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On high-accuracy L∞-stable IMEX schemes for
scalar hyperbolic multi-scale equations

Victor Michel-Dansac and Andrea Thomann

Abstract We present a framework to build high-accuracy IMEX schemes that
fulfill the maximum principle, applied to a scalar hyperbolic multi-scale equation.
Motivated by the findings in [5] that implicit R-K schemes are not L∞-stable, our
scheme, for which we can prove the L∞ stability, is based on a convex combination
between a first-order and a class of second-order IMEX schemes. We numerically
demonstrate the advantages of our scheme, especially for discontinuous problems,
and give a MOOD procedure to increase the accuracy.

Keywords L∞ stability, IMEX R-K schemes, MOOD, hyperbolic multi-scale
equations

1 Introduction

We consider the scalar multi-scale equation

wt + cewx +
ci
ε
wx = 0, (1)

where we set the constants ce, ci > 0 and the parameter ε > 0. The model (1)
mimics the behavior of the isentropic Euler equations with a slow speed ce and a
fast speed ci/ε, where ε corresponds to the square of the Mach number. We treat
the derivative wx associated with the slow scale ce explicitly, whereas wx associated
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with the fast scale ci/ε is treated implicitly in time due to the stiffness introduced
by ε < 1. For computational efficiency, the resulting CFL condition, and therefore
the time step, has to be independent of ε. In space, we apply an upwind discretization
because, already having in mind the non-linear nature of e.g. the Euler equations,
using a central scheme for the implicit part will not lead to a L∞-stable scheme, as
shown in [4] for a non-linear system.

The discretization of time and space follows the usual finite difference framework.
The space domain [x1, xN ] is partitioned in N uniformly spaced points (xj)j∈[1,N ],
with the step size ∆x. We discretize the time variable with tn = n∆t, where ∆t
denotes the time step. Then, the solution w(t, x) of (1) at (tn, xj) is approximated
by wn

j . The first-order implicit-explicit (IMEX) discretization of (1) is given by

wn+1
j = wj − λ(wn

j − wn
j−1) − µε(wn+1

j − wn+1
j−1 ), (2)

where we define λ = ce ∆t∆x and µε = ci
ε
∆t
∆x for abbreviation. Note that λ, µε > 0.

We are interested in IMEX schemes that meet the maximum principle. Here, we
focus on L∞-stable schemes, where a scheme is said to be L∞-stable if

‖wn+1‖∞ = max
j∈J1,NK

|wn+1
j | ≤ ‖wn‖∞. (3)

As proven in [3], the first-order scheme (2) is L∞-stable and TVD. Furthermore, as
proven in [5], implicit Runge-Kutta schemes, and consequently second-order IMEX
schemes, are not L∞-stable. Therefore, we would like to propose a convex combina-
tion of (2) with a second-order IMEX scheme and give conditions for the L∞ stability
for the resulting scheme. We define the convex combination between the first-order
scheme wn+1,1st

j and a second-order update wn+1,2nd
j for a parameter θ ∈ (0,1) as:

wn+1
j = (1 − θ) wn+1,1st

j + θ wn+1,2nd
j . (4)

2 IMEX formulation

Generic formulations of an IMEX scheme introduce two s × s matrices A = (ai j)
and Ã = (ãi j), as well as two vectors b, b̃ ∈ Rs . They are regrouped in two linked
Butcher tableaux

c A

bT
,

c̃ Ã

b̃T
.

The coefficients c, c̃ are only necessary if the right hand side depends explicitly on
time. In the following we will use the pairs (A, b) for the implicit and (Ã, b̃) for the
explicit part. To reduce computational costs, we take A to be lower triangular and Ã
to be strictly lower triangular. Applying the IMEX formulation on (1), we obtain the
following scheme:
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wn+1 = wn − ce∆t
s∑

k=1
b̃kw

(k)
x −

ci
ε
∆t

s∑
k=1

bkw
(k)
x , (5)

with the stages

w(k) = wn − ce∆t
k−1∑
l=1

ãklw
(l)
x −

ci
ε
∆t

k∑
l=1

aklw
(l)
x . (6)

IMEX Runge-Kutta (R-K) schemes can be classified depending on the structure of
the matrix A.
Definition 1 An IMEXR-Kmethod is said to be of type CK (Carpenter andKennedy
[6]) if the matrix A ∈ Rs×s can be written as

A =
(
0 0
a Â

)
,

where a ∈ Rs−1 and Â ∈ R(s−1)×(s−1) is invertible. In the case where a = 0, the
scheme is said to be of ARS type (Asher, Ruuth and Spiteri [1]).

