N

N

What You Simulate Is What You Synthesize: Designing
a Processor Core from C++ Specifications
Simon Rokicki, Davide Pala, Joseph Paturel, Olivier Sentieys

» To cite this version:

Simon Rokicki, Davide Pala, Joseph Paturel, Olivier Sentieys. What You Simulate Is What You
Synthesize: Designing a Processor Core from C++ Specifications. ICCAD 2019 - 38th IEEE/ACM
International Conference on Computer-Aided Design, Nov 2019, Westminster, CO, United States.
pp-1-8. hal-02303453

HAL Id: hal-02303453
https://hal.science/hal-02303453
Submitted on 2 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02303453
https://hal.archives-ouvertes.fr

What You Simulate Is What You Synthesize: Designing a
Processor Core from C++ Specifications

Invited Paper

Simon Rokicki, Davide Pala, Joseph Paturel, Olivier Sentieys
Univ Rennes, Inria, CNRS, IRISA

Abstract—Designing the hardware of a processor core as well
as its verification flow from a single high-level specification
would provide great advantages in terms of productivity and
maintainability. In this work, we highlight the gain of starting
from a unique high-level synthesis and simulation C++ model
to design a processor core implementing the RISC-V Instruction
Set Architecture (ISA). The specification code is used to generate
both the hardware target design through High-Level Synthesis as
well as a fast and cycle-accurate bit-accurate simulator of the lat-
ter through software compilation. The object oriented nature of
C++ greatly improves the readability and flexibility of the design
description compared to classical HDL-based implementations.
Therefore, the processor model can easily be modified, expanded
and verified using standard software development methodologies.
The main challenge is to deal with C++ based synthesizable
specifications of core and uncore components, cache memory hi-
erarchy, and synchronization. In particular, the research question
is how to specify such parallel computing pipelines with high-level
synthesis technology and to demonstrate that there is a potential
high gain in design time without jeopardizing performance and
cost. Our experiments demonstrate that the core frequency and
area of the generated hardware are comparable to existing RTL
implementations.

I. INTRODUCTION

Since decades software and hardware have shared a sym-
biotic relationship - a situation where both elements support
and need each other to thrive and progress. Innovations in
hardware architecture are leading to better processors which
can support the complex software applications being devel-
oped today. Similarly, software and programming languages
have made it easier to prototype, simulate and even synthesize
hardware, for example the creation of High-Level Synthesis
(HLS) tools. HLS is a hardware design technique where an
algorithm written in a high-level language like C or C+4++ is
interpreted to create digital hardware which implements the
same functionality. HLS tools are very useful for designing
complex controllers or accelerators, as they allow engineers
to focus simply on functionality, without worrying about
architectural details too much.

Standard development flows for processor architecture are
based around the development and maintenance of a hardware
model for synthesis, and a software model (i.e. an instruction-
set simulator) to validate the applications that will run on the
design. Those two models have to be verified independently.
High-level synthesis would also be considerably useful to
cut down the complexity of the hardware development in a
processor design methodology. As shown in Figure 1, HLS
enables the use of a single behavioral model of the simulator,

which is compiled into a cycle-accurate bit-accurate simulator
by standard compilers and also synthesized into a hardware
component through HLS. It is also possible to debug the
behavioral model at the C/C++ level and to simply validate
the behavior of the generated hardware through co-simulation
and standard software development tools.

core.c

v ¥

HLS Compiler

HW/SW Accurate

rtly co-simulation simulator
Hardware Software
Toolchain validation

Fig. 1. Hardware processor development flow based on High-Level Synthesis.

Although high-level synthesis is making huge progress in
dealing with complex structures, how far can these tools
go? Can they be used to design something as complex as
a microprocessor? In particular how to specify such parallel
computing pipelines (e.g., core pipeline stages, cache hierar-
chy, communications with uncore components) with the HLS
technology and to demonstrate that there is a potential high
gain in design time, without jeopardizing performance and
cost.

In this work, we present an attempt to answer these ques-
tions with the design of Comet, a five-stage pipelined pro-
cessor implementing the RISC-V Instruction Set Architecture
(ISA). Comet is fully synthesized from a unique C/C++ model
using state-of-the-art HLS tools. To measure the quality of the
generated hardware, we compare it against other implementa-
tions based on hardware description languages. Results show
that, if the C/C++ model is written using the methodology we
describe in this paper, the generated hardware is comparable
or even better than other implementations when targeting
an ASIC 28 nm technology node. The resource footprint on
FPGA targets is slightly higher but still comparable with hand-
optimized designs. Moreover, a fast, cycle-accurate and bit-
accurate simulator of the processor can be compiled from the

same C/C++ model. The resulting maximum performance of
the simulator reaches 24 million cycles per second (Mcps)
on integer workloads and around 15 Mcps on average, when
executing floating-point and integer workloads. The object
oriented nature of C++ also greatly improves the readability
and flexibility of the design description compared to classical
HDL-based implementations. Therefore, the processor model
can easily be modified, expanded and verified using standard
software development methodologies.

