying resolutions of 17, 8,
4, and 2 AU. The characteristic mass of the stellar distribution is '0.1 M� , regardless of numerical resolution.

without difficulty. This confirms that the determining part of the
eos corresponds to γ = 5/3.

4. Mass of the first Larson core and peak of the
sink distribution

As the previous section suggests that the thermodynamics is
essential in determining the peak of the stellar distribution,
we calculate the mass of the first Larson core and study its
correlation with the peak mass obtained in the simulations.

4.1. First Larson core

As gravitational collapse proceeds, the density increases, and
at some point, the dust becomes opaque to its own radiation.
At this point, the gas becomes essentially adiabatic, and a so-
called first Larson core forms (Larson 1969; Masunaga et al.
1998). While the gravitational energy can overcome the thermal
support through contraction of an isothermal gas, gas with poly-
tropic index γ > 4/3 can resist the collapse. The first Larson
core grows in mass by accretion, leading to the increase of the
central density and temperature. When the temperature reaches
about 1500 K, molecular hydrogen starts dissociating and there-
fore efficiently cools the gas, and the gravitational collapse
resumes, which eventually leads to the formation of the sec-
ond Larson core, namely the protostar. To obtain a protostar,

it is probably necessary to accumulate sufficient mass to trig-
ger the second collapse, and this process is essential in setting
the peak of the stellar distribution. First Larson cores with lower
masses cannot form protostars (or will do so through cooling,
but on a longer timescale). While this process is not explicitly
resolved in our simulations, the introduction of the sink particles
to some extent mimics this sequence since they are introduced
only when enough mass has been accumulated for the gas to be
gravitationally unstable.

By integrating the hydrostatic equations of the gas, we
deduce the density profile that a core develops before undergo-
ing the secondary collapse. From the density profile, the mass
can be inferred, provided that some radius can be estimated or
specified. The equations of hydrostatic equilibrium are

dM
dr
= 4πr2ρ, (3)

1
ρ

dP
dr
= −

GM
r2 , (4)

where M, ρ, P, r, and G are the mass contained within a given
radius, density, pressure, radius, and the gravitational constant.
The derivative of Eq. (4) with respect to r yields

d
dr

(
1
ρ

dP
dr

)
=

2GM
r3 −

G
r2

dM
dr
= −

2
ρr

dP
dr
− 4πGρ, (5)
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Fig. 3. Stellar distributions of runs with a smoothed two-slope poly-
tropic eos with γ = 5/3, lowered nad at 3 × 109 (C3h–) and 109 cm−3

(C1h–, C1h– –). The characteristic mass of the stellar distribution
increases with decreasing nad. At nad = 109 cm−3, the stellar distribution
becomes top-heavy with improved resolution from 17 to 8 AU.

where the second equality is obtained by substituting with
Eqs. (3) and (4). The pressure is related to the density by the
eos that we used in the simulations,

P =
kBρT (ρ)
µmp

, (6)

Fig. 4. Stellar distributions of runs with a smoothed two-slope poly-
tropic eos with γ = 4/3, nad = 1010 cm−3 (C10s–) and 109 cm−3 (C1s–).
The characteristic mass of the stellar distribution increases by a factor
∼3 when nad is lowered by a factor ten.

where kB is the Boltzmann constant, and the temperature T (ρ) is
given by Eqs. (1) or (2).

This results in a second-order differential equation of ρ that
we can solve numerically using standard Runge-Kutta methods:[

dT
dρ
+

T
ρ

]
d2ρ

dr2 =

[
T
ρ2 −

1
ρ

dT
dρ
−

dT 2

d2ρ

](
dρ
dr

)2

+
2GMµmp

r3kB
−

4πGµmpρ

kB
.

(7)

Before the second collapse occurs, there is no singularity at
the center, and thus we use the boundary conditions

ρ(r = 0) = ρ0 and
dρ
dr

(r = 0) = 0, (8)

where ρ0, the central density, remains a free parameter to be
specified.

Figure 6 shows some examples of the density profile (upper
panel) and integrated core mass (lower panel). The cases γ = 5/3
(blue), γ = 4/3 (cyan), and full eos (red) are plotted with nad =
1010 cm−3 (solid) and 109 cm−3 (dashed), where the legends
correspond to the labels of the simulations. The black curves
display the isothermal case. We also show the profile calcu-
lated with the eos used by Bate et al. (2003) with γ = 7/5 and
nad = 2.45 × 1010 cm−3. The central density used as boundary
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Fig. 5. Stellar distributions of runs with a full eos with nad = 1010 cm−3

(C10f, C10fd) and 109 cm−3 (C1f). The transitions to γ = 5/3, 7/5,
and 1.1occur at nad, 30 nad, and 30 000 nad. Using a higher sink den-
sity threshold (C10fd) results in fewer low-mass stars but does not
change the peak of the stellar distribution. Decreasing nad by a factor
ten increases the peak mass by ∼10.

condition for the integration was chosen to be n0 = 100 nad,
which is a reasonable value for illustrative purpose, while the
actual value of n0 that is reached in simulations depends on the
resolution and sink formation algorithms.

In general, the result of the hydrostatic equilibrium with-
out singularity is a central density plateau with a decreasing
envelope. Depending on the central density, the solution may

Fig. 6. First Larson cores for various equations of state. The hydrostatic
equilibrium equations are integrated with n0 = 100 nad as boundary con-
dition. We present cases with γ = 5/3 (blue), γ = 4/3 (cyan), full eos
(red), and isothermal (black). The legends correspond to the labels of
the simulations, with solid lines for nad = 1010 cm−3 and dashed lines for
109 cm−3. We also show the case γ = 7/5 with nad = 2.45 × 1010 cm−3

by Bate et al. (2003, green). The values of n0 are chosen for illustra-
tive purpose, and the actual values reached in simulations depend on
the resolution (highest density resolved, see Fig. 7). The circle indicates
the radius at which the density reaches 107 cm−3, a reference ambient
density that truncates the core. As long as the density profile decreases
steeply enough, the choice of this truncation density has no strong effect
on the resulting mass.

decrease infinitely or reach negative values at large radius, while
it should be connected to a confining ambient pressure in physi-
cal conditions. For sake of convenience, we defined the boundary
of this object where the density reaches the ambient density,
namely 107 cm−3 in this study. With a sharply decreasing density
profile, this selection of the density cutoff does not have a strong
effect on the derived mass. As long as the outer density profile
has a radial dependence that is much steeper than r−2, the object
is clearly distinguishable from the isothermal envelope and its
mass is well defined.

