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Abstract 

We present the cathodoluminescence (CL) and microstructural analysis of amorphous yttrium 

aluminum/aluminium borate (a-YAB) luminescent powders synthesized by polymeric precursor 

(PP) and sol-gel (SG) based wet-chemical methods. The a-YAB powders exhibit bright 

photoluminescence tunable from intense blue to white chromaticity region depending on their 

calcination temperature. Here, the influence of calcination temperature on CL and 

microstructural properties of the a-YAB powders has been investigated. The a-YAB powders 

showed weak but homogeneous CL. Within the optimum calcination temperatures for 

photoluminescence (650-740°C for PP and 450-600°C for SG series), the CL observed to be more 

intense for powders synthesized at higher calcination temperature. The microstructure analysis 

revealed that the SG series powders calcined below 570°C exhibit intraparticle chemical 

inhomogeneity, whereas no such inhomogeneity could be seen in PP series powders, owing to 

their higher calcination temperatures. Nevertheless, both series exhibit similar luminescence 

broadening with calcination temperatures despite these microscopic differences, revealing that 

the luminescence broadening does not depend on the chemical properties at the microscopic 

level, but is controlled by more intrinsic effects on the luminescent centers or its immediate 

surrounding as a function of calcination temperature.  
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Introduction 

The wet-chemically synthesized amorphous yttrium aluminum borate (a-YAB) powders, with a 

chemical composition close to that of crystalline YAl3(BO3)4, exhibit bright photoluminescence 

(PL) [1]. The origin of this luminescence has recently been ascribed to the presence of organic 

molecules trapped inside the inorganic glassy matrix during the synthesis process and their 

subsequent evolution with thermal treatment [1,2]. The powders exhibit intense blue to 

broadband white emission depending on their thermal history as well as their synthesis 

methods (Figure 1). We have recently reported the polymeric precursor (PP) and sol-gel (SG) 

based wet-chemical methods to synthesize micrometer sized amorphous a-YAB powders [1-3]. 

In PP method syntheses, relatively high calcination temperatures (650-740°C) are necessary to 

achieve optimum luminescence over the SG method syntheses (450-600°C). Nevertheless, in 

both series a similar luminescence broadening is witnessed within the investigated temperature 

ranges.  

To further develop this type of luminescence in the framework of luminescent probes 

[4,5] or light emitting devices [6], it is imperative to have a good understanding on the origin of 

the luminescence centers and its broadening phenomenon. While the broad emission spectrum 

is advantageous for the use of these phosphors in solid state lighting devices with high color 

rendering, the rather strong emission in the violet to blue part of the visible spectrum limits the 

overall luminous efficacy [7]. It is therefore vital to be able to control and optimize the 

luminescence properties. In contrast to luminescence based on lanthanides (e.g. Eu2+, Ce3+ or 

the 4f-4f emitting ions) [8-10] or transition metals (e.g. Cr3+ or Mn4+) [11,12], where the 

emission spectrum can roughly be predicted based on the type of transition and the local 

environment of the dopant, this structural-luminescence relationship has not yet fully been 

established in the a-YAB powders, which lack a traditional dopant ion. 

 

Figure 1: PL spectra of a-YAB powders obtained by sol-gel (SG) and polymeric precursor (PP) 

methods. The PL were recorded under 254 nm excitation to achieve complete spectral profiles. The 

powders are denoted by SG-x and PP-x, where x represents the calcination temperature in °C for 

both studied synthesis routes. 
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Moreover, due to the inorganic refractory-type nature of the a-YAB host material, it is 

difficult to extract the trapped organic species in intact form for chemical analysis [13,14]. The 

complementary solid-state analytical techniques (including NMR, EPR, ENDOR, etc.) revealed 

the presence of small polyaromatic hydrocarbons (PAH), which exhibit good correlation with 

the broadening of the luminescence spectral profiles [2]. A parallel approach using time-gated 

spectroscopy and energy level modeling hinted to the presence of multiple emitting centers, 

which undergo a systematic evolution in relative strengths as a function of calcination 

temperature, thereby causing the spectral broadening [15]. Each emitting center exhibits 

fluorescence as well as phosphorescence components, and therefore the complete spectrum 

becomes an admixture of several emission bands. Based on the time-gated spectroscopy and 

theoretical modelling using DFT calculations, we could construct the energy level structure of 

first few prominent emitting centers and identify the higher energy violet-blue region emitting 

center to be a phenalene based compound [15]. The results also indicated that the primary 

energy level structure of the other luminescent centers might be similar but with decreasing 

energy gaps that lead to the red shifted emissions. This suggested that the broadening might be 

associated with the bathochromic effect in luminophore compounds. The bathochromic 

spectral shift can arise due to a π-conjugation in organic molecules, a change in the functional 

group, or a variation in chemical environment [16]. During the calcination step in wet-chemical 

synthesis methods, the primary network structure undergoes densification. Simultaneously, the 

solid-gas reactions take place inside the powder grains through diffusion, leading to complex 

molecular reactions. These interactions during calcination process can modify the luminescent 

compounds as well as chemical properties of the host, responsible for the luminescence 

properties of the a-YAB powders.  