The rest of this paper is organized as follows. Section II
provides the background on HLS needed to understand the
challenges involved in designing a processor core using HLS.
In Section III, we describe how the C/C++ models have to
be designed in order to be correctly synthesized by the HLS
tool. In Section IV and Section V, we present the experimental
results and their discussion before to draw some conclusions
and perspectives in the last section.

II. BACKGROUND ON HIGH-LEVEL SYNTHESIS

The principle of high-level synthesis is to generate hardware
components from functional representations using high-level
languages (typically C/C++). While HLS could be seen as
a compilation of software to generate hardware, it has to
face several different challenges. For example, the tool can
allocate computing units and hardware resources to exploit
operator-level parallelism. HLS also needs to meet designer
constraints such as target operating frequency and maximum
allowed area or resource usage. The first behavioral synthesis
methodologies and tools date back to the 1990s [1]. However,
until the 2000s, those tools were commercial failures due to the
quality of the generated hardware [2] not being high enough
to compete with handcrafted designs. However, more recent
commercial tools like Catapult HLS from Mentor Graphics
[31, [4], [5] and Vivado HLS from Xilinx [6] generate efficient
hardware for a broad set of applications. Nevertheless, HLS is
still aimed at generating hardware accelerators for compute-
intensive applications and is less capable when dealing with
control-dominated tasks.

HLS flows are organized around two main steps. First, the
tool allocates hardware components to the different operations
found in the functional representation. Then, during the second
step, the tool schedules the operations. The allocation and the
scheduling problems are joined: allocating fewer resources to
save area results may lead to a longer schedule, thus reducing
the speed or the throughput of the synthesized hardware.
Consequently, those two problems are often solved at the same
time [7].

HLS tools also have to efficiently handle loops. This can
be done through loop pipelining. The idea is to begin a new
iteration of the loop before the completion of the current
one. Loop pipelining is characterized by the Initiation Interval
(IT) achieved, which is the time between two iteration starts.
Ideally, a loop is pipelined with an II of one, which means that
a new iteration starts every cycle. However an II of one can
be difficult to obtain as the II is constrained by both available
resources and inter-iteration dependencies.

III. DESIGNING A PROCESSOR WITH HLS

In this section, we present how to efficiently synthesize a
processor using a behavioral description (i.e., a simulator).
We first explain why HLS tools cannot generate efficient
hardware from an Instruction Set Simulator. Then, we present
our explicitly pipelined simulator and how to integrate multi-
cycle operators (e.g. integer division, floating-point unit).

A. Synthesis from an Instruction Set Simulator

The most intuitive way to synthesize a processor from a
C/C++ description is to express the ISA execution as in an
Instruction Set Simulator (ISS). An ISS is a simple way to
express the functionalities of the processor organized around
an infinite loop implementing the ISA. At each iteration of
the loop, an instruction is fetched, its fields are decoded and a
switch/case statement modifies the simulator’s state function of
the current instruction definition. Finally, the Program Counter
(PC) is incremented and the next instruction can be executed
at the next iteration.

Algorithm 1 is a simple ISS example: we can see the
main parts of the simulator (the infinite while loop and the
switch/case). If we consider the case corresponding to the
addition (ADD), the simulator simply reads the two operand
registers, executes the addition and writes the result in the
register file. Similarly, the case corresponding to the load
instruction (LD) computes the address, accesses the memory
and writes the result on the register file.

while rrue do
instr = mem|[pc];
switch opcode do
/x —— Jump register —-— *x/
case JR do
| pc = reg[rsl];
end
/x —— Load word —- */
case LD do
| reg[rd] = mem[reg[rs1] + imm];
end
/* —— Addition -- */
case ADD do
| reg[rd] = reg[rs1] + reg[rs2]
end

end

end

Algorithm 1: Example of an Instruction Set Simulator
specification.

Thanks to their simple operating logic, Instruction Set
Simulators are often used to provide the first simulator of
an ISA. Moreover, studies from Rohou er al. demonstrated
that thanks to modern branch predictors, such simulators
deliver good simulation performance without needing complex
optimizations [8]. Among RISC-V simulators, SWERV-ISS [9]
from Western Digital is based on this idea. The Spike simulator
[10] is more complex and provides higher performance, but
remains based on a similar switch/case structure.

To synthesize an efficient hardware component from an ISS,
some transformations need to be applied to the functional
description. As Algorithm 1 shows, an addition operator is
used in different cases of the switch statement (the LD and
ADD cases in this example), since a single opcode is evaluated
at each loop iteration, The two operators are never solicited
simultaneously and a unique addition operator instance and
some multiplexers can be shared between the different ex-
ecution paths. This transformation is known as datapath-
merging [11]. If the considered operator’s inputs/outputs are
different in different datapaths, it might be more or less
interesting resource-wise to apply the merging transformation.
Similarly, all the read and write operations to the register file
could be merged into one or two accesses. This transformation
allows for the design size to be reduced.

