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Abstract

Predation is often difficult to observe or quantify for species that are rare, very small, aquatic or nocturnal. The
assessment of such species’ diet can be conducted using molecular methods that target prey DNA remaining in
predators’ guts and faeces. These techniques do not require high taxonomic expertise, are applicable to soft-bodied
prey and allow for identification at the species level. However, for generalist predators, the presence of mixed prey
DNA in guts and faeces can be a major impediment as it requires development of specific primers for each potential
prey species for standard (Sanger) sequencing. Therefore, next generation sequencing methods have recently been
applied to such situations. In this study, we used 454-pyrosequencing to analyse the diet of Powelliphanta augusta, a
carnivorous landsnail endemic to New Zealand and critically endangered after most of its natural habitat has been
lost to opencast mining. This species was suspected to feed mainly on earthworms. Although earthworm tissue was
not detectable in snail faeces, earthworm DNA was still present in sufficient quantity to conduct molecular analyses.
Based on faecal samples collected from 46 landsnails, our analysis provided a complete map of the earthworm-
based diet of P. augusta. Predated species appear to be earthworms that live in the leaf litter or earthworms that
come to the soil surface at night to feed on the leaf litter. This indicates that P. augusta may not be selective and
probably predates any earthworm encountered in the leaf litter. These findings are crucial for selecting future
translocation areas for this highly endangered species. The molecular diet analysis protocol used here is particularly
appropriate to study the diet of generalist predators that feed on liquid or soft-bodied prey. Because it is non-harmful
and non-disturbing for the studied animals, it is also applicable to any species of conservation interest.
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Introduction

Molecular analysis of animal diets
The study of animal diets is of major importance in

conservation biology and in biological control of pests (e.g.
[1–6]). The classical approach to diet analysis often relies on
the morphological examination of gut content or faeces.
Remains such as plant leaves and seeds, insect cuticle,
mammalian hairs and teeth can be retrieved and identified to
species or higher taxa based on their morphology. However,
this method often lacks precision at the species level
particularly for predators that feed on soft-bodied prey such as
molluscs or earthworms and predators that masticate their prey

thoroughly such as bats [7]. It is also not applicable to species
that feed on liquid (e.g. Hemiptera, spiders etc.).

Molecular techniques targeting prey DNA remaining in gut or
faeces of predators [8] can be a useful alternative to
morphological methods because (i) it allows identification at the
species level providing that those species have been
sequenced before, (ii) it is applicable to soft-bodied prey, and
(iii) it is applicable to liquid feeders. These techniques are
based on the use of polymerase chain reactions (PCR) on prey
DNA remaining in predators’ guts or faeces.

Therefore, molecular methods have been recently applied to
study the diet of various species for which feeding is difficult to
observe or quantify. These include species that are very small
[9], aquatic [10] nocturnal [7] or elusive [11].
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One important limitation of these methods is the degradation
of prey DNA through digestion. This leads to mainly small DNA
fragments surviving digestion, so that recently eaten prey (in
gut samples) are easier to detect than are prey eaten earlier (in
faeces). However, in the case of endangered predator species
it is not desirable to sacrifice individuals to study their diet.
Therefore, from a conservation perspective, gut content
samples can only be sourced from fresh, accidentally killed,
individuals [e.g. [12]] while faecal samples can be much easier
to obtain [e.g. [13]].

Faecal molecular analyses
Despite its easy collection, the analysis of prey DNA from

predator faeces faces several technical challenges [14,15].
(1) Because DNA is degraded during digestion, little prey

DNA can be retrieved from the faeces and only small
fragments of it remain [16,17]. Therefore, for optimal efficiency,
the PCR primers must target a short DNA fragment. Reliable
PCR results from digested DNA have been obtained using
fragments of less than 300 base pairs [18–22]. Furthermore,
mitochondrial and ribosomal DNA, are more likely to be
retrieved than nuclear DNA after digestion due to high copy
number per cell [8].

