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Abstract

The main objective of this contribution is the theoretical modelling of magnetisable materials that

exhibit viscoelastic properties. The current state of the art in the mathematical modelling of nonlinear

magneto-mechanics in deformable media can be easily integrated within the unified framework of

continuum thermodynamics that is crucial in setting the convenient forms for the constitutive laws

and evolution equations. Due to the soft nature of the materials we have in mind, the finite strain

range is a priori adopted and, in this first approach, only isotropic materials are considered. We

adopt the nowadays well-accepted multiplicative split of the deformation gradient which, moreover,

gives rise to an intermediate configuration. Herein, the novelty resides in the fact that the magnetic

field vectors are transported onto the above mentioned intermediate configuration and, therefore,

can be implicitly decomposed. The proposed formulation is based on the magnetic induction as

main independent variable for the magnetic part of the problem. An alternative formulation based

on the magnetic field as main independent variable can easily be deduced, but this latter will not be

considered in this paper for the sake of clarity. A very simple model example that agrees with the

laws of thermodynamics is proposed for the purpose of demonstration to study some phenomena

qualitatively.

Keywords

Magneto-active soft materials, Large deformation, Multiplicative viscoelasticity, Continuum

thermodynamics
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1 Introduction

Magneto-active polymers (MAPs) belong to the very important class of emerging new materials that

deform under magnetic stimuli. They are mostly composites of soft polymer matrix impregnated with

magnetically permeable particles, typically iron particles in micro- or nano-meter size. In general, the

response to magnetic fields can be devided into two categories based on the property of the matrix part of

the material: they can give large and prompt deformation, or they can change their mechanical properties

with moderate straining. The two features have received considerable attention in recent years due to

their potential applications including, for instance, sensors, actuators, and medicine, see for example1–7

among many others.

In parallel, the mathematical modelling of the coupling of electromagnetic fields in deformable

materials has also been an area of active research, see for example8–16. Fully coupled nonlinear field

theories have been developed with constitutive formulations based on augmented free energy functions.

In particular, it has been shown that any one of the magnetic induction, magnetic field, or magnetization

vectors can be used as independent variable, the other two being obtained through constitutive relations,

see17 for details about this topic. The relevant equations are based on the pioneering works of18–20 among

others.

This work aims at developing a continuum field theory for the behaviour of magnetically sensitive

materials that experience viscoelasticity, see for example21,22. Indeed, the response to magnetic stimuli

can in general not be instantaneous for all MAPs as that has been established experimentally, e.g. see

the recent works in23,24. The finite strain range is a priori assumed due to the compliant nature of

such materials that, in general, respond with large deformations. Herein, we adopt the multiplicative

decomposition of the deformation gradient into an elastically relaxing part and a viscous part as nowadays

widely used in the literature, see for example25–30. This gives rise to an intermediate configuration on

which the magnetic field vectors can be transported, and implicitly decomposed. Very few models exist

in the literature that couple the magnetic field and viscoelasticity. Notice that recently in31, the magneto-

viscoelasticity has also been formulated for incompressible materials based on an a priori decomposition

of the magnetic induction vector, and all the continuum thermodynamic developments therein follow by
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Nedjar 3

starting from that choice. On the other hand, in32, the authors did not take into account the magnetization

neither for the instantaneous (equilibrium) nor for the elastically relaxed (non-equilibrium) parts of the

response, reducing the magneto-viscoelasticy to its simplest form. However, the field theory developed

in this paper fully couples the magnetic fields with finite viscoelasticity for compressible as well as for

incompressible magnetizable materials in the spirit of an analogous development made in33 for finite

strain electro-viscoelastic soft materials.

The coupling with magnetostatics is integrated within the framework of continuum thermodynamics

for the correct setting of the whole set of constitutive laws together with the characterization of the

dissipative phenomena through evolution equations. Herein, only isotropic MAPs are considered. In the

formulation developed in this work, the magnetic induction vector is chosen to be the main independent

variable for the magnetic part of the problem and, consequently, we show that the magnetic field

becomes then implicitly decomposed additively into an equilibrium and a non-equilibrium parts. A simple

model example is detailed for demonstrative purposes to highlight some phenomena qualitatively with

parametric studies.

An outline of the remainder of this paper is as follows. In Section 2, we recall the governing equations

of mechanical balance together with the specialized versions of Maxwell’s equations in magnetostatics.

Both of the equivalent spatial and material descriptions are considered. Then, in Section 3, the magneto-

viscoelastic coupling is developed in detail and studied in Section 4 with parametric studies. Finally,

conclusions and perspectives are drawn in Section 5.

Notations: Throughout the paper, bold face characters refer to second- or fourth-order tensorial

quantities. In particular, 1 denotes the second-order identity tensor with components δij (δij being

the Kronecker delta), and I is the fourth-order unit tensor of components Iijkl =
1
2
(δikδjl + δilδjk).

The notation (�)T is used for the transpose operator and the double dot symbol ’:’ is used for double

tensor contraction, i.e. for any second-order tensors A and B, A :B = tr[ABT ] = AijBij where,

unless specified, summation on repeated indices is always assumed. The notation ⊗ stands for the

tensorial product. In components, one has (A⊗B)ijkl = AijBkl, and for any two vectors U and

V, (U⊗V)ij = UiVj . Herein, the double-striked characters will exclusively be used for vector fields

related to the magnetic part of the problem, e.g. b, B, h, M . . . . Finally, the dot notation will always

designate the material time derivative, i.e. ( �̇ ) ≡ d(�)/dt.