To gain on the performance front, the infinite while loop
of the ISS can be pipelined, hence reducing the length of the
critical path and thus allowing for higher throughput to be
achieved. Unfortunately, current HLS tools cannot achieve an
IT of 1 with such an ISS-like processor description. Indeed,
several dependencies would be detected by the compiler:

o The Read After Write (RAW) dependency on the register
file: when executing a load instruction, the value to write
in the register file has to be fetched from memory at
an address that is stored in the register file itself. If
the previously executed instruction modified the register
that contains the target address, its complete execution is
required before the current instruction can be evaluated
and the memory can be accessed. As HLS tools always
schedule for the worst case, they will not be able to reach
an Initiation Interval of 1 on their own.

e The next PC value: the PC value for the next loop
iteration can come from different paths. If the current
instruction is a conditional branch, the condition has to
be evaluated (which often needs register file accesses and
integer comparisons). Therefore, depending on this con-
dition, an immediate value may be added to the current
PC to obtain the next value. Also, when executing an
indirect branch, the next PC value comes from the register
file. Because of this dependency on the PC value, HLS
tools determine the following PC value at the end of the
longest path, which is the conditional branch. This leads
to an Initiation Interval greater or equal to 3, depending
on the number of pipeline stages of the processor.

The first dependency could be handled by HLS tools if
they were capable of scheduling for the most probable path,
stalling the pipeline when necessary. The dependency related
to the next PC value requires to generate a speculative pipeline:
starting an iteration with the most probable PC value (which
is often an increment of the current value, pointing to the
next instruction in memory) and canceling the execution if the
prediction turned out to be wrong. These two transformations
could be handled by the HLS tools and represent interesting
research directions. It is also noteworthy that, if the tools were
capable of generating such schedules, we would get a pipelined
processor that resembles the ones that are manually designed.

To summarize, synthesizing a processor core from an In-

struction Set Simulator would lead to very low performance
as current HLS tools are not capable of efficiently pipelining
and breaking dependency in such specifications. Consequently,
to develop a processor core using HLS, we need to write a
simulator where the pipeline structure is explicitly encoded at
the specification level.

B. Explicitly Pipelined Simulator

As explained in the previous section, current HLS tools are
not capable of generating efficient pipelines for processors,
that is to generate pipelines which speculate on the next
value of the PC and capable of handling stall and forwarding
mechanisms automatically. As we want to design a core with
a performance level close to what is achievable with an
HDL, we designed an explicitly pipelined simulator. In this
simulator, the structure of the pipeline, as well as all the
control mechanisms (stall and forward), are specified at the
C/C++ level. As described in Figure 2, our simulator uses a
5-stage pipeline (Fetch, Decode, Execute, Memory and Write
Back), with a forwarding mechanism from the output of the
Execute and Memory stages to the input of the Execute stage.
Figure 2 also represents data and instruction caches, as well as
multi-cycle operators. The design of these latter components
is discussed in Section III-C.

Algorithm 2 represents the high-level description of Comet,
our processor core with the explicit pipeline structure. The
different pipeline registers are defined as struct variables
(e.g., ftodc represents the pipeline register between the
Fetch and Decode stages), these variables are declared outside
the scope of the main execution loop and will hence retain
their values between iterations. Each iteration of the infinite
loop executes the functions of all the pipeline stages on their
respective input registers. Each pipeline stage function writes
its output in a temporary register (that is not synthesized)
that represents the data present at the input of the following
physical pipeline registers. Note that five different instructions
are alive in the simulator at the same time, one for each
pipeline stage.

After executing all the pipeline stages, the simulator handles
the stall and forward logic. First, a stall signal is computed for
each pipeline stage. If a stage is not stalled, the temporary
values that represent its output will be copied over to the
physical registers. Stall signals can be activated if an external
global stall signal is set, when a cache miss occurs or when
a Read After Write dependency that cannot be solved with
forwarding, is detected. With the latter stall source, only
the two first pipeline stages are inhibited while the Execute,
Memory and Write-Back stages keep committing their results.
Forward mechanisms simply compare source and destination
registers and trigger a forward bit. If this bit is set, one of the
input values of the Execute stage is modified with the result of
the Execute or the Memory stage to avoid stalling the pipeline
and wait for the value to be written in the register file.