In the following we will consider a second-order 2-stage and a second-order 3-
stage IMEX R-K method of type CK. To obtain a second-order scheme, there are the
following compatibility conditions [8]:

s∑
k=1

b̃k = 1 ;
s∑

k=1
bk = 1 ; ∀k, c̃k =

k−1∑
l=1

ãkl ; ∀k, ck =
k−1∑
l=1

akl ;

s∑
k=1

b̃k c̃k =
1
2

;
s∑

k=1
b̃kck =

1
2

;
s∑

k=1
bk c̃k =

1
2

;
s∑

k=1
bkck =

1
2
.

(7)

2.1 A 2-stage CK type IMEX R-K method

For a 2-stage CK type method, we have the following Butcher tableaux,
with a22 , 0:

explicit:
0 0 0
c̃2 ã21 0

b̃1 b̃2

, implicit:
0 0 0
c2 a21 a22

b1 b2

. (8)

With the compatibility conditions (7), we can simplify (8) to

explicit:
0 0 0
α α 0

1 − 1
2α

1
2α

, implicit:
0 0 0
α γ α − γ

1 − 1
2α

1
2α

, (9)



4 Victor Michel-Dansac and Andrea Thomann

where α − γ , 0 and α , 0.
Using (5), (6) and (9), we can define the second-order discretization of (1) as

w
(1)
j = wn

j − λα(wn
j − wn

j−1) − γµε(wn
j − wn

j−1) − µε(α − γ)(w(1)j − w
(1)
j−1),

wn+1
j = wn

j −
(
1 − 1

2α

)
(λ + µε)(wn

j − wn
j−1) −

1
2α
(λ + µε)(w(1)j − w

(1)
j−1).

(10)

Due to the matrix structure of the CK type R-K scheme, we have only two computa-
tional steps. The first one computesw(1), and the second onewn+1. The convex combi-
nation (4) between the schemes (2) and (10), with the shorter notation∆ = wj−wj−1,
is given by:

w
(1)
j = wn

j − λα∆n − γµε∆n − µε(α − γ)∆(1),

wn+1
j = wn

j −
(
λ − θ 1

2α
(λ + µε) + θµε

)
∆
n

− θ 1
2α
(λ + µε)∆(1) − (1 − θ)µε∆n+1.

(11)

We can sort (11) by grouping the wn+1 and w(1) terms:

(1 + µε(α − γ))w(1)j − µε(α − γ)w
(1)
j−1 = (1 − (λα + γµε))wn

j

+ (λα + γµε)wn
j−1,

(12)

(1 + (1 − θ)µε)wn+1
j − (1 − θ)µεwn+1

j−1 = wn
j −

(
λ − θ 1

2α
(λ + µε) + θµε

)
∆
n

− θ 1
2α
(λ + µε)∆(1).

(13)

In the following, we will assume periodic boundary conditions.Wewill prove the L∞

stability (3) by starting with the proof of ‖w(1)‖∞ ≤ ‖wn‖∞. For each time step, we
will use the triangle inequality |x + y | ≤ |x | + |y | and the reverse triangle inequality
|x | − |y | ≤ |x − y | for x, y ∈ R. To apply use those inequalities, we require in (12)

λα + γµε ≥ 0 (14)
1 − (λα + γµε) ≥ 0 (15)

1 + µε(α − γ) ≥ 0 (16)
µε(α − γ) ≥ 0. (17)

Using equation (12), we can now write the following estimate for ‖wn‖∞:
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‖wn‖∞ = (1 − (λα + γµε))‖wn‖∞ + (λα + γµε)‖wn‖∞
≥ ‖(1 − (λα + γµε))wn

j + (λα + γµε)wn
j−1‖∞

= ‖(1 + µε(α − γ))w(1)j − µε(α − γ)w
(1)
j−1‖∞

≥ (1 + µε(α − γ))‖w(1)‖∞ − µε(α − γ)‖w(1)‖∞
= ‖w(1)‖∞.