2 Basic equations

When undeformed, unstressed, and in the absence of magnetic fields, the magnetically sensitive body

occupies the reference configuration B0 with boundary ∂B0. We identify a material particle by its position

vector in the reference configuration, X ∈ B0, and trace its motion by its current position at time t in
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the spatial configuration Bt, x(X, t) ∈ Bt. The deformation gradient is as usual defined as F = ∇Xx,

where ∇X(�) is the material gradient operator with respect to the reference coordinates X . The Jacobian

of the transformation is given by the determinant J = detF , with the standard convention J > 0.

2.1 Magnetostatics equations

The materials we consider being electrically non-conducting, the fields in magnetostatics are governed

by the following specializations of Maxwell’s equations in the absence of distributed currents:

curlh = 0, divb = 0, in Bt, (1)

where h and b are respectively the magnetic field and magnetic induction vectors, both with respect to

the spatial configuration. Inside the material, they are related by the standard relation

b = µ0 (h+m) , (2)

where the field vector m is the spatial magnetization. The constant µ0 is the magnetic permeability

of vacuum. Note that in vacuo: b = µ0h. In (1), curl(�) and div(�) are respectively the rotational

and divergence operators with respect to x. They are denoted by Curl(�) and Div(�) in the material

configuration with respect to X . At the boundary of the body, in the absence of surface currents, the

magnetic field and the magnetic induction vectors must satisfy the continuity conditions:

n× JhK = 0, JbK.n = 0, on ∂Bt, (3)

where J(�)K = (�)outside − (�)inside is the jump across the boundary ∂Bt of unit normal n. Notice that the

continuity conditions (3) are also valid across a discontinuity within the body, see also34.

Pull-back to the reference configuration gives the Lagrangian counterparts of the above laws (1):

CurlH = 0, DivB = 0, in B0, (4)

for the Lagrangian-Eulerian interconnections

H = F T
h, B = JF−1

b, M = F T
m. (5)

With these relations, the material version of the standard relation (2) is given by

B = µ0JC
−1 (H+M) , (6)
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where C = F TF is the right Cauchy-Green tensor which, otherwise, is a strain measure for the

deformable solid. The counterpart of the continuity conditions (3), this time forH and B, are

N × JHK = 0, JBK.N = 0, on ∂B0, (7)

where N is the unit normal to the reference boundary ∂B0 that corresponds to n through Nanson’s

formula nda = JF−TNdA, where da and dA are area elements on ∂Bt and ∂B0, respectively.

2.2 Mechanical balance equations

In quasi-statics, the spatial form of the mechanical equilibrium equation together with the boundary

condition can take the form

divσ + fm + ρf = 0 in Bt,

σn = t on ∂Bt,
(8)

where σ is the Cauchy stress tensor, ρ the current mass density, f the mechanical body force per unit

mass, and fm is the magnetic body force per unit current volume. The traction force t comprises both

the mechanical traction per unit area of the boundary ∂Bt, and an additional mechanical traction due

to the magnetic effects. Notice that due to the magnetization, the spatial stress tensor σ is in general

non-symmetric. Nevertheless, we adopt herein the nowadays well known structure where the stress is

augmented with terms arising from the magnetic body force, e.g. see17 for details. The balance equation

(8) is equivalently written as

div σ̃ + ρf = 0 in Bt,

Jσ̃Kn = 0 on ∂Bt,
(9)

in terms of the, this time symmetric, total Cauchy stress tensor σ̃ defined as, see for example10,12:

σ̃ = σ + µ−1
0

[
b⊗ b− 1

2
b.b1

]
+m.b1−m⊗ b, (10)

where the second-to-fourth terms on the right-hand side of (10) come from the magnetic body force,

here given by fm = (∇x b)
T
m, see for example8,20. Here and henceforth, the notation ∇x(�) refers to

the spatial gradient operator with respect to the coordinates x. The boundary condition (9)2 is here

equivalently written in the form of a jump condition.

Pull-back of the balance equation (9) to the reference configuration gives the following useful

Lagrangian form

Div P̃ + ρ0f = 0 in B0,

JP̃ KN = 0 on ∂B0,
(11)
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in terms of the total first Piola-Kirchhoff stress tensor P̃ = Jσ̃F−T and the reference density ρ0 = Jρ.

In particular for later use, the expression of P̃ deduced from (10) is given by

P̃ = P + µ−1
0 J−1

[
FB⊗B− 1

2
C :B⊗BF−T

]

+ M.BF−T − F−T
M⊗B,

(12)

where P = JσF−T and, among others, use has been made of the relations (5)2 and (5)3.

3 Continuum thermodynamics and constitutive laws

The above governing equations need to be supplemented with constitutive relations. For the magnetic part

of the problem, we have at our disposal the three magnetic field vectorsB,H,M, with the connection (6).

Any one of these can be used as the independent magnetic variable in the formulation of a constitutive law

together with the characterization of the viscoelastic dissipation. In this work, we consider a formulation

based on the use of the magnetic induction vector B that we detail herein under the assumption of

isothermal conditions. The balance of energy is written in the local form as, see8,10 for example,

ρė = div (σTv) + ρf .v + wm, (13)

where e is the specific internal energy, per unit mass, v is the spatial velocity, and wm is the magnetic

power given by wm = fm.v −m.ḃ. Using the mechanical balance (8), we get the reduced form

ρė = σ : ∇xv −m.ḃ, (14)

where the spatial velocity gradient ∇xv is related to the deformation gradient through the well known

kinematic formula ∇xv = Ḟ F−1.