The simulator described in Algorithm 2 has therefore no
inter-loop dependencies and can hence start the execution of
a new instruction at every clock cycle, leading to an II of
one. It is also interesting to note that the explicit pipelining

Register File
Forwarding Unit
_ J il _
opcode
) vall
£ 3
(@) < 3 val2 <) | N
§ M & 3§ fe =
2 =
S §5
=] =
(%]
£
Multi-cycle
operators |
N \|/ N A A\ N
Branch Unit Data Cache

Fig. 2. Internal organization of a processor with a standard RISC five-stage pipeline, forward mechanisms, multi-cycle operators, and data and instruction

caches.

struct FtoDC ftodc;

struct DCtoEx dctoex;
struct ExtoMem extomem;
struct MemtoWB memtowb;

while zrue do
ftodc_temp = fetch();
dctoex_temp = decode(ftodc);
extomem_temp = execute(dctoex);
memtowb_temp = memory(extomem);
writeback(memtowb);

/* —— Handling stalls —-— */
bool stall[S] = stallLogic();
if /stall{0] then

| ftodc = ftodc_temp;
end
if /stall{1] then

| dctoex = dctoex_temp;
end

/+ —— Handling forwarding —-- x/
bool forward = forwardLogic();

if forward then
| dctoex.valuel = extomem.result;

end

end
Algorithm 2: High-level specification of an explicitly
pipelined simulator.

transformation (effectively removing all the timing flexibility
of the HLS compiler) makes the simulator cycle-accurate bit-
accurate, unlike a standard solution based on an ISS.

C. Handling Multi-Cycle Operators and Caches

The simulator described in the previous section has only one
pipeline stage dedicated to execution. While this is enough
for most of the instruction of the base RISC-V ISA, some
extensions introduce operations requiring a longer execution

time (e.g., the integer division of the M extension of the
ISA). If the instruction is simply added into the simulator
described on Algorithm 2 in a new case statement using
a normal division operator, the synthesized design will see
its critical paths greatly increased and therefore its operating
frequency lowered accordingly. To counter this side effect, the
division needs to be broken down into small control steps. An
implementation based on a for loop is not suitable, as HLS
compilers always schedule for the worst case and will hence
lower the II of the pipeline to the number of iterations needed
to fully execute the division algorithm.

To solve this issue, multi-cycle operations are expressed as
Finite State Machines (FSM) and the execution stage is stalled
when a multi-cycle opcode is detected. Each state of the FSM
corresponds to a computation cycle. In the case of the division,
there is a state for each bit in the operand (groups of bits
can be processed together using loop unrolling techniques to
increase performance). When a multi-cycle opcode enters the
execution stage, the pipeline will be stalled until the opcode
FSM has reached its final state and a result has been produced.
All the commit and forwarding logic is kept from the original
pipeline.

As multi-cycle operators are synthesized alongside the pro-
cessor, HLS tools can perform some resource sharing between
the normal mono-cycle operations and the multi-cycle ones.
For example, the division is implemented using successive
subtractions. The HLS tools allow for the subtractor circuit
of the Arithmetic and Logic Unit (ALU) to be re-used in the
execution of the division. The drawback of this approach is
that the computation of the multi-cycle operators has to be
split into atomic pieces that can be executed in one cycle and
the designer has to encode a state machine that guides the
execution of the algorithm and generates the stall signal. This
solution has been used to implement the division instruction as
well as the Floating-Point Unit (FPU) of the Comet processor.

Less intuitively, we used a similar mechanism to handle
associative data and instruction caches. Caches load the tags
associated to the requested address. If there is a match, they

return the corresponding value. If no match is detected, the
caches stall the core while a line is freed and populated with
values from the next memory level in the hierarchy. These
two match/miss possibilities, and the processing associated to
each, are sequenced using an explicit state-machine. Because
of the different memory accesses, synthesizing this part is
challenging. We used HLS directives to ignore some of the
dependencies detected by the tool when we knew that conflicts
never occur.

To illustrate the usage of the previously exposed opti-
mization techniques, we present in the next section Comet,
a RISC-V compatible 32-bit CPU based on the micro-
architectural features illustrated in Figure 2.

IV. DESIGN OF THE COMET PROCESSOR CORE

In this section, we describe the experimental study con-
ducted and the main results obtained. This study aims to: i)
evaluate the quality of the generated hardware and compare
it with existing RISC-V cores; ii) measure the performance
of the simulator; iii) demonstrate how HLS improves the
maintainability and the extensibility of a processor core design.

A. Quality of the Generated Hardware

The first part of the study is focused on measuring the
quality of the generated hardware. Indeed, current HLS tools
are not built for control-flow dominated C++ code such as a
processor core simulator. To ensure that the synthesized core
is competitive, we compare its characteristics against other
similar cores.

The Comet core has been synthesized with different con-
figurations: i) based on the rv321i that only supports basic
instructions; ii) based on rv32im that has additional support
for 32x 32 integer multiplication and division, and iii) based on
rv32imf that supports all the 32-bit single-precision floating-
point instructions. Note that this last configuration also adds
32 32-bit floating-point registers. All those three different
versions of Comet are synthesized with Mentor Graphics
Catapult HLS (V10.3a), and then synthesized with Synopsys
Design Compiler (P-2018.06-SP5). Each configuration targets
an operating frequency of 700MHz and the 28 nm FDSOI
technology node from ST Microelectronics, using a Vgg=1V,
25°C corner.