Figure 7 displays the size of the core truncated at ambient
density 107 cm−3 (top), the local power-law exponent of the den-
sity profile (middle) α = −rdn/dr/n, such that locally n ∝ r−α,
with the gray line tracing α = 2, and the integrated mass (bot-
tom), as a function of the central density, n0, with several nad and
γ values corresponding to the simulations. Above a certain value
of n0 (when the adiabatic regime begins), α starts to be signifi-
cantly larger than 2 and a core is well defined, providing a clear
definition of the first Larson core mass, ML. Exceeding this mass,
the gas becomes gravitationally bound, and this corresponds to
the formation of sink particles in simulations. With low values
of n0, on the other hand, the integrated mass is sensitive to the
ambient density cutoff and is almost constant regardless of n0.
This corresponds to the isothermal regime of the eos, and the
density profile approaches that of a singular isothermal sphere
(SIS; Shu 1977). The mass depends on the density cutoff, and
no obvious core could be identified. The size is therefore phys-
ically meaningful only at high n0, while at low n0, it is merely
a truncation of the SIS. In practice, we used α � 2 to infer the
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Fig. 7. Properties of the first Larson core plotted
against the central density n0. The hydrostatic
equilibrium Eq. (7) is solved with various nad
and γ values, and truncated at the ambient den-
sity n = 107 cm−3. Three quantities are shown:
the radius at which the density decreases to
n = 107 cm−3, the local power law exponent
α = −rdn/dr/n, and the integrated mass. Top
left: γ = 5/3; top right: γ = 4/3; bottom left:
full eos. Bottom right: eos taken from Bate et al.
(2003, solid), Bate (2005, dashed), and Bonnell
et al. (2011, dotted). Each time the isothermal
case is plotted in black for comparison. A core
is well defined only when α � 2, and thus
giving a characteristic mass of the first Larson
core. When a core is well defined, its mass is
almost constant regardless of n0 when γ = 4/3
or full eos is used. In contrast, the core mass
increases with increasing n0 when γ = 5/3,
which explains the peak mass shift between runs
C1h– and C1h– –.

radius of the Larson core. As can be seen, the size of the first
Larson core is typically a few tens of AU, well resolved in our
simulations. When a non-isothermal eos is used, the density is
almost flat at the center and significantly drops at some radius.
The higher the value of n0, the smaller the size of the core, such
that the integrated mass does not increase strongly with increas-
ing n0, and even reaches a characteristic value, except for the
cases with γ = 5/3, where the mass increases with n0 at rate of
roughly ML ∝ n1/2

0 .
An interesting question is whether rotation could modify

these conclusions. In particular, since rotation adds another
support, it might lead to more massive first Larson cores.
To investigate this possibility, we used the ESTER code
(Espinosa Lara & Rieutord 2013; Rieutord & Espinosa 2013),
which computes bidimentional equilibria of rotating polytropes
in solid-body rotation. We found that the maximum mass of a
rotating polytrope increases only slightly (tens of percents). The
reason is that the rotation support is significant only in the outer
part, while most of the mass lies in the central region.

4.2. Interpreting the numerical simulation results

When we assume, as we show below, that the peak of the stellar
distribution is simply proportional to the mass of the first Larson
core, ML, these calculations can be used to interpret the results
obtained from the numerical simulations.

For γ = 5/3 and nad = 1010 cm−3, Fig. 2 shows that the peak
of the stellar distribution does not change significantly with the
resolution. Since increasing the resolution allows us to probe
higher densities, we can interpret this behavior as a consequence
of the weak dependence of ML on the core central density,
n0, which, as Fig. 7 shows (blue solid lines) remains below
2 × 10−2 M� for n0 < 1012, while noting that a self-gravitating
core is well defined only when n0 & 2× 1010 (α � 2). With even
higher resolution, we can expect that the peak of the stellar mass
spectrum shifts to higher values, as seen with the C1h runs at
varied resolutions.

For nad = 109 cm−3 and γ = 5/3 (Fig. 3), the self-gravitating
first Larson core is always well defined, with a mass that
increases with n0. This is reflected by the shift in peak mass
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between runs C1h– – and C1h–. The eos with nad = 109 cm−3

gives a mass of the first Larson core that is higher than that
with nad = 1010 cm−3 at the same value of n0, which is also in
agreement with simulation results.

With γ = 4/3, the effect of varied nad on the peak of the
stellar distribution was found to be less significant (Fig. 4). This
is again in good agreement with Fig. 7 (cyan lines), where at
the same value of n0, the mass varies less with nad than in the
γ = 5/3 cases.

Finally, the runs with full eos (Fig. 5) present a similar behav-
ior to the runs with γ = 5/3 (Fig. 3) regarding the relation
between peak mass and nad. This is also expected as the mass
dependence of ML is relatively similar to that of γ = 5/3 for n0
below 1012 cm−3 (Fig. 7, red lines).

4.3. Correlation between the first Larson core and the stellar
distribution peak

A link between the mass of the first Larson core, ML, and the
mass at which the stellar distribution peaks has been suggested
in previous discussions. We now compare this in a more sys-
tematic way. For this purpose, we have compiled our simulations
with other results from the literature, and we present in Fig. 8
the correlation between the peak mass of the stellar distribution
and the mass of the first Larson core deduced from the eos we
employed in the corresponding runs. The mass of the first Larson
core is deduced from Fig. 7 to lie around the point where α starts
to be larger than two. Since the definition is not entirely straight-
forward and also because ML depends on n0, we estimated error
bars by considering that n0 may vary by a factor 10. To estimate
the peak position, we took the mass corresponding to the maxi-
mum values in the mass spectra. The error bars are given by the
binning size.