(18)

From requirement (14), we get that αce + γ
ci
ε ≥ 0. In order to get a Butcher tableau

independent of ε, we require α > 0 and γ ≥ 0. Relation (15) leads to a CFL
condition ∆t

∆x (αce + γ
ci
ε ) ≤ 1. Note that, due to computational efficiency, we seek

a time step restriction independent of ε. Therefore, we must take γ ≤ 0. Together
with γ ≥ 0, this leads to γ = 0. With those settings, (16) and (17) are always fulfilled.

Let us prove now that ‖wn+1‖∞ ≤ ‖wn‖∞. First, we rewrite (12) as follows:

− µε∆(1) = 1
α
w
(1)
j −

1
α
wn

j + λ(wn
j − wn

j−1). (19)

After inserting (19) into (13), we obtain further conditions given by

r1 = 1 − θ

2α2 + λ

(
−1 +

θ

α

)
+ µεθ

(
−1 +

1
2α

)
≥ 0, (20)

r2 = λ

(
1 − θ

α

)
+ µεθ

(
1 − 1

2α

)
≥ 0, (21)

θ

2α2 −
θλ

2α
≥ 0. (22)

Using (13), as well as the above conditions, we obtain the following estimate

‖wn+1‖∞ = (1 + (1 − θ)µε)‖wn+1‖∞ − (1 − θ)µε ‖wn+1‖∞
≤ ‖(1 + (1 − θ)µε)wn+1

j − (1 − θ)µεwn+1
j−1 ‖∞

= ‖r1w
n
j + r2w

n
j−1 + (µε −

θλ

2a
)w(1)j +

θλ

2α
w
(1)
j−1‖∞

≤
(
1 − θ

2α2

)
‖wn‖∞ + θ

2α2 ‖w
(1)‖∞

≤ ‖wn‖∞,

(23)

which shows the L∞ stability. From the constraints (20)-(22), we can compute
the final estimates for the free parameters α, θ, λ. The condition (22) gives a CFL
restriction of λ ≤ 1

α . Since we want to avoid a dependence of ce, ci or ε on α and θ,
we need in (21) 1 − θ

α ≥ 0, that is α ≥ θ and 1 − 1
2a ≥ 0, which leads to α ≥ 1

2 .
With the same motivation, we need −1 + 1

2α ≥ 0 in (20), that is α ≤ 1
2 . Together it

follows that α = 1
2 and we get from (20) the final CFL condition λ ≤ 1. With α = 1

2
and γ = 0 fixed, we have recovered a 2-stage ARS type method with the midpoint
rule as the implicit part, given by
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explicit:
0 0 0
1
2

1
2 0
0 1

, implicit:
0 0 0
1
2 0 1

2
0 1

. (24)

The above results are summed up in the following theorem:

Theorem 1 For periodic boundary conditions and under the CFL condition

∆t ≤ ∆x
ce
,

the scheme consisting of the convex combination of the first-order scheme (2) and
the second-order scheme constructed from (24) is L∞-stable as long as θ ≤ 1

2 .

Remark 1 In order to have the maximal input of the second-order scheme, we would
want to set θ = θopt =

1
2 . With this choice of θ, the restriction (20) for α = 1

2 is
satisfied immediately and we get the less restrictive CFL condition

∆t ≤ 2
∆x
ce
.

Unfortunately, the midpoint rule with the above CFL condition and θ = θopt exactly
reduces to two steps of a first-order scheme. We therefore advise θ < 1

2 to get a
second-order scheme.