The second law of thermodynamics postulates the positiveness of the entropy production. Denoting by

s the specific entropy per unit mass, we write ṡ ≥ 0 and, for isothermal processes, the dissipation D is

given by

D = ρT0ṡ ≥ 0, (15)

where T0 is the fixed absolute temperature.

Now defining the specific free energy function ψ̂ as ψ̂ = e− T0s, using this latter together with (14)

into (15) gives the classical form,

D = σF−T : Ḟ −m.ḃ− ρ
˙̂
ψ ≥ 0. (16)
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Notice that in magneto-elasticity with a free energy function based on the use of the Eulerian magnetic

induction as ψ̂(F ,b), this leads to the well-known constitutive equations,

σ = ρ
∂ψ̂

∂F
F T , m = −ρ∂ψ̂

∂b
,

for the Cauchy stress tensor and the magnetization vector. However, as the Lagrangian form is better

suited for the following thermodynamic developments, inequality (16) must be pull-back to the reference

configuration. Thus, we may regard the specific free energy function ψ̂, equivalently, as a function of F

and B, and we introduce the notation ψ for this purpose as

ψ(F ,B . . .) ≡ ψ̂(F , J−1FB . . .), (17)

where the dots mean further arguments that will eventually be introduced later on for the purpose of

viscoelastic modelling. Thereby, using the relations σF−T = J−1P , ρ = J−1ρ0 and

m.ḃ = J−1
M.Ḃ− J−1

M.BF−T : Ḟ + J−1F−T
M⊗B : Ḟ ,

where use has been made of (5)2 and (5)3 together with the well known kinematic relation J̇ = JF−T :

Ḟ , the inequality (16) becomes,

D =
(
P +M.BF−T − F−T

M⊗B
)
: Ḟ −M.Ḃ− ρ0ψ̇ ≥ 0. (18)

This latter can further be simplified by introducing the augmented free energy function Ω per unit

reference volume defined as, see for example11,

Ω(F ,B . . .) = ρ0ψ +
1

2
µ−1
0 J−1 C :B⊗B, (19)

which, replaced into (18), transforms this latter into the more convenient form

D = P̃ : Ḟ +H.Ḃ− Ω̇ ≥ 0, (20)

where use has been made of the definition (12) for the total first Piola-Kirchhoff stress tensor P̃ and

of the relation (6) for the Lagrangian magnetic induction vector B. Among others, observe that, in this

form, the conjugate character between H and B replaces the one between M and B in the former form

(18). For similarities, see also16 for developments in magneto-poromechanics.
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The equal sign in (20) takes place only for non-dissipative processes, i.e. magneto-elasticity. In this

case the thermodynamic equilibrium state is fully determined by the deformation gradient and the

magnetic induction. For a viscoelastic material, however, the free energy in a non-equilibrium state differs

from that in an equilibrium state. To distinguish between them, we introduce the equilibrium free energy

ψeq(F ,B) so that from (20) in the case of an equal sign we get by thermodynamic arguments, see35,

P̃eq =
∂Ωeq

∂F
, Heq =

∂Ωeq

∂B
, (21)

where P̃eq and Heq are the total first Piola-Kirchhoff stress tensor and the Lagrangian magnetic field

vector in an equilibrium state, and where Ωeq is the augmented volumetric free energy function at

thermodynamic equilibrium defined as, see (19),

Ωeq(F ,B) = ρ0ψeq(F ,B) +
1

2
µ−1
0 J−1 C :B⊗B. (22)

The simple structures of the constitutive formulas (21) are exactly those derived for magneto-elastic

modelling, see for example17,36.

3.1 Kinematic assumptions and constitutive laws

The viscoelastic response is here captured by means of the nowadays well-accepted multiplicative split

of the deformation gradient into an elastically relaxing part F e and a viscous part F v as illustrated in

Fig. 1, for instance, see29,30,37 among others:

F = F eF v. (23)

Now motivated by the decomposition of the energy in the purely mechanical theory, the non-

equilibrium free energy that we denote here by ψneq is the difference between the total free energy ψ

and that of an equilbrium state ψeq; ψ − ψeq ≡ ψneq. Herein, this latter is associated with the elastically

relaxing part of the deformation gradient F e. It can moreover depend on the magnetic induction which,

otherwise, is assumed to equilibrate much faster than deformation:

ψneq ≡ ψneq(F
e = FF v−1

,B = Jv−1

F v
B), (24)

whereB is the push-forward with F v of the Lagrangian magnetic induction vectorB to the intermediate

configuration, see the illustration on the sketch of Fig. 1. It is equivalently the pull-back with F e of the

spatial magnetic induction vector b. Here Jv = detF v and Je = detF e are the Jacobians of the viscous
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B,H,M

b,h,m

H = F v−T
H = F eT

h

M = F v−T
M = F eT

m

B = Jv−1
F v
B = J eF e−1

b

F

F e

F v

X

X

x

B0

Bt

1

Figure 1. Illustration of the multiplicative decomposition F = F
e
F

v and transport of the magnetic field

vectors on the intermediate configuration.

and the elastically relaxing parts of the deformation gradient. The precise forms of the above constitutive

functions ψeq and ψneq are dictated by invariance and material symmetry that will be discussed below.