We also included results from literature. Bate et al. (2003)
simulated a 50 M� cloud with γ = 7/5 above 10−13 g cm−3 and
obtained a median sink mass of 0.7 M�. Increasing the density
by decreasing the size (Bate & Bonnell 2005) or increasing the
mass and velocity dispersion while keeping the same density
(Bate 2009a) gave similar median masses of 0.023 and 0.02 M�
that are significantly lower than in the previous case. Alterna-
tively, changing the critical density to 1.1 × 10−14 g cm−3 (Bate
2005) gave a median mass of 0.054 M�. The median mass was
used from these studies since there is not enough statistics and a
peak was not always well defined. The eos used in the simulation
series by Bate et al. is a piece-wise temperature. To calculate the
density profile of a mass concentration, the temperature as well
as its derivative are required to be continuous, therefor we used

T = T0

[
1 + (ρ/ρad)(γ−1)n

]1/n
, (9)

where n = 100 � 1, to replace their eos when we inferred the
mass of the first Larson core.

Figure 8 shows that the first Larson core mass is in good cor-
relation with the stellar distribution peak, and we approximately
obtain Mpeak ' 10ML. We offer an explanation for this additional
factor of about ten in Sect. 5.

5. Stabilizing effects of tidal forces around the first
Larson core: a model

To link the mass of the first Larson core to the mass of the
forming star, we present a simple model to discuss the effect
of a point mass in a density field. The questions we address are

Fig. 8. Peak mass of the sink mass spectrum plotted against the mass
of the first Larson core calculated with the eos we used in the simula-
tions. The peak mass is read from the stellar distribution, with the bin
size as error. The error bars from literature results are larger as they
have lower statistics and higher fluctuations in the spectrum. The mass
of the first Larson core is read from Fig. 7, with error bars indicating the
mass range with the probable n0 range. When we examine this by eye,
there is a correlation Mpeak ∼ 5MLarson. We also performed a simple lin-
ear regression, without considering the errors, to determine the scaling
factor, and this led to

∑
(Mpeak MLarson)/

∑
M2

Larson = 9.4.

how the typical mass of a self-gravitating object embedded in a
dense collapsing cloud is limited in general to a small fraction
of that of this cloud, and how this fraction depends on the mass
of the accreting object. Here we propose that the accretion onto
the already formed self-gravitating object competes with the ten-
dency to form new objects from gravo-turbulent fragmentation.
We therefore wish to estimate the typical radius at which the
probability to form another self-gravitating fragment equals one.
The mass enclosed within this radius is expected to be accreted
by the central object, while the mass outside is expected to be
distributed between forming fragments.

We discuss the conditions under which a density perturba-
tion located near the point mass can become self-gravitating and
form another core. The idea is that the first Larson core will
“screen” itself by shearing out fluctuations through tidal forces.
The modeling essentially proceeds in four steps:

– In Sect. 5.1 we describe a point mass that is surrounded by a
density profile, with a perturbation at distance rp and of size
δr.

– In Sect. 5.2 we develop the mass condition. The perturbation
needs to have a mass of at least ML such that its collapse can
result in the formation of a stellar object.

– In Sect. 5.3 we infer the energy condition. The gravita-
tional field generated by the point mass, the density field,
and the perturbation itself are used to calculate the gravita-
tional energy of the perturbation. The idea is to compare the
self-gravity of the perturbation to the destructive tidal field
created by the point mass and the envelope. The gravitational
energy of the perturbation is required to be negative such that
it can contract to form another star.

– In Sect. 5.4 we estimate the mass that is expected do eventu-
ally be accreted onto the central object. The mass and energy
constraints provide a condition on the density perturbations
as a function of distance. Assuming a lognormal distribution
for the density fluctuations (in addition to the local mean
density, which itself is ∝ r−2), we can infer at which radius
the probability of finding a self-gravitating perturbation of
mass at least equal to ML is one.
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5.1. Step 1: density profile around sink particles and
perturbation

By extracting gas profiles around young sinks particles that have
not yet decoupled from their natal gas, we have shown in Paper I
that the cores that form stars have indeed some characteristic
density profiles ρ ∝ r−2, as expected from theory (Shu 1977). We
therefore take the density field ρe(re) as a function of distance to
the point mass

ρe =
Ac2

s

2πG
1
r2

e
, (10)

where A is the amplitude of the SIS density profile (Shu 1977).
In Paper I, the density profiles around young sink particles were
inferred from simulations, and a typical value of A ∼ 10 was
found at early time when the sinks are still actively accreting (see
the left panels of Fig. 4 of Paper I). For the sake of simplicity, we
consider a uniform density spherical perturbation ρp at distance
rp:

ρp = η
Ac2

s

2πG
1
r2

p
for |re − rp| = |δr| = δr ≤ δrp, (11)

where re and rp are the vectors pointing from the central object
to a point in the envelope and to the center of perturbation, and
η is a constant for the local density contrast of the perturbation.

To determine whether the perturbation is prone to self-
gravitating collapse, we use the virial theorem to probe its
stability

Evir(rp, δrp, η) = Eg(rp, δrp, η) + 2Ether

=

∫
Vp

ρg · δr dV + 3Mp(rp, δrp, η)c2
s

=

∫
Vp

(ρe + ρp) (gL + ge + gp) · δrdV + 3Mp(rp, δrp, η)c2
s . (12)

The virial energy Evir is a combination of the gravitational
energy Eg and the thermal energy Ether, with Mp being the mass
of the perturbation. The gravitational acceleration g = gL + ge +
gp has three components, coming from the central first Larson
core that is described with a point mass, the power-law density
envelope, and the perturbation itself. We note that to correctly
calculate the virial energy, only the tidal tensor part of the gravity
should be considered and the mean value exerted on the center
of the object should be removed. In the following, we therefore
always use the relative gravitational acceleration with respect to
the center of the perturbation. The collapse criteria are therefore

Mp(rp, δrp, η) ≥ ML and (13)
Evir(rp, δrp, η) ≤ 0. (14)

5.2. Step 2: the mass condition

The mass contained inside the perturbation radius δrp around the
center of perturbation is

Mp(rp, δrp, η) =
∫
Vp

ρ(re) dV =
∫
Vp

(
ρe + ρp

)
dV. (15)

We designate θ the angle between δr and −rp.With the
trigonometric relation

r2
e = r2

p + δr
2 − 2rpδr cos θ, (16)

we can integrate

Mp(rp, δrp, η) =
Ac2

s

G
rpmp(up, η), (17)

where the normalized quantity up = δrp/rp. The normalized
mass is expressed as mp(up, η) and is given in Appendix B.