As baselines, we used several other cores written with
more standard hardware description languages. The Rocket
core [12] is a 5-stage pipelined core developed at Berkeley
using the Chisel HDL [13]. Its micro-architecture is close
to the one of Comet but it also supports additional RISC-V
extensions (compressed and atomic instructions), which may
slightly impact its area results. As the Rocket core is fully
configurable, we generated three versions comparable to the
three Comet configurations. PicoRV is a size-optimized RISC-
V core: it has no barrel shifter and only supports the rv321
ISA. PicoRV is written using Verilog HDL. Those different
cores were synthesized using the same synthesis flow and
technology parameters.

Table I contains the synthesis results for the different cores.
For the rv321i configurations, our implementation is larger

TABLE I
AREA AND FREQUENCY RESULTS FOR DIFFERENT RISC-V CORES
SYNTHESIZED USING A 28 NM TECHNOLOGY NODE.

Core ISA freq. Area | Lang.
(MHz) | (um?)
rv32i 8168
Comet [14] rv32im 11099 | C++
rv32imf 26760
rv32i 700 11114
Rocket [12] rv32im 12606 | Chisel
rv32imf 26550
. rv32i 7747 .
PicoRV [15] 30im 1176 Verilog

than the size-optimized PicoRV but smaller than the Rocket
core. Once support for the M-extension added, Comet becomes
smaller than PicoRV and Rocket, even though the difference
is less significant. The addition of the floating-point extension
changes this tendency, the Rocket core for rv32imf being
slightly smaller than its equivalent for Comet. However, the
important conclusion in this study is that the use of HLS
does not significantly impact the area and frequency of the
synthesized core, even when compared to an optimized version
designed at the RT level.

To investigate the impact of the floating-point extension,
sub-parts of the Comet core have been synthesized separately:
the FPU and the core alone (note that the core still contains
the 32 floating-point registers). The results of this experiment
are given in Table II. Intuitively, synthesizing sub-parts of

TABLE II
AREA RESULTS FOR COMET FLOATING POINT UNIT SYNTHESIZED USING
A 28 NM TECHNOLOGY NODE.

Design Area (um?)
FPU 8147
Core w/o FPU 15299
Core w/ FPU 26760

the design separately should lead to a larger design, as the
HLS tool would no longer perform resource-sharing optimiza-
tions between those different parts. However, the results in
Table II show the opposite: synthesizing the FPU and the core
separately leads to better results. This counter-intuitive result
seems to point out that we are reaching the limits of what
current HLS tools can perform. As the control-flow grows
in complexity with the addition of an FPU, the optimization
algorithms of the HLS tool are not capable of optimizing the
design as much as if it was split into smaller and simpler sub-
designs. This hypothesis also holds if we measure the time
spent by the HLS tool to synthesize the design. For the full
core with the FPU, the compilation time reaches 23 minutes,
whereas the synthesis of the core and FPU alone took two
minutes each.

Another advantage of HLS is its ability to synthesize a
hardware design specialized for various technology targets. As
an example, we synthesized Comet as a soft core embedded
into a Xilinx Artix 7 FPGA (XC7A12T). The core itself

is still synthesized using Catapult HLS (V10.3a) and the
RTL code is then synthesized and placed and routed using
Vivado 2018.3. Table III summarizes results in terms of area
and maximal frequency for different RISC-V cores. Area is
expressed as the number of Look-Up Tables (LUT), Flip-Flops
(FF), Multiplexers (Mux), and arithmetic (DSP) blocks used
in the FPGA fabric. Even if the comparison between Rocket

TABLE III
RESOURCE USAGE (LUT, FF, MuX, DSP BLOCKS) AND MAXIMAL
FREQUENCY FOR DIFFERENT RISC-V CORES SYNTHESIZED TARGETING A
XILINX ARTIX 7 FPGA USING CATAPULT HLS AND VIvADO 2018.3.

Core ISA freq. Area
(MHz) | LUT FF | Mux | DSP
rv32i 80 2032 | 1503 | 260 0
Comet | rv32im 70 2910 | 2244 | 227 3
rv32imf 74 6460 | 3527 | 448 5
rv32i 2253 | 1154 41 0
Rocket | rv32im 76 2570 | 1275 43 2
rv32imf 8132 | 3094 | 586 4
. rv32i 140 880 583 0 0
PicoRV = 3%im [110 [1977 [1085 0] 0

and Comet is more difficult on FPGA, the area and frequency
of the synthesized designs are comparable. We can notice
that Comet uses more multiplexers and arithmetic blocks than
Rocket for each configuration. On the other side, PicoRV is
far smaller than Comet and operates at a higher frequency.
The manually optimized FPGA design of PicoRV is much
more efficient than both Rocket and Comet designs. It is
however important to notice that the micro-architecture of
PicoRV is completely different and the performance level of
Comet is higher, PicoRV being optimized for frequency and
area. Indeed, when executing a Dhrystone benchmark, Comet
exhibits a Cycles Per Instruction (CPI) of 1.9, whereas the
best performing configuration of PicoRV only reaches a CPI
of 4.1. Note that the CPI of Comet and Rocket is similar.