With the additive structure of ψ, we choose for convenience to re-cast the augmented free energy Ω,

Eq. (19), into the following form

Ω = Ωeq + ρ0ψneq, (25)

where Ωeq is the augmented form already defined in (22). The constitutive equations are given by the

derivatives of Ω as,

P̃ =
∂Ω

∂F
= P̃eq + ρ0

∂ψneq

∂F e
F v−T

︸ ︷︷ ︸
Pneq

, H =
∂Ω

∂B
= Heq + Jv−1

F vT

ρ0
∂ψneq

∂B︸ ︷︷ ︸
Hneq

, (26)
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where P̃eq and Heq have been defined in (21). The remainder of the inequality (20) that governs the

evolution of the internal variable, here F v, becomes

D = ρ0
(
F eT ∂ψneq

∂F e
− ∂ψneq

∂B
⊗B+B.

∂ψneq

∂B
1
)
: lv ≥ 0, (27)

where lv = Ḟ vF v−1

is the left-rate of the viscous part of the deformation gradient, which is in general

non-symmetric.

As expected, the total stress tensor is additively split into a part that is in thermodynamic equilibrium,

herein written in the augmented form P̃eq, and an over-stress Pneq that is thermodynamically not in

equilibrium. For convenience, we adopt the same notation for the magnetic field vectorH; with subscript

notation (�)eq for the term derived from the part Ωeq of the augmented free energy, and subscript notation

(�)neq for the term derived from the part ρ0ψneq. This notation will henceforth be used for all the magnetic

fields. For instance, one has then

h = F−T
H = F−T ∂Ωeq

∂B︸ ︷︷ ︸
heq

+ Jv−1

F e−T

ρ0
∂ψneq

∂B︸ ︷︷ ︸
hneq

, (28)

for the spatial magnetic field vector, and

H = F v−T

H ≡ F eT
h = F v−T ∂Ωeq

∂B︸ ︷︷ ︸
Heq

+ Jv−1

ρ0
∂ψneq

∂B︸ ︷︷ ︸
Hneq

, (29)

when transported to the intermediate configuration.

Now for objectivity reasons, Ωeq depends on the deformation gradient F only through the right

Cauchy-Green tensor C, and for symmetry reasons, it depends on the magnetic induction vector B only

through the tensor product B⊗B. Likewise, the part ψneq depends on F e only through the elastically

relaxing right Cauchy-Green tensor Ce = F eTF e ≡ F v−T

CF v−1

, and on B only through the tensor

product B⊗B ≡ Jv−2

F v
B⊗BF vT

, both defined in the intermediate configuration, i.e.

Ω ≡ Ωeq(C,B⊗B) + ρ0ψneq(C
e,B⊗B). (30)
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The above stress constitutive relation (26)1 is then equivalently written as

S̃ ≡ F−1P̃ = 2
∂Ωeq

∂C︸ ︷︷ ︸
S̃eq

+F v−1

2ρ0
∂ψneq

∂Ce︸ ︷︷ ︸
Sneq

F v−T

︸ ︷︷ ︸
Sneq

, (31)

for the total second Piola-Kirchhoff-type, where Sneq = F vSneqF
vT

is the push-forward of its non-

equilibrium part Sneq to the intermediate configuration. The reduced dissipation (27) can alternatively be

written as

D =
(
CeSneq − Jv

Hneq ⊗B+ Jv
Hneq.B1

)
: sym

[
lv
]
≥ 0, (32)

where sym[ � ] is the symmetric part operator of a second-order tensor. In fact, we will show later on that

the above term between parentheses in (32) is indeed symmetric.

3.2 Characterization of the viscoelastic evolution

A local evolution equation must now be characterized such that the above inequality (32) is satisfied

for any admissible process. One way to do so is to rewrite this latter in the equivalent spatial form by

exploiting the kinematic relations

be = F eF eT ≡ FCv−1

F T , with Cv = F vT

F v, (33)

where be is the elastically relaxing left Cauchy-Green tensor and Cv is the viscous right Cauchy-Green

tensor. One obtains the following well-known relation:

sym
[
lv
]
= F e−1(

−1

2
£vb

e
)
F e−T

, (34)

where £vb
e = FĊv−1

F T is the Lie derivative of be, see for example38,39 for details. Then, replacing

(34) into (32) gives the following spatial version:

D =
(
τneq − Jhneq ⊗ b+ Jhneq.b1

)
be

−1

:
(
−1

2
£vb

e
)
≥ 0, (35)

where use has been made of the push-forward transformations τneq = F eSneqF
eT , Je

b = F e
B and

hneq = F e−T

Hneq, together with the kinematic relation J = JeJv.
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Among many possibilities, the following general form can be adopted for the evolution equation:

− 1

2
£vb

e = M :
((
τneq − Jhneq ⊗ b+ Jhneq.b1

)
be

−1)
, (36)

where the fourth-order mobility tensor M is positive definite so that the inequality (35), or equivalently

(32), is satisfied automatically. This form is indeed often used in practice, see for example26,40,41 for

similarities. In general, the mobility tensor may depend on various state variables. A possible physical

meaning of the evolution law (36) is that one type of polymer chains relaxes in time and dissipates

energy. This can be pictured by a dashpot in series with a spring. In the current state, the stress acting in

the spring drives the viscous deformation in the dashpot, here the viscous strain tensor Cv related to be

through (33)1. The key observation in this work is that the stress acting in the spring is herein coupled

with stresses emanating from the magnetic effects on the intermediate configuration if the magnetic

induction is accounted for in the expression of ψneq, see (24).