As explained above, the mass of the perturbation must typi-
cally be equal to ML since no star can form below this value. By
requiring Mp(rp, δrp, η) = ML, we obtain a relation between the
size up and amplitude η of a perturbation at distance rp.

5.3. Step 3: the energy condition

Now turning to the calculation of the virial parameter, we first
show the importance of tidal forces in the vicinity of the sink
particles, and then, to gain physical intuition, we perform a
simplified 1D estimate before carrying out a full 3D calculation.

5.3.1. Tidal forces

Tidal forces have been advocated in various contexts to
either limit or quench star formation (Bonnell & Rice 2008;
Ballesteros-Paredes et al. 2009), but also, conversely, to trigger it
(Jog 2013; Renaud et al. 2014). Ntormousi & Hennebelle (2015)
discussed the influence of the density distribution and showed
that in a collapsing cloud, the tidal forces tend to be initially
compressive, which promotes fragmentation, and then the forces
become stabilizing. The key quantity to study the influence
of tidal forces is the gravitational stress tensor, ∂ig j, which is
characterized by the three eigenvalues, λi. From the Poisson
equation, we know that

∑
λi = −4πGρ. Thus there is at least

one negative eigenvalue, say λ1, and in most cases, two of them
are negative. It is well known that certain gravitational fields
present a value of λ3 that is positive and that these fields render
the formation of self-gravitating perturbations less likely (see
Appendix C for the tidal forces in the simulation). Below, the
tidal effect is taken into account by including the corresponding
term in the virial theorem.

5.3.2. 1D calculation of gravitational energy

The direction along rp is the relevant dimension as the grav-
ity of the central mass, and the envelope generates diverging
tidal forces and prevents the overdense perturbation from self-
gravitating collapse. Based on the reasonable illustrative results
and for simplicity, we first perform a virial integration along
this direction on the axis of the perturbation, ignoring thermal
energy, and try to obtain some physical insight from the simpli-
fied calculations. We define the position δr with respect to the
center of perturbation at rp, with the positive direction pointing
away from the central mass. The gravitational acceleration, rel-
ative to the center of the perturbation, along the radial direction
is

g(δr) = −
GML

(rp+δr)2 +
GML

r2
p
−

2Ac2
s

rp+δr
+

2Ac2
s

rp
− η

2Ac2
s

3r2
p
δr. (18)

By removing the acceleration in the moving coordinate of the
perturbation, the tidal force generated by the gravity is ade-
quately considered. The first two terms on the right-hand side
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represent the gravitational acceleration generated by the central
star, the third and fourth terms are the acceleration by the enve-
lope, and the last term is the gravity of the perturbation itself.
The density is

ρ(δr) =
Ac2

s

2πG

 1
(rp + δr)2 +

η

r2
p

 . (19)

The virial integration therefore is

δrp∫
−δrp

ρ(δr) g(δr) δr dδr =
(Ac2

s )2

2πGrp
E1D,g(rp, up, η), (20)

where E1D,g is the non-dimensionalized energy (a detailed
derivation is given in Appendix D). This is a line integration,
and the quantity has the dimension of energy per unit surface.
We define a normalizing radius

rL =
GML

2Ac2
s
= 1.1 × 102 AU

(
1
A

) (
ML

0.01 M�

)
, (21)

such that

r̃p = rp/rL = Me(rp)/ML, (22)

where Me(rp) = 2Ac2
s rp/G is the mass of the envelope within rp.

The energy E1D,g can be expressed as

E1D,g (̃rp,up,η) =
2
r̃p
E1D,L(up,η) + E1D,e(up,η) + E1D,p(up,η), (23)

with contributions from the three components.
The solutions are found by simultaneously solving for all r̃p

mp(up, η) =
2
r̃p

and E1D,g (̃rp, up, η) = 0. (24)

The first condition is the condition stated by Eq. (13), while
the normalized expression stated by Eq. (17) is used.

We plot the critical density contrast ηc and the corre-
sponding size of the perturbation, δ̃rp = δrp/rL, against r̃p in
Fig. 9, showing that with increasing distance from the cen-
tral star, a lower density contrast (smaller η) and a lower level
of mass concentration (larger δrp) are needed for the perturba-
tion to be self-gravitating. As η increases at fixed mass, up and
E1D,g (̃rp, up, η) decrease. At any given distance to a first Larson
core, we can therefore derive a critical local density contrast ηc
above which the perturbation is self-gravitating and is prone to
collapse. Within this distance, all density fluctuations lower than
ηc are prevented from collapsing by the tidal field of the central
mass and its envelope. The value of ηc is typically higher than
a factor of a few, while the radius of the perturbation must be
significantly smaller than the distance from the central object.
These numbers indicate that the conditions for a perturbation to
become unstable are not easy to satisfy, and most perturbations
that in the absence of tidal forces would be unstable are there-
fore rendered stable. This process favors further accretion onto
the central object other than distributing the mass between new
fragments.

Fig. 9. Critical value of ηc (blue dashed) and corresponding δ̃rp (black
solid) as functions of the normalized distance r̃p. The gravitational
potential energy is calculated in 1D.