(2) Faeces may contain a mix of DNA from different prey
species, the predator itself, gut bacteria, parasites and
accidentally swallowed items. Therefore identification of the
predated species requires specific primers [e.g. [8]]. For
generalist predators, this method is very demanding, as
specific primers need to be designed and tested for each
potential prey species [23]. It follows that DNA of unsuspected
prey would remain unnoticed. Group-specific primers can be
used to focus on a particular group of closely related species.
However, when DNA from several species of prey is present in
one faecal sample, group-specific primers and conventional
Sanger sequencing are not compatible [e.g. [15]] as the latter
requires there to be thousands of copies of the same DNA
fragment to produce a consensus sequence.

(3) As a consequence, once prey DNA has been amplified
from predator faeces, post-PCR processing such as high-
resolution melting (HRM) [e.g. [24]], single-strand
conformational polymorphism (SSCP) [25], restriction fragment
length polymorphism (RFLP) [e.g. [26]], denaturing gradient gel
electrophoresis (DGGE) (e.g. [27]), or subcloning (e.g. [16,28])
is required to separate DNA from different prey species.
Identification of predated species also requires prior
establishment of the behaviour of each of the potential species’
DNA in the chosen post-PCR process. This can be time-
consuming and requires much laboratory work, which
increases the risk of errors and becomes expensive if a large
number of samples need to be analysed.

Next-generation sequencing (NGS) technologies such as
454-pyrosequencing offer a much simpler alternative by
detecting and sequencing many thousands of DNA fragments
simultaneously from mixed samples [29–31]. Pyrosequencing
has been used largely for whole genome sequencing and the
sequencing of environmental DNA samples [31,32]. Recently it
has been successfully applied to diet analysis both under
controlled feeding conditions [33] and for wild animals [13].

In this study we used 454-pyrosequencing to investigate the
earthworm-based diet of Powelliphanta augusta Walker
Trewick & Barker [34] (Mollusca: Pulmonata: Rhytididae), a
highly endangered species of land snail endemic to New
Zealand [35]. The original habitat of P. augusta is Mount
Augustus on the western scarp of the Stockton Plateau (West
Coast of New Zealand’s South Island) most of which was lost
to open-cast coal mining at the Stockton mine in 2007.
Following a decision from the environmental court of New
Zealand, a systematic collection campaign was launched in
2006 by the mining company Solid Energy New Zealand
Limited in conjunction with the New Zealand Department of
Conservation to conserve the species and allow the mining
operations to continue. Hand-collected individuals (6140 snails
of various age and 1116 eggs) were either relocated to
adjacent undisturbed areas outside the planned mine footprint
or kept and cultured in captivity for re-introduction once the
original site has been rehabilitated after coal extraction (c. 10
years). Although previous studies have shown that P. augusta
almost exclusively feeds on earthworms [15], the identity of the
predated species as well as their relative contributions remains
unknown. This study aims at providing a detailed analysis of
the snail’s diet to inform the conservation programme and
ensure long-term survival of relocated and captive populations.

Materials and Methods

Ethics statement
P. augusta snails collected in the field were placed in

individual clean plastic containers for 48 hours in appropriate
moisture and temperature conditions. Only the faecal strings
produced during that time were retained for DNA analysis.
Faeces were naturally excreted. Snails were returned to the
wild, unharmed, after the two day holding period.

Animal handling and sampling methods were conducted
according to relevant national and international guidelines. All
necessary permits were obtained from the New Zealand
Department of Conservation (permit numbers: WC-19030-FAU
and WC-25283-FAU). These permits were issued under
section 53 of the Wildlife Act 1953.