3.3 A modelling example

Being isotropic functions of their respective arguments, each part of the free energy function ψ depends

at most on a collection of six irreducible invariants. For the part related to the thermodynamic equilibrium

ψeq, and hence to Ωeq by (22), it depends on

I1 = C : 1, I2 = 1
2

(
I21 −C : C

)
, I3 = detC = J2,

I4 = B.B, I5 = C : B⊗B, and I6 = C2 : B⊗B,
(37)

where, for the double tensor contraction, we recall that we use the convention stated in the Notations’s

paragraph of the introductory Section 1, for example I5 = C : B⊗B = CKLBKBL = FiKFiLBKBL.

Likewise, the non-equilibrium part ψneq depends at most on

I1 = Ce : 1, I2 = 1
2

(
I
2

1 −Ce : Ce
)
, I3 = detCe = Je2 ,

I4 = B.B, I5 = Ce : B⊗B, and I6 = Ce2 : B⊗B,
(38)

see for example42 for details on the topic of invariance. The first three invariants in each set (37) and (38)

are classical in isotropic viscoelasticity. The other ones arise from the magneto-mechanics coupling in

the thermodynamically equilibrated as well as non-equilibrated states for the most general case.
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The following general forms for the parts Ωeq and ψneq can be adopted as a modelling example:

Ωeq = ρ0ψ
′
eq(I1, I2, I3) + c1 I4 + c2 I5 + c3 I6︸ ︷︷ ︸

magnetic coupling

+
1

2
µ−1
0 J−1C :B⊗B

︸ ︷︷ ︸
augmentation

,

ρ0ψneq = ρ0ψ
′
neq(I1, I2, I3) + c4 I4 + c5 I5 + c6 I6︸ ︷︷ ︸

magnetic coupling

,
(39)

where c1, c2, . . . , c6 are material parameters relative to the magnetic coupling. The first volumetric terms

ρ0ψ
′
eq and ρ0ψ

′
neq are related to the purely mechanical part. Furthermore, with the form (39)2, one can

easily check that the term between parentheses in (32) is symmetric.

Applying the above forms (39) to Eq. (31), we obtain the following relation for the total stress tensor

of the Kirchhoff-type τ̃ = F S̃F T ≡ Jσ̃:

τ̃ = τ ′
eq + τ ′

neq + 2c2J
2
b⊗b+ 2c3J

2
{
b⊗b b+ bb⊗b

}

+ 2c5J
e2
b⊗b+ 2c6J

e2
{
b⊗b be + be b⊗b

}

+ µ−1
0 J

{
b⊗b− 1

2
b.b1

}
,

(40)

where we have introduced for convenience the notations

τ ′
eq = 2ρ0F

∂ψ′
eq

∂C
F T , and τ ′

neq = 2ρ0F
e
∂ψ′

neq

∂Ce
F eT , (41)

for the purely mechanical parts. Here use has been made of the transformations (5)2 and Je
b = F e

B for

the spatial induction vector b, and b = FF T is the well known (spatial) left Cauchy-Green tensor. The

equilibrium part of the total stress in (41) agrees with the most general form established in10 for the case

of compressible magnetoelasticity. One can also observe that a magnetostatic contribution appears in the

inelastic stress through the material parameters c5 and c6.

For the spatial magnetic field vector, we have from (39), (26)2 and (28):

h = 2c1J b−1
b+ 2c2J b+ 2c3J bb︸ ︷︷ ︸

= −meq

+ Jv−1

Je
{
2c4 b

e−1

b+ 2c5 b+ 2c6 b
e
b

}
︸ ︷︷ ︸

= −mneq ≡ hneq

+µ−1
0 b.

(42)
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Comparing the latter expressions (42) with the corresponding standard relation (2), one concludes that

c1, c2, . . . , c6 are in fact the magnetization parameters, among which, c4, c5 and c6 are related to the

intermediate configutation.

Now for the purpose of demonstration, a simple choice for the mobility tensor in (36) could be

M = 1/η I where η > 0 is a viscosity parameter of dimension [Nm−2 s] that can be assumed constant

in a first approach. The evolution equation (36) would then become

− 1
2
£vb

e =
1

η

{
τ ′
neqb

e−1 − 2c4J
e2 be

−1

b⊗ b be
−1

+ 2c6J
e2
b⊗ b

+2
(
c4 I4 + c5 I5 + c6 I6

)
be

−1}
,

(43)

after having replaced the expressions of τneq and hneq from Eqs. (40) and (42), respectively, and

simplifying terms. Among others, notice that both sides of (43) are symmetric. However, it should be

stressed that in general the viscosity parameter η is not constant, e.g. see for example21,43.

Remark 1. If the energy dissipation due to the magnetization is negligible, then by setting c4 = c5 =

c6 = 0, the model drastically simplifies as follows:

• The part of the the magnetic field vector relative to the intermediate configuration would vanish as

Hneq = hneq = 0.