B. Simulator Performance

As already stated, Comet is also a cycle-accurate and bit-
accurate simulator of the processor. The simulator contains
code that does not aim to be synthesized, which constitutes
a wrapper around the core. It allows for the execution of
standard elf files, solves systems calls (without the need of
additional code within the executed binary), and implements
code instrumentation facilities. Consequently, a broad range of
bare metal and OS supported applications can be executed by
the simulator.

To measure simulation performance, several applications
from the MiBench benchmark suite have been selected (the
set of workloads has been picked from all the categories of
the suite). Simulator performance has been evaluated using
different configurations of the target system: support for the
base ISA and/or the M and F extensions as well as the presence
or not of L1 caches. Applications from the MiBench suite have
been executed on the simulator on a host workstation equipped
with an 8th-generation Intel Core i7 CPU running at 3.9GHz.

In Table IV, we can observe a peak performance at 23.6
million cycles per second (Mcps) average when the core is
set up to only support the base ISA and no caches are used.
As expected the performance numbers dip as the number of
supported features and system complexity increase. The lowest
performance figure of 11.6 Mcps is obtained when the core
supports both the M and F extensions and when L1 caches are
in use. The average performance of the simulator is around 15
Mcps, when executing floating-point and integer workloads.

Comparatively, the verilator-based [16] simulator of the
Rocket chip executes three orders of magnitude slower, with
approximately 0.023 Mcps. The widely used Gem5 simulator
[17] can simulate around 0.2 Mcps. However, due to the
extended control flow introduced by the explicit pipelining
needed for HLS use, Comet is not as fast as an ISS. For
example, SWERV-ISS [9] can simulate up to 140 million
instructions per second. Finally, the fastest way to simulate
a RISC-V application is to use dynamic binary translation.
For example, Qemu [18] can simulate around 1.3 billion
instructions per second, which is close to native performance.
Note that ISS and DBT-based simulators are no longer cy-
cle accurate. The performance of Comet (around 10 million
instructions per second in average) coupled to the accurate
nature of the simulator make it a good candidate for fast micro-
architectural design-space exploration.

TABLE IV
SIMULATOR PERFORMANCE AS A FUNCTION OF THE CORE
CONFIGURATION. RESULTS ARE GIVEN IN MCPS WHICH STANDS FOR
MILLIONS OF SIMULATED CYCLES PER SECOND.

Supported extension rv32i | rv32im | rv32imf
Simulator perf. w/o L1 (Mcps) | 23.6 18.2 15.1
Simulator perf. w/ L1 (Mcps) 16.7 13.0 11.6

C. Example of Core Specialization

Using HLS for processor design offers as another advantage
the ease of feature addition. As a demonstration of this exten-
sibility, we have developed a custom instruction performing
a Fast Fourier Transform (FFT) butterfly operation to speed-
up 64-point, radix 16, FFT computations. To simplify the
implementation, the custom instruction can only read two 32-
bit registers and write in one hence avoiding the need for
a second register file write port and additional forwarding
mechanisms. The new instruction can be integrated into the
pipeline by simply adding a case statement in the ALU of
the Execute-stage and in the Decode stage function.

The custom butterfly instruction receives two 16-bit fixed-
point complex numbers represented with two 32-bit values.
It performs the butterfly computation using a local array
containing the twiddle factors and writes the result in the
destination register. This single custom instruction performs
four 16-bit multiplications and four 32-bit additions in a single
clock cycle.

The custom instruction is added on top of the configuration
supporting the rv32im ISA. The modification in the C++
model only represents 60 new lines added to the code. The new
core is synthesized using a 28 nm technology for an operating

frequency of 700 MHz. With the custom instruction, the core is
31% larger than the original Comet, which represents an area
of 14831 um?. This area increase is mainly due to the added
flipflops and multipliers required by our implementation. An
FFT program was also modified to make use of the new
custom instruction using the .instr assembly directive.
The performance measurements demonstrate that the version
exploiting the custom instruction executes 14 x faster than the
straight rv32im one. This also shows the ability of our C++
processor model to be easily and fastly extended with new
functionalities.

V. DISCUSSION AND RELATED WORK

Several attempts at generating processors using HLS have
already been made. The objective is usually to generate an
application-specific processor where some instructions are
removed. In the work of Ahmed et al. [19], the processor
is not pipelined at all. In the work of Skalicky et al. [20],
the processor is pipelined using the automatic pipelining
capabilities of their HLS tool, which limits the Initiation
Interval to a minimum of three or four.

Experimental results show that the Comet core synthesized
through HLS presents similar area and performance to other
popular HDL-based solutions. In this section, we will discuss
some of the advantages and drawbacks of HLS usage to design
complex, control-oriented digital circuits such as processor
cores.