Since γ = 0, the initial CK type method (9) reduces to an ARS type method (24).
This observation is summarized in the following corollary

Corollary 1 If there is a second-order CK type IMEXR-K scheme of the form (9) that
is L∞-stable in the convex combination with (2) under a CFL condition independent
of ε, then it has to be of ARS type.

2.2 A 3-stage CK type IMEX R-K method

In this section, we adapt the derivation of the 2-stage case to a 3-stage CK type
method. It is described by the following Butcher tableaux, with a22 , 0 and a33 , 0:

explicit:

0 0 0 0
c̃2 ã21 0 0
c̃3 ã31 ã32 0

ã31 ã32 0

, implicit:

0 0 0 0
c2 a21 a22 0
c3 a31 a32 a33

a31 a32 a33

, (25)

To have the same number of computational steps as in the 2-stage scheme (5), we
have set b = (a3j) and b̃ = (ã3j).
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With the second-order compatibility conditions (7) and a22 = β and a33 = α, we
introduce κ = 2(γ+β)(1−α)+2α−1

2(γ+β) and simplify (25) to:

explicit:

0 0 0 0
γ + β γ + β 0 0

1 1 − 1
2(γ+β)

1
2(γ+β) 0

1 − 1
2(γ+β)

1
2(γ+β) 0

, implicit:

0 0 0
γ + β γ β 0

1 κ 1−2α
2(γ+β) α

κ 1−2α
2(γ+β) α

. (26)

Analogously to (10), we can write the second-order scheme using (26) as

w
(1)
j + µεβ∆

(1) = wn
j − (λ(γ + β) + µεγ)∆n

wn+1
j + µεα∆

n+1 = wn
j −

(
λ

2(γ + β) − 1
2(γ + β) + κµε

)
∆
n

+

(
λ

1
2(γ + β) + µε

1 − 2α
2(γ + β)

)
∆
(1).

Weconduct an analogous analysis as in the 2-stage case,which results in the following
ARS-type IMEX R-K method for β ∈ (0, 1

2 ):

explicit:

0 0 0 0
β β 0 0
1 1 − 1

2β
1

2β 0
1 − 1

2β
1

2β 0

, implicit:

0 0 0 0
β 0 β 0
1 0 1

2(1−β) 1 − 1
2(1−β)

0 1
2(1−β) 1 − 1

2(1−β)

. (27)

One example for (27) is the widely used ARS(2,2,2) method with β = 1−
√

2
2 , see [1].

Theorem 2 For periodic boundary conditions and under the CFL condition

∆t ≤ ∆x
ce
,

the scheme consisting of the convex combination of the first-order scheme (2) and
the second-order scheme constructed from (27) with β ∈ (0, 1

2 ) is L∞-stable as long
as θ ≤ 2β(1 − β).
Remark 2 In order to have the maximal input of the second-order scheme, we set

θopt = 2β(1 − β). (28)

With the choice θ = θopt, we get the less restrictive CFL condition

∆t ≤ Copt
∆x
ce

, where Copt =
1

1 − β . (29)

The values of θopt and Copt are displayed with respect to β in Figure 1.
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0 0.1 0.2 0.3 0.4 0.5
0

0.1
0.2
0.3
0.4
0.5

β

θopt

0 0.1 0.2 0.3 0.4 0.5
1

1.5

2

β

Copt

Fig. 1 Values of the optimal convex combination parameter θopt (left panel) and the optimal CFL
numberCopt (right panel), with respect to the IMEX parameter β.

Remark 3 Allowing β = 1
2 , the 3-stage ARS type method (27) reduces to the 2-

stage ARS type method using the midpoint rule (24). In addition, the choice β = 1
2

maximizes both θopt and λ.

Corollary 2 If there is a second-order CK type IMEX R-K scheme of the form (27)
that is L∞-stable in the convex combination with (2) under a CFL condition inde-
pendent of ε, then it has to be of ARS type.