• The over-stress would reduce to its purely mechanical part as τneq = τ ′
neq for the Kirchoff-type

stress tensor.

• The reduced dissipation (35) would take its classical form encountered in finite isotropic

viscoelasticity.

• If, furthermore c1 = c2 = c3 = 0, then the magnetization vector field vanishes as M = 0. In

this case the present modelling reduces to that of non-magnetizable magneto-viscoelasticity as

developed in32.

4 Homogeneous deformation and parametric studies

In this section, we will construct a simple model to study some phenomena qualitatively. To this

end, it remains now to specify the purely mechanical free energy functions ψ′
eq and ψ′

neq so that the

augmented free energy function Ω will be completely defined, see (30) and (39). Here for the purpose of

demonstration, we choose a compressible Neo-Hookean type modelling for both functions as

ρ0ψ
′
eq = 3

8
κeq

(
J

4

3 + 2J− 2

3 − 3
)
+ 1

2
µeq

(
J− 2

3 I1 − 3
)
,

ρ0ψ
′
neq = 3

8
κneq

(
Je

4

3 + 2Je
−

2

3 − 3
)
+ 1

2
µneq

(
Je

−

2

3 I1 − 3
)
,

(44)
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where the first terms are related to the volumetric response with κeq and κneq the equilibrium and non-

equilibrium bulk moduli, respectively, while the second terms are related to the isochoric part of the

response with µeq and µneq as the equilibrium and the non-equilibrium shear moduli, respectively, e.g.

see also44,45 for more details about the properties of the hyperelastic version of the model (44). With

these forms, the purely mechanical parts of the Kirchhoff-type stress tensor are given by, see Eq. (40),

τ ′
eq = 1

2
κeq

(
J

4

3 − J− 2

3

)
1+ µeq dev[J− 2

3 b],

τ ′
neq = 1

2
κneq

(
Je

4

3 − Je
−

2

3
)
1+ µneq dev[Je

−

2

3 be],
(45)

where dev[ � ] denotes the spatial deviatoric operator.

As a simple model problem, we study the response of a cylindrical sample to applied magnetic

induction along its axial direction ~e3, i.e.B(t) = B3(t)~e3. For simplicity, we assume the deformation to

be homogeneous. Let λ1, λ2 and λ3 be the principal stretches along the three directions ~e1, ~e2 and ~e3, as

the loading direction does not change in the history, the principal directions of the viscoelastic stretches

coincide with those of the above total ones, and we will denote them as λv1 , λv2 and λv3 . Furthermore, here

for symmetry reasons, we also have λ2 = λ1 and λv2 = λv1 .

In components, the constitutive relation (40) for the total Kirchhoff-type stress tensor τ̃ = Jσ̃

specializes to

Jσ̃11 = 1
2
κeq

(
λ

8

3

1 λ
4

3

3 − λ
− 4

3

1 λ
− 2

3

3

)
+ 1

3
µeq

(
λ

2

3

1 λ
− 2

3

3 − λ
− 4

3

1 λ
4

3

3

)

+ 1
2
κneq

(
λe

8

3

1 λe
4

3

3 − λe
−

4

3

1 λe
−

2

3

3

)
+ 1

3
µneq

(
λe

2

3

1 λe
−

2

3

3 − λe
−

4

3

1 λe
4

3

3

)

− 1

2µ0

B2
3 λ

−2
1 λ3,

Jσ̃33 = 1
2
κeq

(
λ

8

3

1 λ
4

3

3 − λ
− 4

3

1 λ
− 2

3

3

)
+ 2

3
µeq

(
λ
− 4

3

1 λ
4

3

3 − λ
2

3

1 λ
− 2

3

3

)

+ 1
2
κneq

(
λe

8

3

1 λe
4

3

3 − λe
−

4

3

1 λe
−

2

3

3

)
+ 2

3
µneq

(
λe

−

4

3

1 λe
4

3

3 − λe
2

3

1 λe
−

2

3

3

)

+
1

2µ0

B2
3 λ

−2
1 λ3 + 2c2B

2
3 λ

2
3 + 4c3B

2
3 λ

4
3

+ 2c5B
2
3 λ

e4

1 λ
e2

3 λ
−4
1 + 4c6B

2
3 λ

e4

1 λ
e4

3 λ
−4
1 ,

(46)

with identical transverse stresses σ̃22 = σ̃11, and where λe1 = λ1λ
v−1

1 ≡ λe2 and λe3 = λ3λ
v−1

3 are the

elastically relaxing stretches.
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Likewise, for the viscous deformation, the evolution equation (43) reduces in components to

λe
4

1
˙log λv1 = 1

2

κneq
η

(
λe

8

3

1 λe
4

3

3 − λe
−

4

3

1 λe
−

2

3

3

)
+ 1

3

µneq

η

(
λe

2

3

1 λe
−

2

3

3 − λe
−

4

3

1 λe
4

3

3

)

+ 2
c4
η
B2

3 λ
e4

1 λ
−4
1 + 2

c5
η
B2

3 λ
e4

1 λ
e2

3 λ
−4
1 + 2

c6
η
B2

3 λ
e4

1 λ
e4

3 λ
−4
1 ,

λe
4

3
˙log λv3 = 1

2

κneq
η

(
λe

8

3

1 λe
4

3

3 − λe
−

4

3

1 λe
−

2

3

3

)
+ 2

3

µneq

η

(
λe

−

4

3

1 λe
4

3

3 − λe
2

3

1 λe
−

2

3

3

)

+ 2
c5
η
B2

3 λ
e4

1 λ
e2

3 λ
−4
1 + 4

c6
η
B2

3 λ
e4

1 λ
e4

3 λ
−4
1 .