5.3.3. Full 3D calculation

The SIS density profile generates a positive tidal force in the
radial direction, while the field is compressing in the other two
directions. A full 3D calculation can therefore be different from
the 1D case, and it is necessary to clarify this effect. For con-
ciseness, the full integration of Eq. (12) in 3D space is presented
in Appendix E, and here we simply discuss the results:

Eg(rp, δrp, η) =
(Ac2

s )2

G
rp E3D,g (̃rp, up, η)

=
(Ac2

s )2

G
rp

[
2
r̃p
E3D,L(up, η)

+ E3D,e(up, η) + E3D,p(up, η)
]
, (25)

where E3D,g is the normalized gravitational energy. The results
are qualitatively similar to the 1D calculations. The values of ηc

and corresponding δ̃rp are plotted in Fig. 10 as a function of the
normalized distance r̃p (magenta). At a short distance, they are
very similar to the 1D approximation and ηc must be larger than
several, but at a large distance, ηc drops to ∼1, implying that the
perturbation is easily unstable.

However, we also need to consider the thermal support
3Mpc2

s against self-gravity. We can infer the condition E3D,g +
3mp/A ≤ 0 from Eqs. (12) and (17). Including the thermal sup-
port does not change the conclusions at small rp much, while at
larger distance, where the envelope density is low, thermal sup-
port becomes dominant and tidal forces are unimportant. In this
context, ηc becomes an increasing function of rp, thus imposing
a lower limit on ηc (black lines in Fig. 10).

The result sensitively depends on A, the amplitude of the
density field. When A is equal to a few, the combination of
thermal support and tidal forces stabilizes most perturbations.
Only fluctuations denser than about ten times the background
density can eventually collapse. This is in good agreement with
simulations such as those performed by Girichidis et al. (2011),
which show that clouds with r−2 density profiles are not prone to
fragmentation.

5.4. Step 4: final mass from the integrated probability of the
formation of a nearby first Larson core

In the previous section we obtained the critical density contrast,
ηc, for forming a second self-gravitating core near a point mass
ML as a function of the distance. The question now is under
which circumstances would such fluctuations be encountered, or
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more precisely, what is the probability for a given perturbation
amplitude to occur? To answer this question, we need to know
the fluctuation spectrum within a collapsing clump around an
accreting point mass. Since there is no available statistics, this
last step is certainly the least quantitative. To obtain some esti-
mate, we now use the typical density fluctuations produced by
supersonic turbulence to determine the characteristic distance at
which a perturbation with sufficient amplitude could be found
and a second core could form. The mass within this radius
is expected to be protected from fragmentation and therefore
should be accreted.

We use the simple assumption of a lognormal PDF (e.g.,
Vázquez-Semadeni 1994; Federrath et al. 2008; Hennebelle &
Falgarone 2012), that is, the probability of finding perturbations
of η at distance r̃p is

P(̃rp, δ) =
1

√
2πσ(̃rp)

exp

−
(
δ + σ2 (̃rp)/2

)2

2σ2 (̃rp)

 , (26)

where δ = log(1 + η) and σ is the width of the density PDF.
The density fluctuation is related to the local turbulent Mach
number such that σ2 (̃rp) = log

(
1 + b2M(̃rp)2

)
, with b = 0.5. To

estimate the local Mach number, we assume that the turbulent
Mach number is proportional to the that obtained from the infall
velocity. This implies that the collapse is able to amplify existing
perturbations until local energy equipartition is reached. Given
the mass of the central core and the envelope, the turbulent Mach
number therefore is

M(̃rp) =
1
cs

√
G[ML + Me(rp)]

rp
ε =

1
cs

√
GML(1 + r̃p)

rp
ε

=

√
2A(1 +

1
r̃p

)ε, (27)

where the second equivalence is obtained using Eq. (22) and
the third using Eq. (21). The coefficient, ε ≤ 1, represents
the amount of released gravitational energy that goes into the
turbulent fluctuations, rather than the infalling component. As
estimated in Paper I, A ' 10, leading toM ' 4

√
ε. We refer to

this assumption as model I. We integrate the mass that exceeds
the critical density at all rp, using the density of the fluctua-
tion ρ(̃r′p) exp(δ), the local background multiplied by the relative
density fluctuations. Dividing by ML, we obtain the typical num-
ber of self-gravitating cores with a mass at least equal to ML
contained within rp

N (̃rp) =
1

ML

rp∫
0

∞∫
δc

P(̃r′p, δ)ρ(̃r′p) exp(δ)4πr′p
2dδdr′p

=

rp∫
0

1
2

1 + erf

σ2 (̃r′p) − 2δc

2
√

2σ(̃r′p)

 Ac2
s

2πGr′p
2

4πr′p
2

ML
dr′p

=

r̃p∫
0

1
2

1 + erf

σ2 (̃r′p) − 2δc

2
√

2σ(̃r′p)

 d̃r′p, (28)

where we have used Eq. (21) to normalize the expression. With
the definition of r̃p, the mass contained within a sphere of radius
ãrp is equal to aML. When N (̃r∗p) = 1, the probability of getting

Fig. 10. Critical value of the perturbation amplitude, ηc (upper panel)
and corresponding normalized size of the perturbation δ̃rp (lower panel)
as a function of the normalized distance r̃p. 3D gravitational energy
is used, and thermal support is included for various density profiles.
Fluctuations have to be at least several times the local density to be
unstable. The low-amplitude perturbations are stabilized by tidal forces
or thermal support.

another fragment with mass ML is equal to 1. The mass enclosed
within this radius is accreted by the central object since this mass
is protected from fragmentation. Thus the mass of the final object
is certainly higher than MF = (1 + r̃∗p)ML.

Figure 11 shows MF as a function of A. The typical values
of A ∼ 10–20 and ε ∼ 0.5 give a final stellar mass of ∼4 ML
when we integrate up toN = 1 (black lines), ∼8–9 or 20–30 ML
is obtained when we consider N = 3 (blue lines) or N = 10
(cyan lines). Up to which radius should be integrated, that is to
say, how far the protostar is able to accrete, is a difficult ques-
tion. Typically, we can estimate that about six fragments (one
for each direction) should prevent any further accretion, but on
the other hand, these fragments will attract mass that should not
be attributed to the central object. Therefore, three fragments
sounds like a reasonable number. In Appendix F we explore
another model for the Mach number dependence, which leads
to similar conclusions.

