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Running title: Robust sampling in molecular ecology 

Summary 

DNA based techniques are increasingly used for measuring the biodiversity (species presence, 

identity, abundance and community composition) of terrestrial and aquatic ecosystems. While there 

are numerous reviews of molecular methods and bioinformatic steps, there has been little 

consideration of the methods used to collect samples upon which these later steps are based. This 

represents a critical knowledge gap, as methodologically sound field sampling is the foundation for 

subsequent analyses. We reviewed field sampling methods used for metabarcoding studies of both 

terrestrial and freshwater ecosystem biodiversity over a nearly three-year period (n = 75). We found 

that 95% (n = 71) of these studies used subjective sampling methods, inappropriate field methods, 

and/or failed to provide critical methodological information. It would be possible for researchers to 

replicate only 5% of the metabarcoding studies in our sample, a poorer level of reproducibility than 

for ecological studies in general. Our findings suggest greater attention to field sampling methods and 

reporting is necessary in eDNA-based studies of biodiversity to ensure robust outcomes and future 

reproducibility. Methods must be fully and accurately reported, and protocols developed that 

minimise subjectivity. Standardisation of sampling protocols would be one way to help to improve 

reproducibility, and have additional benefits in allowing compilation and comparison of data from 

across studies. 
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Introduction 

Methods for determining the composition of ecological communities from environmental DNA 

(eDNA; see Table 1 for definitions) samples have become increasingly routine as a means to describe 

biodiversity, for conservation monitoring, and to test ecological hypotheses (reviewed by Taberlet et 

al., 2012; Holdaway et al., 2017). Specifically, soil, tissue and water samples are collected from the 

environment, DNA is extracted from those samples and amplified using PCR with taxon-specific 

primers, the resulting PCR products are sequenced using platforms such as Roche 454 

pyrosequencing, Illumina MiSeq, Ion Torrent, and PacBio, and taxonomic entities are identified from 

unique sequence reads. This approach, known as "metabarcoding", is most commonly used to study 

communities of Bacteria, Archaea, Fungi and plankton (Taberlet et al., 2012). However, in addition to 

studying microorganisms in environmental samples, metabarcoding can be used to study the 

composition of a wide range of Eukaryote taxa (Andersen et al., 2012; Coissac et al., 2012), including 

pools of larger organisms where the DNA can be extracted and analysed without separating 

individuals (Dickie and St John, 2016; Holdaway et al., 2017). Other closely-related techniques 

include analysis of the combined genomic material from all organisms in a sample (rather than 

specific gene regions), known as environmental metagenomics (Holdaway et al., 2017).  

 

A critical step in all DNA studies is the collection of samples from the environment. Sample 

collection involves a series of decisions that have important implications for how the data should be 

analysed and interpreted (Table 2); valid inferences are critically dependent on valid sampling 

techniques (Crawley, 2015). Further, sample collection at a specific site and specific time can be done 

only once. This contrasts with later steps (e.g., DNA amplification, sequencing and bioinformatic 

analyses), which can be repeated or re-run from archived samples. 
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Previous reviews of metabarcoding methods provide guidance on statistical replication in sampling 

(Prosser, 2010; Lennon, 2011), methods for processing samples (Lear et al., 2018), data reporting 

(Field et al., 2009; Chervitz et al., 2011) and bioinformatic analyses (Hiraoka et al., 2016). However, 

despite the importance of sample collection in underpinning these later steps, we are not aware of any 

attempt to critically review methods of sample collection for eDNA studies. There are general reviews 

about how to sample ecological communities (Otypková and Chytrý, 2006; Smith et al., 2017) but we 

suggest eDNA studies have several unique features that distinguish them from other ecological 

surveys. First, eDNA studies often focus on microrganisms or species otherwise difficult to observe. 

As a result, there is little inherent sense of the spatial arrangement and complexity of biodiversity 

being sampled to guide sampling design. This contrasts with, for example, plant community sampling, 

where the size of a plot can be adjusted based on the size of plants in the community (e.g., larger plots 

in forest, smaller in grassland). Second, in eDNA sampling there is a significant time-lag between 

sample collection and being able to see the results, due to the need for laboratory processing and 

analysis. This contrasts with traditional sampling, where an initial sense of the data is obtained almost 

immediately, allowing some opportunity for methods to be revised before substantial investment is 

made. Third, eDNA sampling is often destructive in that a sample is removed (e.g., soil cores, leaf 

punches), preventing re-measurement of exactly the same location (unlike, for example, forest 