(47)

For the following analyses, we introduce the ratio β = κneq/µneq between the non-equilibrium bulk

and shear moduli. Herein, the particular case of quasi-incompressibility in the viscous part of the response

can be obtained with a relatively high value of β.

Remark 2. The (strong) hypothesis of homogeneous deformation is set here only for demonstrative

purposes to focus on the intrinsic material response. At this stage, the applied magnetic induction is

assumed given and the study reduces to that of a material point. Of course, in more realistic applications,

the surrounding space together with the continuity conditions, i.e. (3) and (9)2, must be accounted for in

a more complete structural analysis, see for example34.

4.1 Magnetic induction with no deformation

In this first example, we consider that the above sample is held fixed with λ1 = λ2 = λ3 = 1 during the

whole loading history and we study the effect of an applied induction B3(t) on the purely viscoelastic

part of the response, see the sketch of Fig. 2. To simplify the mathematical expressions, we introduce the

following dimensionless magnetization parameters and variables:

αi = ci µ0

∣∣
i=1,...,6

, B =
B3√
µ0 µneq

, H = H3

√
µ0

µneq

, (48)

where H3 is the ~e3-component of the corresponding magnetic field. From (47), one can observe that the

viscoelastic stretches evolve with the characteristic time η/µneq. This latter is herein used to normalize

the time t by introducing the dimensionless time t̃ = t µneq/η. With the constraints λ1 = 1 and λ3 = 1,
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the system (47) becomes

λv
−4

1

d

dt̃
(log λv1) =

β

2

(
λv

−

8

3

1 λv
−

4

3

3 − λv
4

3

1 λv
2

3

3

)
+

1

3

(
λv

−

2

3

1 λv
2

3

3 − λv
4

3

1 λv
−

4

3

3

)

+ 2α4B
2
λv

−4

1 + 2α5B
2
λv

−4

1 λv
−2

3 + 2α6B
2
λv

−4

1 λv
−4

3 ,

λv
−4

3

d

dt̃
(log λv3) =

β

2

(
λv

−

8

3

1 λv
−

4

3

3 − λv
4

3

1 λv
2

3

3

)
+

2

3

(
λv

4

3

1 λv
−

4

3

3 − λv
−

2

3

1 λv
2

3

3

)

+ 2α5B
2
λv

−4

1 λv
−2

3 + 4α6B
2
λv

−4

1 λv
−4

3 ,

(49)

which is solved for λv1(t̃) and λv3(t̃), and by mere function evaluation using these latter into (46), one can

also deduce the corresponding dimensionless total stress components σ̃11/µneq and σ̃33/µneq.

Figure 2. Fixed cylindrical sample and magnetic induction loading.

Some representative solutions to the differential-algebraic system (49) are plotted in Fig. 3 for the case

where the dimensionless induction is applied quickly at a relatively high rate dB/dt̃ = 100 until it reaches

the value B = 1, and then is left fixed at this value. At dimensionless time t̃ = 0, the sample is fully

relaxed with the initial conditions being λi = λvi = 1, i = 1, 2, 3. Here as the system (49) is independent

on the equilibrium magnetization parameters, we choose to set them to zero as α1 = α2 = α3 = 0, so

that the dimensionless magnetic field (48)3 is linked to the dimensionless induction by the relation

H =

[
2α4

λv
4

1

+
2α5

λv
4

1 λ
v2

3

+
2α6

λv
4

1 λ
v4

3

+ 1

]
B. (50)

We study the influence of the non-equilibrium magnetization parameters α4, α5 and α6 (or equivalently

of c4, c5 and c6) by choosing to activate only one of them each time. Each case is computed with three

different ranges of compressibility in the mechanical viscoelastic part through the ratio β. We choose the
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Figure 3. (a) (c) (e) Dimensionless magnetic field evolution H(t̃) and corresponding (b) (d) (f) dimensionless

total stress σ̃33(t̃)/µneq. In each case, only one non equilibrium magnetization parameter is activated: α4 for

(a-b), α5 for (c-d), and α6 for (e-f). Three different ratios β = 2/3, 4.67, and 500 are used for each calculation.
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values β = 2/3, that corresponds to a zero Poisson’s ratio in the limiting case of linearized kinematics,

β = 4.67 that corresponds to an approximate 0.4 Poisson’s ratio, also in the limiting case of linearized

kinematic, and β = 500 that corresponds to a viscoelastic quasi-incompressibility within the whole strain

range.

One can see from Figs. 3(a)(c)(e) that, in all cases, the viscoelastic compressibility strongly influences

the decay to equilibrium of the magnetic field. For the augmented Cauchy stress, Fig. 3(b) shows an

unexpected evolution with no decay. This is explained by the fact that the stress is independent of the

parameter α4, or c4, see Eq. (46)2. On the other side, for the cases where α5 and/or α6 are activated,

it is seen from Figs. 3(d)(f) that the stress decays to an equilibrium value as expected. This decay is

particularly sharp for α5 = 1 in the limiting case of incompressibility, i.e. the curve with β = 500 in Fig.