We recall that the mass is integrated without considering
whether the masses are spatially connect. The value ofN is thus
a lower limit, and so is the derived r̃∗p. Although the model we
presented is not very accurate, it nevertheless suggests that the
nonlinear factor of '10 inferred from the simulations is entirely
reasonable. Further work is certainly required here.

5.5. Tidal protection in simulations

To verify our model of tidal protection that inhibits nearby core
formation, we examined the distance between the sinks in our
simulations. For each sink, the distance of formation position
was calculated for all younger sinks. In Fig. 12 we plot the
distances of the first and tenth closest neighbors against the
instantaneous sink mass at the moment of neighbor formation for
run C10h+. The distances of the first few closest sinks are sim-
ilar and almost identical in most cases (which suggests that our
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Fig. 11. Final mass MF, in units of ML, plotted against A, the ampli-
tude of the density envelope (Eq. (10)), and for various ε, the efficiency
at which infall triggers turbulent fluctuations. The critical radius r̃∗p is
equivalent to the amount of protected envelope mass in units of ML, and
thus MF = (̃r∗p + 1)ML. Black lines show the expected mass when the
envelope is truncated atN (̃rp) = 1, and MF is expected to be larger than
4 for typical values of A. Blue thin lines show the same result, while
truncated atN (̃rp) = 3, and the expected MF is increased to ∼8–9. Cyan
lines show results for N (̃rp) = 10.

Fig. 12. Distance of nearby sink formation plotted against sink mass.
The distance is calculated at the moment of the neighboring sink for-
mation. The distances from the each sink to its first and tenth (small and
large dots interlinked by a line) closest neighbors are plotted against its
mass at the moment of the formation of the neighbors. Around an exist-
ing sink particle, any neighbor can hardly form within the distance of a
few hundreds of AU.

model needs further refinement). The formation of a nearby sink
is generally inhibited within the distance of several hundreds of
AU for established sinks.

6. Discussions

6.1. Necessary developments

In our simulations, the physics of the first Larson core sets the
peak of the stellar distribution, and we infer Mpeak ' 10 MLarson.
The mass of the first Larson core at the point where it undergoes
second collapse is typically on the order of a few 0.01 M�
(Masunaga et al. 1998; Vaytet et al. 2012; Vaytet & Haugbølle
2017), which is very close to the observed peak of the IMF
(Bastian et al. 2010). The most recent radiative simulations of
core collapse by Vaytet & Haugbølle (2017) showed that the
mass of the first Larson core is ∼0.02 M�. One of the difficulties

encountered by our calculations is that it is not possible to prop-
erly describe the second collapse and the disappearance of the
first Larson core as it is being accreted. This causes some uncer-
tainties in the value of the first Larson core that should be used.
A smoothed two-slope polytropic eos was used in this study to
represent the results of radiative transfer balancing in dense gas.
Detailed simulations with complete radiation calculations would
give more accurate results, although the numerical resolution is
a major obstacle. On the other hand, varying the density at which
the sink particles are introduced (runs C10f and C10fd in Fig. 5)
does not change the position of the peak, although it reduces the
number of objects. This may indicate that the exact way in which
the first core is accreted onto the protostar may be not too critical
in determining the peak position.

Finally, we reiterate that the physics used in the present
paper and its companion may be oversimplified in other aspects
since it does not include the magnetic field and heating by
accretion luminosity. Both are known to reduce fragmentation
(Krumholz et al. 2007a; Bate 2009b; Commerçon et al. 2011;
Hennebelle et al. 2011; Myers et al. 2013) and may drastically
modify the fragmentation we obtain.

6.2. What sets the peak of the IMF: is there a cosmic
conspiracy?

Unlike the prediction by simple gravo-turbulent fragmentation
models (e.g., Hennebelle & Chabrier 2008, 2013; Hopkins 2012),
which posit that the IMF peak depends on the turbulent Jeans
mass, the IMF characteristic mass in the high-density regime
has a lower limit imposed by the local thermal balancing and
the formation of the first Larson core. The traditional view that
the typical fragmentation mass is linked to the Jeans mass is
no longer valid in these conditions because self-gravity triggers
the development of a power-law density PDF. As discussed in
Paper I, the existence of a peak may depend on the environment,
however. In somewhat diffuse clouds, or more precisely, when
the local thermal support dominates the turbulent support, the
stellar distribution is flat (dN/d log M ∝ M0) and the mass of the
first Larson core, MLarson, may truncate the distribution rather
than leading to a peak.

One important issue, however, is the initial conditions and
the exact way the matter is assembled. Although we verified in
Paper I (see the appendix) that the initial fluctuations are not
crucial, setting up a dense reservoir without preexisting cores
may be a significant oversimplification. In other words, the ini-
tial conditions that should be used to describe the ISM are not
well understood yet, and we caution that the conditions used in
this paper may introduce some biases. In particular, as stressed in
Paper I, the high-mass part of the mass spectra tends to present a
power law that is too shallow compared to the canonical Salpeter
distribution. If dense clusters turn out to be assembled from
material where cores are already developed, the preexisting cores
may play a stronger role and the peak of the IMF could be inher-
ited from the peak of the core mass function (CMF), as proposed
theoretically in Padoan et al. (1997), Hennebelle & Chabrier
(2009), Hennebelle (2012), Hopkins (2012), Lee & Hennebelle
(2016a), and Lee et al. (2017), and suggested by simulations
(Gong & Ostriker 2015; Hennebelle 2018). This picture is sug-
gested by the observations of the CMF, which resembles the IMF
(Motte et al. 1998; Alves et al. 2007; André et al. 2010; Könyves
et al. 2015), and it could be the dominant mode in some environ-
ments. It is remarkable that the peak of the CMF (particularly if
an efficiency of '30–50% is taken into account) and the peak of
the stellar distribution imposed by the physics of the first Larson
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core, as discussed in this paper, lead to values that are similar
within a factor of 2–3. This coincidence may be for a large part
responsible of the apparent universality of the IMF.