surveys of trees). This has implications for studies intending to measure change over time because we 

often cannot do repeat measurements of the same exact sampling point. Fourth, many eDNA sampling 

efforts are focussed on species-rich communities with a high degree of spatial and temporal 

heterogeneity. Fifth, even if a priori hypotheses are stated, eDNA sampling is often undertaken with 

either a primary or secondary goal of characterizing patterns and describing communities. This means 

that the researcher is frequently interested in obtaining data with a sampling design sufficiently robust 

to address unanticipated questions that may arise. Finally, sample contamination, both between 

samples and from exogenous sources, is potentially much more problematic in eDNA sampling than 

in sampling based on visible organisms. 
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Here, we set out to (1) review existing methods being used for eDNA sample collection from 

terrestrial and freshwater systems, (2) suggest criteria that could be used to evaluate sampling 

methods, (3) provide guidance on how methods could be improved, and (4) identify research 

questions that need to be resolved in order to improve existing sampling methods. We focus on 

metabarcoding and metagenomic studies where characterising biodiversity was an objective of the 

study, and we restrict our review to terrestrial and freshwater systems, largely reflecting the expertise 

of the authors. Nonetheless, we believe many of the points we raise are generic to studies using other 

eDNA methods, and to studies in systems we do not consider (e.g., atmospheric, gut content, marine). 

 

Methods 

 

We conducted a review of sampling protocols currently used in metabarcoding studies of terrestrial 

and freshwater biodiversity to address questions at a scale larger than an individual plot (e.g. for 

which plots are considered representative of some larger region). To identify methods used in recent 

studies, we searched the Web of Science Core Collection on 3 December 2015 using the search 

strategy Topic = ((Soil OR Water OR River OR Lake) AND ("environmental DNA" OR 

metabarcoding OR metagenomics) AND (Community OR Biodiversity) NOT (Marine OR Ocean)), 

restricting results to research papers published in 2013, 2014 or 2015. This resulted in an initial list of 

275 papers, from which we excluded ancient DNA studies, reviews, laboratory based experiments, 

entirely industrial, and within-organism microbiome studies. Where more than one paper was 

published from a single sampling event, these were treated as a single "project". While not intended to 

be fully comprehensive, the resulting list of 75 independent projects (Table S1) provides a broad 

spectrum of studies for examining how biodiversity has been sampled using environmental DNA.  
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We identified the methods used in each study, determined if those methods were likely to introduce 

bias or subjectivity, and whether the methods were described in sufficient detail that they could be 

replicated by another researcher. Where methods were cited as being given in another paper or source, 

we included that source in evaluating the study in question. 

 

Results & Discussion 

Sampling Universe 

At the broadest scale, all sampling occurs within a "sampling universe". Defining the sampling 

universe requires specifying the area that samples are intended to be representative of (including, for 

example, geopolitical constraints, pragmatic limitations, and ecosystem types) and the criteria for 

excluding portions of that area from potential sampling (including safety and practicality constraints). 

Specifying the sampling universe is an essential prerequisite for replicating a study, as replication 

requires knowing what areas should be sampled. Further, results cannot be extrapolated to larger areas 

unless the sampled universe is defined (Denny and Benedetti-Cecchi, 2012; Smith et al., 2017). More 

generally, results cannot be interpreted in the absence of a clear definition of what areas they apply to. 

 

There are a few exemplar studies in our review where a clear sampling universe is defined. Two of 

the studies defined a political boundary and plots were randomly selected from a grid imposed within 

that boundary (Yang et al., 2014; Terrat et al., 2015). One study defined their universe as being the 

portion of an island that fell within 200 m of a particular track (Drummond et al., 2015), along with 

clear criteria for excluding plots. The study by Drummond and colleagues shows that having maps or 

other pre-existing knowledge of an area is not necessary to define a sampling universe that could be 

readily repeated by future researchers. Two other studies incompletely defined their sampling 

universes, for example, defining the sampling areas as those affected by a particular flood, which 
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gives a clear sampling universe, and "adjacent" areas without further detail (Baldwin et al., 2013), 

which we considered borderline in terms of reproducibility. 

 

Overall, the majority of papers (92%) did not define a sampling universe, often describing sampling 

locations in detail, but not how these locations were chosen to be representative of any larger area. 

Describing sample locations provides specific information about the study, but does not allow other 

researchers to compare results with comparable areas in other regions. Further, samples can only be 

taken as indicative of a larger area if the potential area sampled is defined. 