A. Advantages of the Proposed Design Flow

As previously mentioned, the main advantage of HLS is
that a single C++ model is used to generate both a high
performance and accurate simulator and a functional hardware
component. As C++ is a high-level language, the source is
easy to read and is also small, offering great educational
and maintainability advantages over standard HDLs. HLS also
enables simplified feature additions. As an example, the M
ISA extension has been added to the sources and synthesized
in a single day. Working with a single model for hardware
and software also simplifies the debugging/testing part of the
development process. Indeed, all the debugging is done at the
C++ level, using dedicated tools like GDB or Valgrind. Once
the simulator is thoroughly tested, the hardware is ready to
be synthesized and co-simulation can be performed to ensure
that the RTL representation behaves the same way than the
software model. This design flow is more resilient and less
error-prone than conventional hardware development flows.

Thanks to these properties, the Comet core is used to ease
architectural exploration of processor core in several research
projects:

o Design-space exploration of fault-tolerant CPU designs.
The core wrapper code has been modified to include fault
injection facilities allowing the injection of errors in any
memory point of the design (core and pipeline registers,
caches and memories) at any time during the execution
of a workload. Since the core code is kept the same, it is
still synthesizable and each pipeline stage can be analyzed
separately at the RT level or gate level using conventional

fault-injection tools. Errors extracted at this low-level can
then be re-injected in the simulator with the guidance of
some data acquired during synthesis (area of the different
pipeline stages, combinational/sequential logic ratios),
hence allowing fast and accurate vulnerability analysis.
Comet is used as a testbed to characterize several fault-
mitigation techniques at different core locations and gran-
ularity levels.

« Building a non-volatile processor. The cycle accurate and
flexible nature of the Comet simulator easily allows the
creation of tracing capabilities and the implementation
of uncore peripherals. In the context of normally-off
or intermittently-powered computing systems, memory
backups need to be precisely scheduled to avoid data loss
without having an important impact on power consump-
tion. Based on the memory access traces provided by
Comet, the estimation of several characteristics, e.g., the
traffic generated by cache misses and fetch operations,
is made easier. From these traces, an accelerator for the
management of the backup into non-volatile memory can
be rapidly designed and simulated.

o The Hybrid-DBT project also made extensive use of HLS
based processors [21]. Hybrid-DBT is a system based
on Dynamic Binary Translation (DBT), where RISC-V
binaries are executed on a VLIW processor. Thanks to
a DBT layer, RISC-V binaries are translated into the
VLIW explicitly parallel ISA, before being executed.
The Hybrid-DBT system is composed of two different
types of cores: a small in-order core that translates and
optimizes RISC-V binaries and a wider VLIW core that
is used to execute the translated binaries. While Comet
is used as the DBT processor, the VLIW core is also
synthesized using HLS. The same principles are used
to design the VLIW: the pipeline is explicitly described
in the simulator. However, the VLIW is less complex
as it does not use any stall or forward mechanisms.
As the whole system is built around C++ models, it is
straightforward to build a C++ simulator of the Hybrid-
DBT system.

B. Designing a Processor with HLS has Some Limitations

If describing processors using HLS has several advantages
it also has some drawbacks, they are mainly introduced
because HLS tools are not designed to generate circuits from
control-flow dominated specifications. As explained in Section
II-A, HLS tools are not capable of generating an efficient
pipeline from an ISS-like description of the core, and do not
generate hardware below three cycles per instructions. This
limitation is due to inter-loop dependencies on the register
file and the PC value. In order to get around this limitation,
Comet is synthesized from an explicitly-pipelined simulator
specification. This type of simulators can be complex to read
and write and over-constrain the final design. An ideal solution
would be to let the HLS tool generate the pipeline, taking
into account the targeted operating frequency and adjusting
the pipeline depth accordingly. If the user wants the design to
operate at low frequencies, the HLS tool could generate fewer

pipeline stages and improve the number of cycles needed to
execute a single instruction.

In a hand-made core, pipelining related dependencies are re-
moved using simple but clever mechanisms: stall and forward
mechanisms remove the inter-loop dependency on the register
file; speculation and pipeline flush mechanisms remove the
dependency on the next PC value. As future work, we plan
to generalize those mechanisms and work on source-to-source
transformations which automatically insert those mechanisms
at the C++ level. With these dependencies removed, the HLS
tool should be able to pipeline the ISS with an initiation
interval of one.

It is also worth noting that standard ASIC fixing techniques,
like metal and gate fixes, are hardly applicable to HLS-based
designs. HLS tools are not able to ingest a modified gate-
level netlist and to reflect the changes back to a C/C++ based
representation. It is also hard to tell the HLS compiler to
make provisions of cells to create sewing kits as the timing
and behavioral information of the kits need to be explicit. If
this could be an issue when designing processor chips, it is
however a general limitation of any HLS design.