Figure 1.  Modified primer used for PCR amplification prior to 454-pyrosequencing.  Pyrosequencing fusion primers were as
recommended by the manufacturer (Roche), molecular tags were as recommended by Parameswaran et al. (2007) [45] and New
Zealand endemic earthworm group-specific primers were as described in Boyer et al. (2011) [15].
doi: 10.1371/journal.pone.0075962.g001
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Land snail faecal samples
Molecular analyses were conducted on 46 snail faecal

strings obtained from 46 different individuals collected from the
field in November 2006 and May 2007. Because earthworms’
soft bodies leave no recognisable tissue that could be analysed
individually after digestion by the snails [15], DNA extractions
were performed on a bulk sample of each snail faecal string.
The Qiagen DNeasy® blood and tissue kit was used to extract
DNA from snail faeces. Snail diet was compared in relation to
snail age, with the aim of detecting potential ontogenic shifts.
Snail age was estimated by the maximum diameter of their
shell; four categories were distinguished: hatchlings < 13 mm;
juveniles < 20 mm; sub-adults < 32 mm; and adults ≥ 32 mm.

Earthworm DNA library, mini-barcode selection and
molecular tags

Previous morphological and molecular analysis of faecal
samples revealed that the diet of P. augusta is mainly based on
endemic New Zealand earthworms (Oligochaeta:
Acanthodrilidae, Megascolecidae) [15]. An inventory of
earthworms on the Stockton plateau was made from 2008 to
2010 and involved the collection of more than 1,500 individuals
[36] from the remainder of the original range of P. augusta as
well as similar habitat in surrounding areas [37]. Based on this
inventory, a DNA library for all potentially predated earthworm
species was built using DNA sequences from 139 earthworm
specimens, selected to maximize taxonomic representation.

The mitochondrial 16S rDNA gene was chosen for species
delineation, as this molecular marker is suitable for earthworm
taxonomy, both at genus and species level [38,39].

The obtained DNA library included 15 clades separated by
genetic differences greater than 10%. Based on this
divergence, those clades were recognised as different species
[36]. Most of these species are yet to be described; however,
four of them have been identified based on previous taxonomic
descriptions [40,41]. These four are: Deinodrilus gorgon
Blakemore (referred to as species 1 in this study);
Eudinodriloides forsteri Lee (referred to as species 3 in this
study); Octochaetus kenleei Blakemore (referred to as species
7 in this study); and Maoridrilus felix Blakemore (referred to as
species 9 in this study).

The sliding window function available in the R package
SPIDER (Species Identity and Evolution in R) [42] was used to
determine the shortest DNA fragment or ‘mini-barcode’ that
displayed enough variability to accurately identify all earthworm
species occurring in the snails’ geographic range [43]. The
selected mini-barcode was a 134 bp fragment starting at
position 11922 of the published Lumbricus terrestris Linnaeus
mitochondrial genome sequence [44]. Group-specific primers
designed to amplify this mini-barcode in New Zealand endemic
earthworms [43] were: primer A (nz worm 16S int F) 5′ -
AATTMGGTTGGGGCGACSHW-3′ ; primer B (nz worm 16S int
R) 5′-AACATCGAGGTGCCAAWCCC-3. These were modified
for 454-pyrosequencing with fusion primers added at both ends
according to the manufacturer’s recommendation for the Roche
Genome Sequencer FLX System and molecular identifiers
(MID) of 10 base pairs [45] included between the fusion
primers and the group specific primers (Figure 1). The MID

ensure that the origin of each amplicon could be traced, i.e.,
which snail faecal string they were derived from, thus allowing
the analysis of individual snail diet and comparison between
snail age classes. Statistical analyses (ANOVA, permutational
multivariate analysis of variance and F-test) were performed in
R [46] using the packages stats and vegan.

Nested PCR protocol
To optimise the amplification of earthworm DNA from snail

faeces, a nested PCR approach was used. This consisted of a
first PCR using a pair of universal invertebrate primers (LR-
J-12887 and LR-N-13398 [47]), which amplify a ~500 base pair
fragment of the 16S mitochondrial gene, followed by a 10x
dilution of the PCR products and a second (nested) PCR using
the modified group-specific primers described above (Figure 1),
which amplify a 134 base pair fragment. Each PCR product
contained a unique molecular tag corresponding to the land
snail faecal string from which it came.