 

We exclude 14 manipulative studies from this calculation. All 14 manipulative studies also did not 

define a sampling universe, but this is less critical where the goal is to measure response to an 

imposed treatment because it is assumed that the manipulation associated with the treatment defines 

the sampling universe. 

 

Representative, Haphazard, Regular or Random Samples 

Once the sampling universe is defined, the location of samples or plots within that universe must be 

determined, either using objective or subjective methods. Examples of objective methods included "at 

the deepest point of the lakes" (Barberan and Casamayor, 2014), "randomly generated within 200 m 

distance along a contour off a specified track", or the use of grid-based locations (Toju et al., 2013; 

Yang et al., 2014; Terrat et al., 2015). The defining character of objective protocols is that the precise 

location of a plot is specified as an exact and absolute location, based on either true random, grid-

based, or more complicated sampling designs (e.g., Robertson et al., 2013) or, in some cases, clearly 

defined criteria (e.g., "deepest point").  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

With subjective sampling, in contrast, the location of the plot is only loosely specified by the 

experimental design, with the exact location selected by the researcher, commonly in a way to be both 

"representative" of a site and to avoid what the researcher views as unusual or disturbed sites. The 

choice to use subjective criteria to locate plots in representative locations has important effects. 

Avoiding atypical sites or features within sites will reduce variability in community or ecosystem 

metrics, likely increasing the probability of detecting statistically significant effects among locations. 

However, it also results in data that are representative of only a subset of the sampling universe that 

they purport to describe. Taking pasture sampling as an example, results based on measuring only the 

portion of a pasture that is not near watering troughs, gates, or disturbed soils, cannot be taken as 

representative of the total area of pasture. Where sites are selected to be "representative" there is an 

even larger potential bias based on the individual researcher's view on what is a "representative" 

ecosystem. This does not imply that samples must be taken everywhere, but rather that the sampling 

universe must be clearly and objectively defined. 

 

The final alternative is that plots are located haphazardly within broad categories (e.g., any forest site 

in a particular country). Haphazard sampling is an extreme case of subjective sampling, with implicit 

rather than stated criteria for sampling. In many cases, haphazard sampling includes a strong element 

of convenience, such as sampling along existing trails or roads (Anderson, 2001). Haphazard 

sampling makes replication by others nearly impossible, as a researcher attempting to repeat a study is 

unlikely to have the exact same implicit criteria. 

 

Excluding manipulative studies, we found only 10% of studies in our survey used a clearly defined 

objective sampling protocol. A few additional studies (5%) claimed plot locations were "random", but 

without evidence of how the randomisation was performed. As noted by Crawley (2015) claims of 

randomisation are common but rarely performed properly. A further 5% of studies stated methods that 
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were clearly subjective, and > 80% of studies did not clearly indicate how plot locations were 

determined.  

 

Subjective, and particularly haphazard samples, are not scientifically sound (fit-for-purpose) for 

drawing conclusions about broader ecosystem questions (Anderson, 2001). Indeed, true 

randomisation is considered by Crawley (2015) to be one of only two essential concepts in ecological 

design (with replication being the second). Further, failure to report how samples were located makes 

replication impossible, as no future researcher could be certain they were using the same criteria for 

selecting sample locations. Where ecosystems can be mapped before sampling, Smith et al. (2017) 

provide useful guidance on objective sampling methods using open-source software. Nonetheless, 

pre-existing maps or knowledge of an area are not absolutely required for pragmatic yet robust 

sampling, as random distances along randomly oriented transects can be generated in the field and 

used as one-dimensional grids (Allen, 1993). 

 

Size of Area Sampled 

 

Most studies employ a sampling scheme in which one or more subsamples are taken from within a 

defined area at a particular location (a plot). Plot area affects measures of biodiversity as several 

subsamples from a large plot area will tend to capture higher diversity than the same number of 

subsamples from a smaller plot area, at least in any spatially structured community. In our review, the 

area of study plots ranged from single points to areas as large as several hectares (e.g., Mendes et al., 

2015; Vargas-Gastelum et al., 2015). The only consistencies in plot area were either single sampling 

points (12 studies) or 20 x 20 m plots (4 studies), with no other plot area used in more than one study. 