In the present study, the microstructural properties of a-YAB powders as a function of 

calcination temperatures have been investigated using scanning electron microscopy and 

cathodoluminescence (CL) in order to seek a correlation between the microstructure and the 

luminescence properties. CL spectroscopy is a vital technique to unravel the hidden details of 

functional luminescent materials at microscopic levels, which collectively represents their bulk 

performances [17-22]. A scanning electron microscope (SEM) was used to study the 

microstructure evolution, while simultaneously recorded energy dispersive X-ray (EDX) 

elemental mapping and CL microscopy provided further insights on the structure-property 

relationship. 

 

Experimental details 

Two series of a-YAB powders obtained by PP (calcination temperatures : 650 – 740°C) and SG 

(calcination temperatures : 450 – 600°C), based on wet-chemical syntheses were used in the 

present study.1,2 The chemical composition of both series of a-YAB powders is 

stoichiometrically close to crystalline YAl3(BO3)4 (c-YAB). The powders are labeled as PP-x and 

SG-x, where x represents the final heat-treatment (calcination) temperature in oxidizing 

atmosphere in degrees Celsius. The powders exhibit a clear white to pale yellow colored tint 

with the increase in calcination temperature in both series. The Y3Al5O12:Ce3+ (YAG:Ce), 
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ZnGa2O4:Cr3+ (ZGO:Cr) polycrystalline phosphors and Ce3+: borate glass were also used for 

comparison. The detailed synthesis procedure for the studied samples is described in the 

supporting information (SI) and in literature [1,2,23]. The phase purity of polycrystalline YAG:Ce 

and ZGO:Cr, as well as the amorphous nature of a-YAB powder was confirmed using X-ray 

diffraction analysis (supporting information, Figure S1) 

The PL spectra of the powders were obtained under 254 nm excitation and the emission 

signals were recorded using a calibrated CCD detector (Acton Pixis 100, Princeton Instruments). 

A similar setup was used for X-ray radioluminescence (RL), where 1.54 Å Cu Kα X-ray was used 

as excitation. For CL spectroscopy, a Hitachi S3400-N scanning electron microscope was used, 

combined with a fiber-coupled spectrometer (Acton SP2300 monochromator and ProEM 1600 

EMCCD camera, Princeton Instruments). The electron microstructure was studied using 

backscattered electrons. Energy dispersive X-ray imaging of the Y Lα (1.922 keV), Al Kα (1.486 

keV) and O Kα (0.525 keV) lines was used for the elemental analysis at the microscopic level. The 

SEM was operated at 20kV potential and 50 μA current density under 25 Pa pressure to avoid 

charging of the samples. The samples were prepared by spreading fine powder particles on a 

carbon tape attached to the sample mount. 

 

Results and Discussion 

Figure 2 presents the SEM images of the microstructure and the related CL emission of SG-600 

a-YAB powder. All particles exhibit CL emission and the particles’ morphology could clearly be 

reproduced in the CL mapping. The PP series powders also exhibit homogeneous CL emission 

[24]. It has been observed that the CL signals are weak in a-YAB powders compared to the 

traditional inorganic phosphor materials. On comparing the CL response with respect to the 

traditional crystalline phosphors, such as ZnGa2O4 : Cr3+ (ZGO:Cr), the CL emission intensity in a-

YAB powders is several orders of magnitude lower (Figure 3a). The intensity is even weaker for 

the a-YAB powders synthesized at lower calcination temperatures (Supporting Information, 

Figure S2).  

 

Figure 2: SEM microstructure (a) and corresponding CL intensity map (b) of SG-600 powder. 

The low intensity for CL signals in a-YAB powders may be due to the amorphous nature 

of the a-YAB host. Amorphous or glassy hosts are usually less efficient in trapping ionizing 

radiations and delivering the excitation energy to the luminescent active centers [23]. The 
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presence of several defects, including the dangling bonds, various point defects, etc., are 

inherent to the amorphous structure that can easily facilitate a swift non-radiative 

recombination of the excitonic e-h (electron-hole) pairs created by high energy irradiation. 