3(d), and likewise for the corresponding magnetic field’s decay in Fig. 3(c).

4.2 Responses to cyclic loads

In this second example, the dynamic responses of the above cylindrical sample are studied. The sample

is this time unconstrained with free lateral and axial stretches and we still stipulate the homogeneous

assumption for the purpose of demonstration and qualitative prediction, see Fig. 4. Initially, the sample

is fully relaxed at t = 0, with the initial conditions λi = λvi = 1, i = 1, 2, 3.

Figure 4. Free cylindrical sample and sinusoidal magnetic induction loading.

In this case four equations constitute the differential-algebraic system to be solved for the stretches

λ1, λ
v
1 , λ3 and λv3: the two issued from the mechanical balance, σ̃11 = 0 and σ̃33 = 0 in the absence of

mechanical body forces, and the two evolution equations (47). The expressions of the formers are given

in (46).
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Here again, we simplify the mathematical expressions with an adimensionalization procedure as

follows. While conserving the definitions (48)1 for the dimensionless magnetization parameters αi,

i = 1 . . . 6, the dimensionless variables are this time defined as

B =
B3√
µ0 µ

, and H = H3

√
µ0

µ
, (51)

where µ = µeq + µneq is the instantaneous shear modulus of the material and, to simplify further, we

also consider the same ratio between the couples of bulk and shear moduli of the equilibrium and non-

equilibrium parts, i.e.

β =
κneq
µneq

≡ κeq
µeq

. (52)

Now defining ζ = µeq/µ ∈ [0, 1] as the ratio between the equilibrium and instantaneous shear

moduli, we deduce the following relations for the material parameters that will also be used when

adimensionalizing the equilibrium equations σ̃11 = 0 and σ̃33 = 0 by µ:

µneq

µ
= 1− ζ,

κeq
µ

= βζ, and
κneq
µ

= β(1− ζ). (53)

Last, as for the example in Section 4.1, the evolution equations (47) are here again normalized with

the adimensional time t̃ = t µneq/η.

We write the applied dimensionless magnetic induction into a sinusoidal functionB = B0 sinωt̃, with

ω and B0 being the dimensionless frequency and amplitude, respectively. A set of representative results

are presented in Fig. 5. In all the solutions plotted, the amplitude is set to be B0 = 2, we consider a

quasi-incompressible material with β = 500, and the material parameter ζ is taken to be 0.5 so that the

equilibrium and non-equilibrium contributions are comparable. Hence, we study the influence of the

magnetization parameters αi, i = 1 . . . 6, together with the driving induction frequency ω.

For illustrative purposes, we choose here again to activate only one non-equilibrium magnetization

parameter each time; α5 in Figs. 5 (a-b), α6 in Figs. 5 (c-d), and a combination of this latter with the

activation of an equilibrium parameter, for instance, here with α3 in Figs. 5 (e-f). In the absence of

further investigations, we prefer to not consider the non-equilibrium parameter α4 due to its unexpected

influence seen in the first example, Fig. 3 (b). For the sake of comparison, two frequencies are used; a

moderate one with ω = 1, and a relatively high one with ω = 10.

The first observation is that, for the moderate frequency, the stretches stabilize in 1-2 cycles, while for

the relatively high frequency, the stabilization takes place after 10-12 cycles. In each case, the amplitude

of the viscoelastic stretch λv3 is markedly smaller than that of λ3. Moreover, for each set of parameters,

the amplitude of λv3 is markedly smaller for the high frequency than for the moderate one, but the mean
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Figure 5. Total and viscoelastic stretches λ3(t̃) and λv
3(t̃) in response to applied sinusoidal magnetic

induction with frequency ω = 1 in (a) (c) (e), and ω = 10 in (b) (d) (f). Each time with the activation of different

magnetization parameters, as indicated.
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value at stabilization seems to be the same. As a last remark, it can be seen from Figs. 5 (b) and (d) that,

with α5, the mean stretching λv3 is higher than the mean total one λ3, while with α6, the mean λv3 is lower

that λ3. We remember that sample experiences contraction in the ~e3-direction under the applied magnetic

load, hence the stretches λ3 and λv3 are lower than 1.

5 Conclusion and perspectives

In this paper, we have presented a general theory to model the nonlinear magneto-viscoelasticity in the

finite strain range. Within the framework of continuum thermodynamics, the nowadays well know fields

related to the magnetic coupling have been embedded in a sound way for a concise characterization of

the whole set of constitutive equations.

The viscoelastic kinematics adopted herein is based on the multiplicative decomposition of the

deformation gradient into an elastically relaxing part and a viscous part. The formulation developed in

this paper is based on the magnetic induction vector as main independent variable for the magnetic part

of the coupled problem and, to make matters as concrete as possible, a model problem has been proposed

for demonstrative purposes so as to conduct preliminary parametric studies to qualitatively show some

basic phenomena revealed by the formulation.

We believe that further work has to be accomplished to optimize the present theory toward more

realistic modelling of smart magneto-active materials. Experimental investigations will certainly give

better knowledge of the material properties. Among others, the magnetization parameters must be

quantified. Experimental tests could for example show which ones are most relevant for the modelling

or, at least, whether or not the non-equilibrium ones are pertinent. On the other hand, as most of the

MAPs are manufactured as anisotropic composites, the present modelling framework must be extended

by taking into account the directional dependencies of the magneto-viscoelastic responses.
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