7. Conclusions

We have performed a series of numerical simulations describing
the collapse of a 1000 M� cloud. These numerical experiments
explicitly ignored magnetic field and radiative transfer at this
stage. The transition from the isothermal to the adiabatic phase
is of great importance, and several effective equations of state
were explored. This includes varying γ, the effective adiabatic
exponent, and ρad, the density at which the transition occurs.
We paid great attention to the numerical spatial resolution and
its influences on the resulting stellar mass spectrum, in particu-
lar, its peak position. The influence of the initial conditions were
studied in Paper I.

We found that the isothermal simulations show no sign of
convergence as the peak position shifts toward lower masses
when the spatial resolution improves. On the other hand, when
a polytrope-like eos is used (typically with γ > 4/3), the peak
position becomes independent of the numerical resolution if
high enough. Using simple 1D hydrostatic models, we inferred
the expected mass of the first Larson core that we compared to
the measured peak position of the stellar distribution, for which
we compared our simulations and various published results.
We found a clear correlation between the two, with the peak
position typically about ten times higher than the mass of the
first Larson core.

We presented an analytical model that may account for this
factor of roughly ten. It is based on the idea that in the vicinity of
a point mass, such as a first Larson core, tidal forces are impor-
tant and tend to quench further gravitational fragmentation by
shearing out the density fluctuations. Therefore the mass located
in the neighborhood of such a point mass tends to be accreted,
which increases the mass of the central objects in consequence.
As discussed in Paper I, this effect is true only when the gas is
initially dense and turbulent, generating many fluctuations that
eventually form stars close one to the other.

Since the physics of the first Larson core is not expected to
significantly vary from place to place, this mechanism may pro-
vide a robust explanation for the apparent universality of the IMF
peak. We emphasize, however, that an IMF-like distribution is
produced only if the cloud is sufficiently massive and cold.
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Appendix A: Sink accretion scheme

The thresholding scheme for sink accretion by Bleuler &
Teyssier (2014) was used in this study. Within the sink accre-
tion radius, four times the smallest cell size, a fraction cacc of
the mass exceeding the density threshold nsink is accreted onto
the sink, and by default, cacc = 0.75. When the mass from a cell
is accreted by multiple sinks, the algorithm treats the sinks in
decreasing order in terms of mass to ensure that more massive
sinks accrete more mass. We performed a simulation with all
parameters identical to C10h, except that cacc = 0.1. As shown
in Fig. A.1, the stellar mass distribution does not differ signifi-
cantly from that of run C10h (Fig. 2), ensuring that the accretion
scheme does not have a strong effect on the final mass of the
stars.

Fig. A.1. Stellar distributions of runs with a smoothed two-slope poly-
tropic eos with γ = 5/3, nad = 1010 cm−3, and cacc = 0.1 instead of
0.75 as in all the other runs. The peak of the distribution is not varied
compared to run C10h.

Appendix B: Perturbation mass

The mass of the perturbation is equal to

Mp(rp, δrp, η) =
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where the normalized quantities u = δr/rp and up = δrp/rp.

Appendix C: Tidal forces in the simulations

In the vicinity of an accreting point mass, two contributions
have to be considered. First the r−2 gravitational force induced
by the central object, and second the r−1 force associated with
the r−2 density profile envelope. Both have a positive eigenvalue,
λ3, and two negative ones, λ1 = λ2. It can be shown that for
the r−2 gravitational field, λ3/λ1 = −2 while for the second one
λ3/λ1 = −1.

In order to assess the importance of tidal forces in our sim-
ulations, we calculated the gravitational stress tensor. We first
averaged λ3 and λ1 in density bins, and then plotted the absolute
value of their ratio. Figure C.1 shows the result from run C10h at
6.1 and 9.3 kyr. Low densities correspond to the outer region of
the cloud that is dominated by the tidal field of the global density
distribution of the cloud and by the central cluster. At high densi-
ties (> nsink = 1010 cm−3), corresponding to regions in the vicin-
ity of sink particles, the destructive tidal force is strong, such that
no core formation is allowed nearby. This illustrates the dominat-
ing effect of the gravitational field generated by the sink particle.

Fig. C.1. Tidal forces in run C10h. The absolute value of the ratio
between the highest and lowest eigenvalues of the gravitational stress
tensor λ3/λ1 is plotted against local density at 6.1 and 9.3 kyr. At very
low density, corresponding to the outer region of the cloud, the gravita-
tional field is dominated by the global density distribution of the cloud
and by the central cluster, and thus −2 < λ3/λ1<-1. The tidal forces
become less destructive at slightly higher densities. At extremely high
density (> nsink = 1010 cm−3), corresponding to regions in the vicinity
of existing sinks, the tidal forces become locally very destructive and
prevent nearby sink formation.

Appendix D: 1D calculation of the gravitational
energy

The expression of the 1D gravitational energy is

δrp∫
−δrp

ρ(δr) g(δr) δr dδr

=
(Ac2

s )2

2πGrp

−GML

Ac2
s rp

 −8u3
p

3(1 − u2
p)3
−

2(η − 1)up

1 − u2
p

+(η − 1) log
(

1 + up

1 − up

)]
+

4u3
p

(1 − u2
p)2
−

16
3
ηup −

4up

1 − u2
p
−

4η
3

up

1 − u2
p
−

4
9
η2u3

p

+2 log
(

1 + up

1 − up

)
+

10
3
η log

(
1 + up

1 − up

)}
=

(Ac2
s )2

2πGrp
E1D,g(rp, up, η). (D.1)

A89, page 15 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731523&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731523&pdf_id=0


A&A 611, A89 (2018)