Moreover, the organic luminophores exhibit poor response to high energy ionizing excitations, 

and even undergo degradation under continuous exposure (Supporting Information, Figure S3), 

though the respective PL signals are stable with respect to the excitation duration and 

temperature (Supporting Information, Figures S4, S5). Similarly to the CL, the X-ray 

radioluminescence (RL) intensity is weak in a-YAB powders compared to the traditional 

lanthanide doped luminescent materials. Figure 3b presents the RL response of PP-740 a-YAB 

powder compared with the polycrystalline YAG:Ce phosphor and Ce-doped borate glass. It is 

interesting to see that the YAG:Ce exhibits almost seven orders of magnitude more intense RL 

over a-YAB, whereas two orders of enhancement is observed in Ce3+ doped glass. The intensity 

difference also reflects the polycrystalline and glassy nature of the respective host materials, 

i.e. YAG and borate glass, respectively. 

 

Figure 3: CL spectra (a) and X-ray RL spectra (b) comparison between PP-740 a-YAB powder 

and representative traditional luminescent materials.  

From Figure 3, it can be noticed that the CL spectral profile of PP-740 a-YAB powder 

exhibits good resemblance with its PL spectral profile (PP-740 powder in Figure 1), whereas the 

RL profile is significantly different. The dominant blue region emission in the PL has slightly 

reduced in CL, but it is significantly reduced in the RL spectrum. This is consistent with the fact 

that the a-YAB powder exhibits several emitting centers with varied energy levels and the 

relatively deeper penetration depth of the used X-ray radiation (several tens of μm) might 

induce radiation trapping of higher energy (violet-blue region) emissions in the RL emission 

signals [15,24]. The penetration depth in CL is expected to be of the order of 3-4 μm at the used 

electron energy in a-YAB host, so the reabsorption is relatively weaker (Supporting Information, 

Figure S6).  

The multiple emissions in a-YAB powder arise from different emitting centers, whose 

relative abundance is controlled by the calcination temperature [15]. This causes the 
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broadening of predominantly intense violet-blue region emission as the calcination 

temperature increases. Simultaneously, the longer wavelength emissions become more 

distinctive at the expense of violet-blue emissions. Although this variation in the relative 

prominence of different emitting centers could be observed experimentally, the origin of this 

systematic bathochromic shift in emission is yet to be understood. As discussed earlier, it can 

either be due to the transformation of emitting centers, such as the π-conjugation of PAH 

compounds or due to the changes in functional groups, or can also be due to the changes in the 

chemical environment of the surrounding host matrix. An enlarged π-conjugation reduces the 

energy of electronic transitions in PAH compounds. Similarly, the changes in functional group or 

the chemical polarization of surrounding host matrix can modify the energy levels of the 

emitting centers. The microscopic analysis, such as the powder microstructure and 

cathodoluminescence could be interesting in this regard to understand the evolution of the a-

YAB matrix with temperature and find any relation with luminescence broadening.  

 Figure 4 presents the SEM microstructure images of the PP and SG series powders 

calcined at various temperatures. For the entire PP series, the images do not exhibit noticeable 

contrast difference amongst particles suggesting a near homogeneous elemental distribution 

(Supporting Information, Figure S7) [25]. However, the SG series powders show interesting 

microstructural evolution as the synthesis temperature increases. For powders prepared at low 

temperature, the microstructure reveals particles with dark and bright regions. As the 

dark/bright color difference in SEM imaging based on backscattered electrons mainly originates 

from the difference in average atomic weights of constituent elements [26], this suggests an 

elemental inhomogeneity. The darker particles, which have a relatively lower average weight, 

slowly vanish as the calcination temperature increases.  For a calcination temperature of 570°C, 

nearly homogeneously bright particles are obtained with the SG synthesis.  Figure 5 presents 

the CL emission spectra of some PP and SG powders. Similar to PL, the CL emission also exhibits 

spectral broadening and a redshift in the peak position with increasing calcination temperature. 

 

Figure 4:  Influence of calcination temperature on the microstructure of a-YAB powder in the 

PP (top) and SG series (bottom), when imaged in the electron backscattered imaging SEM 

mode.  
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Figure 5: CL emission spectra of PP-series and SG-series a-YAB powders. 

Figure 6(a) presents the EDX elemental analysis of particles in the SG-480 powder. It 

suggests that the dark region particles are exclusively yttrium deficient, whereas aluminum 

seems well distributed in all the particles. These observations suggest that the dark regions are 

enriched in boron, associated with aluminum, however boron, due to its low atomic weight, 

could not directly be detected by EDX. It is worth noting here that despite the presence of such 

chemical differences, the CL emission profile does not exhibit significant deviation among 

different particles and peaks at nearly same positions in all the particles of respective samples 

(Supporting Information, Figures S8, S9). Nevertheless, a more reliable comparative analysis of 

CL emission profile of different particles is limited due to the different levels of signal to noise 

ratio, varied penetration depths, exposure based degradation and overall weak CL signals. 