VI. CONCLUSION

The work done around Comet highlights the benefits of
using HLS to develop CPU cores since it significantly re-
duces development and debugging time. Moreover, this also
provides a cycle-accurate and bit-accurate simulator which is,
by construction, equivalent to the hardware core. This work
demonstrates that HLS tools are mature enough to handle
complex, control-dominated code such as pipelined cores.
The resulting hardware presents a similar area and operating
frequency to HDL written cores.

However, we also observed some limitations with state-
of-the-art HLS tools. Indeed, we had to explicitly describe
the organization of the pipeline, forwarding logic as well as
the multi-cycle operators integration mechanics. We believe
that this kind of optimizations could be done automatically
by source-to-source transformations. As a future work on this
project, we plan to develop more complex micro-architectures
(ISA extensions, interrupt controller for OS support, out-of-
order processor, shared-memory multiprocessor) to evaluate
how far the limits of HLS can be pushed.

Comet is fully open-source and can be found at https://
gitlab.inria.fr/srokicki/Comet.

ACKNOWLEDGEMENTS

The authors thank Valentin Egloff, Edwin Mascarenhas,
Lauric Desauw and Gurav Datta for their technical involve-
ment and their contributions in the Comet project. This work
was partly funded by the Rapid-DGA Flodam project.

[1]

[2]
[3]
[4]

[5]
[6]
[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

2018.

REFERENCES

E. Martin, O. Sentieys, H. Dubois, and J. L. Philippe, “Gaut: An archi-
tectural synthesis tool for dedicated signal processors,” in Proceedings
of European Design Automation Conference (EURO-DAC), pp. 14-19,
Sep. 1993.

G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, vol. 26, no. 4, pp. 18-25, 2009.
M. Fingeroff, High-Level Synthesis Blue Book. Xlibris Corporation,
2010.

T. Bollaert, “Catapult Synthesis: A Practical Introduction to Interactive
C Synthesis,” in High-Level Synthesis: From Algorithm to Digital Circuit
(P. Coussy and A. Morawiec, eds.), pp. 29-52, Dordrecht: Springer
Netherlands, 2008.

“Catapult C synthesis.” https://www.mentor.com/hls-Ip/catapult-high-
level-synthesis, 2008. Mentor Graphics.

T. M. Feist, “Vivado Design Suite,” 2012.

P. Kollig and B. M. Al-Hashimi, “Simultaneous scheduling, allocation
and binding in high level synthesis,” Electronics Letters, vol. 33,
pp. 1516-1518, Aug. 1997.

E. Rohou, B. N. Swamy, and A. Seznec, “Branch Prediction and the
Performance of Interpreters: Don’T Trust Folklore,” in Proceedings of
the 13th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO), pp. 103-114, IEEE Computer Society,
2015.

J. Rahmeh, “Western Digital’s Open Source RISC-V SweRV Instruction
Set Simulator.” https://github.com/westerndigitalcorporation/swerv-ISS.
A. Waterman and Y. Lee, “Spike, a RISC-V ISA Simulator.”
https://github.com/riscv/riscv-isa-sim.

N. Moreano, E. Borin, C. de Souza, and G. Araujo, “Efficient datapath
merging for partially reconfigurable architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 7, pp. 969-980, 2005.

K. Asanovi¢ et al., “The Rocket Chip Generator,” Tech. Rep.
UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, 2016.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovi¢, “Chisel: Constructing Hardware in
a Scala Embedded Language,” in Proceedings of the IEEE/ACM 49th
Annual Design Automation Conference (DAC), (New York, NY, USA),
pp. 1216-1225, 2012.

S. Rokicki, J. Paturel, D. Pala, E. Mascarenhas, V. Egloff, and O. Sen-
tieys, “Comet: A pipelined RISC-V Processor generated with HLS.”
https://gitlab.inria.fr/srokicki/Comet.

C. Wolf., “PicoRV32: A Size-Optimized RISC-V CPU.” https://github.
com/cliffordwolf/picorv32.

W. Snyder, “Verilator and systemperl,” in North American SystemC
Users’ Group, Design Automation Conference, 2004.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1-7, 2011.

F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, (Berkeley, CA, USA), p. 41, USENIX Associ-
ation, 2005.

T. Ahmed, N. Sakamoto, J. Anderson, and Y. Hara-Azumi,
“Synthesizable-from-C Embedded Processor Based on MIPS-ISA and
OISC,” in Proceedings of the IEEE 13th International Conference on
Embedded and Ubiquitous Computing, pp. 114-123, Oct 2015.

S. Skalicky, T. Ananthanarayana, S. Lopez, and M. Lukowiak, “De-
signing customized isa processors using high level synthesis,” in In-
ternational Conference on ReConFigurable Computing and FPGAs
(ReConFig), pp. 1-6, Dec 2015.

S. Rokicki, E. Rohou, and S. Derrien, “Hybrid-DBT: Hardware/Software
Dynamic Binary Translation Targeting VLIW,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1-14,