Appendix E: 3D calculation of gravitational energy

We define ξ the angle between re and δr, and θ the angle between
δr and −rp. Projected onto the direction of δr, the gravitational
fields have the values

gL(re) = gL,a(re) − gL,c(re) = −
GML

r2
e

cos ξ −
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r2
p

cos θ, (E.1)
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δr, (E.3)

where the subscripts a and c signify the value at the point con-
sidered and the value at the center of the perturbation. The local
density is
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We have the trigonometric relations
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and we deduce cos ξ/re = [1 + (δr2 − r2
p)/r2

e ]/(2δr). The contri-
bution to the gravity at the center of the perturbation from the
central star and from the envelop behave in the same way, and
the normalized integration gives
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Considering the integration of Eq. (12) separately for each
gravitation term without subtracting the mean gravity field, we
obtain
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1
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 , and thus

E3D,L = E3D,L,a + E3D,L,c, (E.9)

E3D,e,a =
G

(Ac2
s )2rp

∫
Vp

ρge,a · δrdV

= −
1
rp

δrp∫
δr=0

π∫
θ=0

2 cos ξ
re

 1
r2

e
+
η

r2
p

 sin θdθδr3dδr

= −
1
rp

δrp∫
δr=0

1∫
cos θ=−1

 1
r2

e
+
η

r2
p

 1 + δr2 − r2
p

r2
e

 d cos θδr2dδr

=

δrp∫
δr=0

δr2

rp

 log re

rpδr
−
η cos θ

r2
p
+

r2
p−δr

2

rpδr

×

 1
2r2

e
−
η log re

r2
p

∣∣∣∣∣∣1
cos θ=−1

dδr

=

up∫
u=0

{
−u log

(
1+u
1−u

)
+

2u2

1−u2

+η

[
u
(
1−u2

)
log

(
1+u
1−u

)
−2u2

]}
du

=

3−u2
p

2
log

(
1+up

1−up

)
−3up

+η

up

2
−

5u3
p

6
−

1−u2
p

2

2

log
(

1+up

1−up

)
 , (E.10)

leading to

E3D,e = E3D,e,a + E3D,e,c, (E.11)
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where u = δr/rp, and up = δrp/rp. The condition for a second
core forming near the initial central core is that Eg(rp, δrp) ≤ 0
and that M(rp, δrp, η) = ML. Substituting Eqs. (E.9), (E.11), and
(E.12) and (17) into Eq. (12) reduces the latter to Eq. (25).

Appendix F: Density fluctuations: model II

Since the density fluctuations are important and they control
the fragmentation around the accreting objects, we explored a
second model (model II) to determine the robustness of our
conclusions. We assumed that the turbulence follows a Larson
relation inside the cloud and is conserved during collapse (this
assumption may not be accurate as the collapse likely generates
turbulent fluctuations), we have

M(̃rp) =
vt (̃rp)

cs
=
vt,cloud

cs

(
r0(rp)
rcloud

) 1
2

=Mcloud

(
M(rp)
Mcloud

) 1
6

, (F.1)

where vt, r0, vt,cloud, rcloud, andMcloud are the turbulent velocity at
rp, the radius that corresponds to the mass enclosed inside radius
rp before the local mass concentration (at cloud average density),
the turbulent velocity at cloud scale, the radius of the cloud, and
the Mach number of the cloud. The mass M(rp) contained inside
rp takes the envelope and the central mass into account and can
be expressed with the normalized form M(rp) = ML (̃rp +1). This
leads to

M(̃rp) =Mcloud

(
ML

Mcloud

) 1
6

(1 + r̃p)
1
6 =M0(1 + r̃p)

1
6 . (F.2)

The local lognormal dispersion is therefore

σ2 (̃rp) = log
(
1 + b2M2

0(1 + r̃p)
1
3

)
. (F.3)

The initial Mach number of our canonical run is ∼20, and
ML/Mcloud ∼ 10−2/103 = 10−5. These values typically yield
M0 = Mcloud(ML/Mcloud)1/6 ∼ 2–3. An important difference
between the two assumptions made in models I and II is that
the second estimate depends on the initial conditions, while the
first is entirely local.

We performed numerical integrations for several values of
M0. Figure F.1 shows the resulting N (̃rp), without considering
the thermal support. We defined the critical radius r̃∗p at which
one self-gravitating mass ML is expected, as marked with circles
in the figure (model I is also shown for comparison).

The resulting MF = (1 + r̃∗p)ML is displayed in Fig. F.2 and
should be compared to Fig. 11. When we also consider the ther-
mal energy of the perturbation, the protected radius is increased
since more support is present. In Fig. F.2 we also show results
with thermal support using A = 2, 5, 10, and 20. The effect of
thermal support is more prominent when A is small, imposing
a lower limit on M0 below which a star prevents its surround-
ing gas form fragmenting and will grow to become massive. The

Fig. F.1. Probable number of self-gravitating cores found within radius
r̃p. Upper panel: Model I plotted with ε = 1 and for several values of the
density envelope amplitude, A. Lower panel: Model II without thermal
support for several values of the global cloud Mach number, M0. The
circles mark the values where one self-gravitating core is found. In the
range of our interest, that is, whereN (̃rp) equals a few, there is an almost
linear dependance between N (̃rp) and r̃p.

Fig. F.2. Final mass MF in units of ML for model II. MF is plotted against
the level of turbulence for cases with A = 2, 5, 10, and 20, and without
thermal support (A → ∞, magenta). Model II also shows that MF is
expected to be larger than 3 when the envelope is truncated atN (̃rp) = 1,
and > 5 when N (̃rp) = 3 (blue thin lines).

physical interpretation is that when the envelope density is low,
stronger fluctuations are needed to create multiple stars, other-
wise one star will dominate and prevent any further formation
once it is formed. This is in good agreement with the result of
Girichidis et al. (2011), who reported that clumps with an r−2

profile and weak turbulence do not fragment. For A ∼ 10, as
measured in Paper I (left panels of Fig. 4), the condition N = 1
gives at least MF ∼ 10ML for any M0 lower than ∼2. Figure 8
shows that this is in good agreement with the value inferred
from the simulations in the sense that the model predicts that the
accreting envelope, protected from gravitational fragmentation,
is several times the mass of the first Larson core.
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