Interestingly, at 570°C and higher calcination temperatures, particles do not exhibit such 

distinct elemental inhomogeneity (Figure 4 and Supporting Information, Figure S7). The gradual 

disappearance of dark regions in particles is accompanied with a systematic appearance of 

bright spots, whose abundance and dimensions grows for higher calcination temperature. 

Figure 6(b) shows the elemental mapping of such a particle exhibiting bright region spots 

representing yttrium rich regions. This points at an increase of diffusion dynamics of atom 

species within the particles when the calcination temperature increase.  Accordingly, the 

yttrium rich regions appear on the surface of the dark particles, and start to grow bigger with 

the increase in calcination temperature (Figure 7a, b). Eventually, the bright spots start to 

coalesce and lead to completely bright particles with near homogeneous elemental distribution 

(Figure 7c-e).  
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Figure 6: (a) SEM microstructure and EDX elemental mapping of the elements Al, Y and O in 

SG-480 powder. (b) The enlarged view of a particle possessing both dark and bright regions. 

A more saturated color represents a higher density of the elements.  

 

 

Figure 7: SEM microstructure of a-YAB powder particles exhibiting different stages (a-e). (a) 

is from SG-450 powder, (e) is from SG-570 powder and (b-d) are from intermediate 

temperature calcined powders. Scale bars represent 25 µm. 

To get further insight on the diffusion reaction, the particles were crushed to see the 

cross-sectional EDX elemental distribution. Figure 8 shows the microstructure as observed in 

SEM and EDX mapping of darker particles after gently crushing them. It is clear that mainly the 

surface layer of the dark region particles is deficient in yttrium. The low density aluminum-

borate matrix forms the surface region, whereas the dense yttrium-aluminate matrix is 

segregated in the core region. With increase in calcination temperature, the elements diffuse 
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more effectively leading to the homogeneous yttrium-aluminum-borate matrix. It is evident 

that the presence of darker particles gradually decreases from SG-450 to SG-570, where the SG-

570 does not contain any difference between or within particles. The chemical composition 

(Al:Y) for SG-570, SG-600 and all the PP-x series powders is similar to c-YAB suggesting a nearly 

homogeneous microscopic elemental distribution in these powders. Indeed, above 570°C 

nearly homogeneous particles are obtained with a Y:Al ratio about 1.1 close to that of the 

crystalline YAB composition (Supporting Information, Figure S10). 

 

Figure 8: Microstructure (SEM image, top left) and EDX elemental maps of the elements Y, Al 

and O in a crushed dark particle. A more saturated color represents a higher density of the 

elements.  

Consequently, the SG-x series powders show significant structural variations, whereas 

the PP-x series powders are essentially homogeneous. For both series of powders, the PL and 

CL emission spectra exhibit spectral broadening as a function of calcination temperature. As the 

calcination temperature primarily controls the elemental diffusion, an interesting 

microstructural evolution in SG series a-YAB powders could be observed. But any direct relation 

between powder microscopic properties and the PL band broadening could not be established. 

It is therefore evident that the luminescence broadening as a function of calcination process is 

more intrinsic to the luminescent centers rather than the microscopic level chemical properties 

of a-YAB powders. It might be controlled by immediate changes in and around the luminescent 

centers brought about due to thermal treatment during calcination process. The chemical 

surrounding at immediate neighborhood of emitting PAH compounds can be decisive in this 

respect, which may be limited to a few atomic layers and therefore could not be resolved in 

present investigation. Moreover, the other effects such as pi-conjugation enlargement and the 

effect of functional groups could also be responsible for the bathochromic shift and needs 

further investigation. 

 

Conclusions 

In summary, the a-YAB powders exhibit weak but homogeneous cathodoluminescence 

emission. The microstructural analysis revealed that the sol-gel synthesized a-YAB powders 

exhibit elemental inhomogeneity at low calcination temperature (<570°C) and systematically 

attain a homogeneous a-YAB matrix composition with increase in calcination temperature. This 

inhomogeneity could not be observed in polymeric precursor synthesized powders. Despite 
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these structural differences, the PL and CL spectra for both syntheses showed a similar spectral 

broadening with increasing calcination temperature within the respective optimum 

temperature range. These results suggest that the microscopic level elemental homogeneity 

and its diffusion dynamics do not exhibit significant influence on the spectral broadening of the 

luminescence in a-YAB powders during the calcination process, but that this might be 

controlled by more intrinsic effects in and around the luminescent centers.   
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