For both PCRs, the 25µl reactions contained 5µl Qiagen Q
solution, 2.5µl 10X buffer (Invitrogen), 2.5µl dNTPs [2.5mM
each], 1µl MgCl2 [25mM], 1µl Bovine Serum Albumin [10mg/
ml], 0.5µl forward and 0.5µl reverse primers [10µM], 0.3µl
Invitrogen Taq DNA polymerase [5unit/µl], 1µl DNA template
and 10.7µl water. The thermocycler protocol comprised a 4 min
initial denaturation (at 94°C) followed by 40 cycles of 1 min
denaturation (at 94°C), 1 min annealing (at 51°C for universal
primers and 63°C for group specific primers) and 1.5 min
elongation (at 72°C). Annealing temperature was elevated to
63°C to enhance group-specific primer specificity during the
second (nested) PCR. Filter tips and negative controls were
used throughout the nested PCR to control for false positives
and avoid contamination.

PCR products were processed through electrophoresis on a
1.5% agarose gel, followed by a gel extraction of the banding
patterns and DNA purification (Qiagen Qiaquick© PCR gel
extraction kit). All PCR products were diluted to the same
concentration of 0.5 ng µl-1 to provide an even contribution from
each individual snail, should it be a big adult or a very small
juvenile. PCR products were pooled to make a unique 0.5 ng
µl-1 DNA sample following the manufacturer’s recommendation
for the Roche Genome Sequencer FLX System.

BLAST analyses
Short DNA sequences, or ‘reads’, obtained by 454-

pyrosequencing were compared to our earthworm DNA library
(containing 15 species) using the BLAST programme [48]. Only
reads of expected length and containing at least one complete
primer were kept. BLAST ‘hits’ were used to assign reads to
one of the reference earthworm species and statistical
significance was measured by the E-value provided by the
BLAST programme. The E-value describes the random
background ‘noise’ that exists for matches between sequences,
with high significance reached for E-value < 1e-5. To assure
conservative identification, reads were assigned to one
reference species only when they had either a single hit with E-
value < 1e-5 or multiple hits with the second best hit being
clearly much worse than the top hit (i.e., top hit E-value /
second hit E-value < 1e-5). Reads that did not fulfil these
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conditions were compared to the Genbank database using the
BLASTn algorithm to confirm that they corresponded to
earthworm DNA. If so, they were considered additional species
(i.e., not present in the DNA library). The quality of DNA reads
was measured using Phred [49] and only sequences with
Phred score > 30 (i.e. base call accuracy > 99.9%) were used.
Also, amplicons with unexpected lengths (<120 bp or >160 bp),
amplicons lacking a complete primer and amplicons detected
less than 5 times in total were considered as potential chimeric
sequences or PCR artefacts and were discarded. The
complete dataset has been deposited in a NCBI Bioproject
(http://www.ncbi.nlm.nih.gov/bioproject) under the accession
number PRJNA210725.

Results

The pyrosequencing analysis revealed the presence of
earthworm DNA in 35 of the 46 snail faecal samples. The
proportion of samples where earthworm DNA was not detected
was similar across age classes (15 to 22%) except for
hatchlings where two samples out of three were negative. A
total of 8,742 DNA fragments were successfully amplified and
sequenced from the 35 faecal samples that contained
earthworm DNA. BLAST analysis of all good-quality amplicons
revealed that 7,120 (83%) of them matched with one of the