3 Numerical results

This section is dedicated to providing numerical experiments to test the schemes
introduced above:

• The first-order scheme given by (2),
• The second-order scheme given by (27),
• The L∞-stable scheme obtained via the convex combination with the parame-
ter θ = θopt given by (28), between the first-order scheme (2) and the second-
order scheme (27),

• The MOOD scheme resulting from an optimal order detection procedure ex-
plained in Section 3.1 and applied to the L∞-stable scheme.

Throughout this section, the space domain is given by [0,1] and periodic boundary
conditions are prescribed. The time domain is given by [0, tend], where tend chosen
such that the exact solution completes exactly one revolution of the space domain,
as follows:

tend =
1

ce +
ci
ε

.

Unless otherwise mentioned, the space and time discretization are linked with the
optimal CFL condition defined by (29). The constants ce and ci are both taken equal
to 1.

We start this section with an introduction to an order detection procedure in
Section 3.1. Then, we provide a way to choose the parameter β in Section 3.2.



High-accuracy L∞-stable IMEX schemes 9

Finally, in Section 3.3, we provide several numerical tests with smooth and especially
non-smooth exact solutions. The smooth exact solution is given by

wsmooth
ex (t, x) = 1 +

ε

2

(
1 + sin

(
2π

(
x −

(
ce +

ci
ε

)
t
)))

, (30)

and describes the transport of a sine wave of amplitude ε. The discontinuous exact
solution is given by

wex =


1 + ε if x −

(
ce +

ci
ε

)
t ∈

(
1
4
,
3
4

)
,

1 otherwise.
(31)

which corresponds to the transport of a square wave of amplitude ε.

3.1 Optimal order detection: a MOOD-like technique

The L∞-stable scheme is a convex combination between the diffusive first-order
scheme and the oscillatory second-order scheme. Since those oscillationsmay violate
the maximum principle, we do not wish to use the second-order scheme everywhere
in the computational domain. Using the L∞-stable scheme introduces enough dif-
fusion to get rid of the oscillations and to ensure the maximum principle. However,
once the diffusion has been introduced, there is no need to add even more diffusion
and the second-order scheme could be used until its result once again violated the
maximum principle, at which point the L∞-stable scheme would be necessary once
again.

The procedure outlined above is akin to the Multidimensional Optimal-Order
Detection techniques developed in the MOOD framework (see for instance [2]). It
results in the MOOD scheme, given by the algorithm below:

Algorithm If the exact solution is bounded between wmin and wmax , using the
optimal CFL number (29), the MOOD scheme is given as a result of applying the
following algorithm at each time step.
1. Compute the second-order solution.
2. Detect if this second-order solution breaks the maximum principle, i.e. if it

oscillates below wmin or above wmax .
3. If the maximum principle is violated, compute and output the solution given by

the L∞-stable scheme; otherwise, output the second-order solution.

This algorithm ensures a drastic improvement in the numerical results when this
procedure is used instead of using the L∞-stable scheme at each time step.
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3.2 Choice of β in the 3-stage method

This first set of numerical experiments is dedicated to providing a way to choose
an optimal value for β. At the moment, we know that β ∈ (0,1/2) and we are able
to find a non-zero value of θ for all values of β. According to Figure 1, the optimal
CFL number as well as the optimal θ increase as β goes to 1/2. Therefore, it would
be tempting to take β as close to 1/2 as possible. To check whether this preliminary
analysis is accurate, we study the CPU time and the L∞ error of the scheme with
respect to β, in order to suggest an optimal value of β.

Throughout this set of numerical experiments, we consider the smooth exact
solution (30) with ε = 10−1.

Study of the CPU time. The CPU time taken by our program is influenced by β
because the CFL number number Copt, given by (29), itself depends on β. Indeed,
as β varies from 0 to 1/2, Copt ranges between 1 and 2, as evidenced in Figure 1.

0 0.1 0.2 0.3 0.4 0.5

6

8

10

12

β

CPU time (ms)

order 1
order 2
L∞-stable
MOOD

Fig. 2 CPU time (in milliseconds) with respect to the IMEX parameters β, using the optimal
values θopt andCopt, in the context of the test case presented in Section 3.2.