species in the earthworm DNA library. Thirteen species from
the library were detected while two of them (species 7 and 10)
were absent from the faecal samples. The remaining amplicons
(17%) corresponded to three additional taxa that were not
present in the original earthworm library. Because divergence
from the closest library species was greater than 7.5%, these
taxa were considered as three additional species and noted
species 16, species 17 and species 18 thereafter. The
breakdown of amplicons per species of earthworm shows that
one species in particular (species 1, D. gorgon) was most
frequent in the sequence data, with 40% of all amplified
amplicons corresponding to that species (Figure 2). Most
faecal samples contained DNA from several species of
earthworms (Figure 3). The mean number of earthworm
species present in one snail faecal string was 3.4 (± 0.4). No
differences were observed in relation to snails’ age class for
the number of species predated (ANOVA, F4,30 = 1.6843 p =
0.1796) or which species had been consumed (F-test, F1,9 =
0.790, p = 0.752). Species 1 (D. gorgon) and species 12 were
predated by most snails, with their DNA present in 94% and
86% of the faecal strings respectively (Figure 4). Other highly-
predated species were species 5 and species 9 (M. felix) found
in 63%, 57% of the faecal strings, and to a lesser extent
species 15 and 11 found in 51% and 43% of the faecal strings.
Species 2, 3 (E. forsteri), 4, 8, 17 and 18 were occasionally

Figure 2.  Breakdown of predated earthworm species.  Proportion of the 8,712 good-quality amplicons from each of 16 different
earthworm species based on amplicons obtained after 454-pyrosequencing on 46 snail faecal strings.
doi: 10.1371/journal.pone.0075962.g002
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predated (present in 6-20% of the faecal samples); species 6,
13, 14, and 16 were rarely predated (typically found in one
faecal sample only) and species 7 (O. kenleei) and species 10
were not predated by any of the snails (Figure 4).

Discussion

Diet composition of P. augusta
The molecular diet analysis protocol used here allowed the

amplification, sequencing and identification of 16 different
species of earthworms comprising the diet of 35 P. augusta
snails. Based on these samples, no ontogenetic shift was
observed in the diet of the snail, however, sample size was
very limited for the youngest age class. This mollusc appears
to be able to feed on a wide variety of earthworm species since
all but two of the species inventoried in their distribution area
were detected in their faeces. This result partly supports the
current use of the exotic earthworm Eisenia fetida Bouché [50]
as a food source for the captive population of P. augusta (pers.
obs.). An important limitation of molecular diet analysis is that,
due to differences in prey size, it is difficult to quantify the
relative contribution of each prey species in the diet [51]. The
relative amounts of each amplicon do not necessarily provide
an accurate quantification of the contribution of each predated
species to the snails’ overall diet. Rather they merely reflect the
amount of prey DNA, which can be influenced by the size of
the predated earthworm (large species are likely to produce
more amplicons), the time since consumption (earthworms
eaten earlier are likely to produce fewer amplicons) and
possible molecular bias in favor of certain species (i.e., some
amplicons may be more prone to amplification than others).
Quantitative PCR (qPCR) has been used to estimate the
relative quantity of each prey species in faecal samples but this

requires careful validation with strictly controlled feeding trials
[51], which are often not achievable for the species of interest.
As an alternative to qPCR, the use of molecular tags [45]
allowed an estimation of the proportion of faeces containing
DNA from a particular species of earthworm, which is a
surrogate for the proportion of individual snails predating that
species. This provided a good estimate of the importance of
each prey species in the diet of these snails as a whole, and
showed that snails of all ages had comparable diets, with
certain species of earthworms consistently predated more than
others. In a recent study, Murray et al. [52] indicated that 454-
pyrosequencing provides a very similar estimation of prey
quantities when compared to qPCR. However in our study, the
proportion of amplicons obtained from 454-pyrosequencing
appears as a poor estimate of the diet. For example, species
17, which was the fourth most important source of amplicons
over all faecal samples (Figure 2), was only predated by two
individual snails (Figure 4).

Because little is known about these earthworms, it is difficult
to assess why certain species are predated more than others.
As suggested in a previous paper these snails may
indiscriminately eat earthworms as they are found rather than
specifically foraging for particular species [15]. In this case, the
main drivers of earthworm predation are likely to be the relative
abundance of each earthworm species, and their ecological
guild, i.e. position in the soil profile. Typically, epigeic
earthworm species (living in the leaf litter) and anecic species
(living in deep burrows, but foraging in the litter at night) would
be more likely to be predated than would endogeic ones (living
almost exclusively in the soil) [50]. A quantitative assessment
of earthworm populations would allow the comparison between
earthworm abundance and predation. However, as mentioned
by other authors, such assessment is difficult to produce
because of biases in earthworm sampling methods, difficulty in

Figure 3.  Individual diet composition for 46 Powelliphanta augusta snails.  Percentage of amplicons detected for each
earthworm species in each faecal string (n=46).
doi: 10.1371/journal.pone.0075962.g003
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identifying juveniles and patchy distribution of earthworms in
heterogeneous habitats [53]. In our case, it was made even
more difficult because most earthworm species were
undescribed and more importantly most of the snail original
habitat had been lost to coal mining. There is therefore little
information available about the abundance of these earthworm
species; however, some ecological data exist for four species
included in the inventory. O. kenleei (species 7) was described
as endogeic [41] and was not detected in any of the analysed
snail faecal samples. D. gorgon (species 1) and M. felix
(species 9) were both described as anecic [41] and these were
found in 94% and 51% of the faecal samples, respectively. E.
forsteri, described as epigeic [40], was found in 6% of the
faecal samples. This seems to support the hypothesis that
snails forage randomly through the litter and predate any
earthworm they encounter.

Application of NGS to diet analyses
Next-generation sequencing provides a good compromise in

terms of precision in species identification, information obtained
(DNA sequences), and prompt delivery of results. In addition,
many samples can be analysed simultaneously for little
additional cost. The use of molecular tags allows mixing of
samples from different origins in a single reaction [45]. With
decreasing costs, NGS is destined to become a standard tool
for the study of endangered predatory species that are difficult
to observe directly. However, the diet analysis protocol used
here demands a precise framework to be applied:

(1) A comprehensive inventory of the potential prey species
is required, at least at the level of higher taxonomic ranks, to

design appropriate group-specific primers. Unexpected prey
can be detected and identified a posteriori if the group-specific
primers are general enough to amplify their DNA.

(2) Because many NGS systems are currently limited in the
length of the fragments they can process, amplicons must be
short (often <250bp). Although, on-going improvement of NGS
technologies (e.g. 454 FLX+, Ion PGM) as well as the
development of new sequencing platforms (e.g. PacBios RS)
may rapidly overcome this size limitation [54], short amplicons
will remain a constraint for degraded DNA.

(3) The choice of a small target fragment or “mini-barcode” is
crucial. It must be short enough for compatibility with NGS and
degraded DNA, but informative enough to ensure accurate
species identification. We recommend using objective tools
such as the sliding window function in the R package SPIDER
[42] to optimise identification performance with short
amplicons.

Conclusion

Our study reveals that P. augusta can predate a broad range
of earthworm species and probably feeds on any species of
earthworm that is available to them. The variety of prey reflects
the diversity of earthworm species present in the Stockton
plateau. Such non-specificity has important implications for the
conservation management of P. augusta. The choice of new
relocation areas, the feeding protocol for captive snails, and the
ecological restoration of their original habitat are simplified
because a range of earthworm communities seems to be
suitable for providing prey to snails in all these conditions. More
generally, the development of such methods has major

Figure 4.  Frequency of occurrence of each species of earthworm in the diet of P. augusta.  Proportion of faecal strings
(n=35) that contained DNA from each earthworm species.
doi: 10.1371/journal.pone.0075962.g004
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implications for the conservation of endangered invertebrate
and vertebrate species whose dietary requirements are
unknown. This represents a significant improvement compared
to traditional methods used in the field of molecular analyses of
predation [14].
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