In Figure 2, we note that the CPU time for the L∞-stable and MOOD schemes
decreases when β tends to 1/2. This was expected as the CFL number Copt is
increasing with β, thus allowing for larger time steps. Let us also note that theMOOD
procedure is not very costly for this smooth test case. Moreover, we remark that the
second-order scheme takes twice as much CPU time as the first-order scheme, which
is also to be expected due to the additional intermediate step.

Study of the L∞ error.Now,we turn to the study of the L∞ error with respect to β.
For β ∈ (0,1/2), the L∞-stable and MOOD schemes are L∞-stable, but this property
alone does not indicate their precision. From now on, we take the optimal CFL
number Copt.

In Figure 3, we observe that the second-order scheme is, as expected, much more
accurate than the first-order one. In addition, we note that the L∞-stable scheme is
more precise than the first-order one, but not by a large margin. Finally, we remark
that the MOOD procedure is essential to improve the accuracy of the L∞-stable
scheme.
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0 0.2 0.4
0.003
0.006
0.009
0.012
0.015
0.018

β

L∞ error

0 0.2 0.4
0.017

0.019

β

L∞ error

0 0.2 0.4

0.0025
0.003

β

L∞ error

order 1 order 2 L∞-stable MOOD

Fig. 3 L∞ error with respect to the IMEX parameters β, using the optimal values θopt and Copt,
in the context of the test case presented in Section 3.2. The right panels contain a zoom on the left
panel data.

Regarding the choice of β, we note on the top right panel that the L∞-stable
scheme reduces to the first-order one in two cases. When β = 0, we get θopt = 0,
and the convex combination consists only in the first-order scheme. When β = 1/2,
we get θopt = 0 and Copt = 2, and the convex combination actually coincides with
the first-order scheme. Between these two values, the L∞ error produced by the L∞-
stable scheme reaches a minimum. Interestingly, this minimum is close to the point
where the MOOD error starts increasing (see the bottom right panel). We note that
this minimum is located around β ' 1−

√
2/2, which is widely used e.g. in [1, 8, 3].

Conclusion: choice of β. In this first study, we have observed that:
• the CPU time gets smaller as β gets larger;
• the L∞ error reaches a minimum at β = 1 −

√
2/2.

Based on this observations, we define βopt, which will be used in the remainder of
this article, as

βopt = 1 −
√

2
2
.

3.3 Numerical tests

Before we start with the numerical results, we want to remark that we do not
consider an increase in space order. Such an increase, and its effect on smooth
solutions, has been documented at length in [3]. Therein was concluded that the
second-order accuracy in time was unremarkable for ε close to 1, and the second-
order space accuracy was not noticeable for ε smaller than 10−1.

Therefore, we focus here only on second-order time accuracy whereas accuracy
in space will be studied in forthcoming work.
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3.3.1 Smooth solution: order of accuracy

To demonstrate that our schemes reach the desired order of accuracy, we com-
pute L∞ error curves with the smooth initial condition (30). In Figure 4, we display
the L∞ error with respect to the number of discretization points for the four schemes
under consideration.

250 500 1000 2000 4000

10−4

10−3

1
2

1
N

L∞ error

order 1
order 2
L∞-stable
MOOD

Fig. 4 L∞ error curves for the smooth solution (30), with ε = 10−2.

We note, as expected, that the first- and second-order schemes are respectively
first- and second-order accurate. Moreover, the L∞-stable scheme is first-order ac-
curate, and the MOOD procedure greatly increases the accuracy of the L∞-stable
scheme, almost bringing it to the level of the second-order scheme. The loss of
precision of the MOOD scheme compared to the second-order scheme is due to
the fact that the MOOD scheme is L∞-stable, contrary to the second-order scheme,
and therefore does not allow any violation of the maximum principle, even to gain
accuracy.

As a consequence, the MOOD procedure is especially well-suited for smooth
problems where the maximum principle is important. Let us now compare these
approaches on a discontinuous solution, where we expect the L∞-stable scheme to
be of greater interest.

3.3.2 Discontinuous solution

We now consider the following discontinuous exact solution wex. In Figure 5, we
display the results of the four schemes for different values of ε.

We first notice in the top left panel that the approximation of the exact solution is
similar for all four schemes in the case of ε = 1.

In the other three panels, for ε ∈ {10−1,10−2,10−3}, we note that the first-order
scheme is always in-bounds, while the second-order scheme always violates the
maximum principle. Here, we observe a clear improvement when using the L∞-
stable scheme, but the result is still somewhat diffusive. The MOOD procedure
allows another gain in accuracy compared to the first-order scheme, while still
staying in-bounds.
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Fig. 5 Approximation of the discontinuous solution (31). From left to right and top to bottom,
we have taken: ε = 1 and N = 40, ε = 10−1 and N = 220, ε = 10−2 and N = 2000, ε = 10−3

and N = 20000. These large values of N have been chosen to ensure that 20 time iterations are
necessary to reach tend. If smaller values are taken, the time steps are too large to visually notice
the differences between the schemes.

This underlines the necessity of L∞-stable schemes when approximating discon-
tinuous solutions. In addition, the MOOD procedure is useful when approximating
continuous and discontinuous solutions with good accuracy, while respecting the
maximum principle.

The final numerical experiment consists in quantifying howmuch better the result
of the L∞-stable scheme is, compared to both first- and second-order approxima-
tions, when considering a discontinuous solution. To address such an issue, we
cannot simply compute the error in the L∞ norm. Indeed, this norm is not well-
suited for measuring the errors produced when approximating a discontinuous exact
solution with a diffusive approximation. Instead, we turn to the L1 norm, as well
as a modification, the L1

o “norm”, which does not fulfill the criteria of a norm but
enables us to measure relevant the errors, defined as follows:

‖wn‖L1
o
= ‖wn‖L1 +

[(
max

j∈J1,NK
n∈J0,TK

(wn
j ) − min

j∈J1,NK
n∈J0,TK

(wn
j )

)
−

(
max
x∈(0,1)

(wex) − min
x∈(0,1)

(wex)
)]
+

.

This “norm” is the L1 norm added to a quantity which has been designed to measure
only overshoots and undershoots. This quantity encodes how much the numerical
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solution violates the maximum principle. Therefore, we expect this added term to
vanish as soon as the L∞-stable scheme, with or without MOOD, is employed.
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Fig. 6 L1 (left panels) and L1
o (right panels) error curves for the discontinuous solution (31),

for ε = 1 (top panels) and ε = 10−2 (bottom panels).

In the top panels of Figure 6, we note that, for ε = 1, both errors take similar
values for the four schemes under consideration. This is due to the fact that there
are few spurious oscillations in this case (see Figure 5, top left panel). In addition,
we observe that the scheme is accurate up to order 1/2 which is expected when
approximating discontinuous solutions, see for instance [7].

Now, looking at the bottom left panel, we note that the L1 error is lower for
the second-order scheme than for the other ones and that the order of accuracy
of all schemes tend to 1/2 for large enough N . However, the bottom right panel,
which takes into account the over- and undershoots when computing the error,
paints another picture: The second-order scheme is actually the worst of all four. In
addition, the error actually stays roughly constant when the number of discretization
points increases. This means that, as N increases, the gains in L1 error seem to be
compensated by an increase of the overshoot and undershoot amplitude.
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4 Conclusions and future work

Wehave presented away of constructing L∞-stable IMEXschemes that, combined
with a MOOD procedure, yield highly accurate approximate solutions for stiff and
non-stiff systems. As we have demonstrated with simple numerical examples, for
non-stiff systems higher order IMEX R-K schemes still give good results although
violating the maximum principle, whereas for stiff systems they produce spurious
oscillations and L∞-stable schemes are needed to give accurate solutions. In this
work, we have mainly focused on the time accuracy and have neglected higher order
space discretizations. This, together with the extension to TVD and higher order
IMEX schemes, is subject of future work. In addition, for physical applications,
asymptotic preservation properties, as well as scale-independent diffusion, will be
studied.
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