Plot area was not reported in 29 of the 75 studies (39%). 
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As measurement of biodiversity is directly affected by plot size, reporting plot area is necessary for 

reproducibility, which 39% of studies failed to do. While the need to report plot area is universal, an 

appropriate area for plots may depend on the research question being addressed. Despite recognizing 

this, much of the variation in plot area in our reviewed studies appeared to be arbitrary; authors stated 

the plot area, but not why that area was chosen. High variability in plot area among studies makes 

comparing results more difficult. In particular, estimates of species richness cannot be compared 

unless sampled from the same area. Given the existing prevalence of single point sampling and 20 x 

20 m area sampling across existing studies, these provide two useful plot areas at which consistency 

across studies could be achieved. 

 

Determining the Location of Subsamples within Plots 

 

The location of individual subsamples within plots also varies substantially among studies. 

Subsamples may be explicitly located based on a regular pattern, truly random, haphazard, or 

subjectively distributed across the plot. The choice of method requires careful consideration. 

Subsampling in a regular pattern could, in theory, be spatially synchronised with environmental 

variation, resulting in a non-representative sample. This is particularly a risk in planted ecosystems 

(plantations, agricultural fields, orchards; figure 1). True random placement of subsamples within 

plots avoids this risk, but is less efficient at sampling the entire area of a plot. Randomisation can also 

be more challenging to employ in practice. Further, it is often unclear if the word "random" is being 

used in a true sense, as opposed to "haphazard" and potentially subjective (Crawley, 2015). 

Haphazard and subjective methods provide no clear advantages except for convenience. One risk with 

any allowance of subjectivity in subsample placement is that portions of the plot may be more or less-

likely to be sampled, without that bias being explicit in the protocol. For example, where a plot 

comprises an intensively managed pasture, subjectively placed subsamples chosen to be 

‘representative’ may under-sample dung or urine patches, whereas regular or random sampling would 
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capture these locations in proportion to the area they occupy (Figure 1). This is different from a 

protocol that explicitly excludes these locations or that stratify sampling to better measure specific 

areas, in that it is subject to observer bias and hence reduces reproducibility of the protocol. 

 

Across studies with more than one subsample per plot, we found 20% of studies used regular or 

random subsampling, one study stated subsamples were "haphazard", and 8% of studies claimed 

subsamples were random without giving details of randomisation. Subjective methods were common 

(17%), often with stated constraints (e.g., minimum distances between samples, distance from 

features such as trees). Most studies, however, failed to report how subsamples were chosen (54.5% 

of studies). 

 

Determining How Many Samples to Take 

 

Replication is one of the most critical aspects of any sampling (Crawley 2015), as noted in the aptly 

titled piece "replicate or lie" (Prosser, 2010). In our review of studies, replication was absent or 

inadequate in many studies, with 20 studies (27%) having fewer than 6 total replicates. At the other 

extreme, some studies had more than 350 replicates (Tedersoo et al., 2014; Terrat et al., 2015). 

 

While it is easy to state that replication is needed, determining the optimal number of samples for 

community analysis depends greatly on the question being asked and will therefore vary across 

studies. Given the cost of sampling and analysis it is essential not to under-sample, and desirable not 

to over-sample. Power analysis can help find an optimal sampling level. Power analyses for 

continuous variables (e.g., species richness) are straightforward, requiring only an assumption of 

variance and the minimum effect size. There are also examples of using power analysis for detection 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

of individual species (Olson et al., 2013), patterns of individual species occurrences (Dickie and 

FitzJohn, 2007), and measures of community similarity (Irvine et al., 2011; Kelly et al., 2015). 

 

Despite the availability of tools allowing replication to be optimised, of the 75 studies we reviewed, 

none gave a stated rationale for how the number of replicates was determined. On the other hand, 

100% of studies reported their sample size, the only one of our assessed variables for which this was 

true. 

 

Subsampling  

 

While the plot defines the unit of replication, in many cases multiple subsamples are taken within 

plots. For example, multiple soil cores may be taken from a plot and then either pooled before 

measurement or measured independently to derive an ‘average’ value that characterises the replicate. 

One advantage of subsampling is that it allows for characterisation of a given area which can be re-

sampled in the future, whereas single point sample cannot be resampled. The ability to re-sample 

allows for measurement of change through time. Across studies we found a range of 2 to 100 

subsamples taken per plot (Drummond et al., 2015; Pansu et al., 2015). Although the number of 

subsamples was generally easily determined, it was hard to find out how that number of subsamples 

was selected. While not extensively studied, one study using T-RFLP found that eight subsamples 

were sufficient to distinguish bacterial communities among different land-uses in Australia (Osborne 

et al., 2011). 
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Subsamples can either be kept independent or pooled before DNA analysis. Pooling can substantially 

reduce the cost of subsequent analyses and can be appropriate where the research aim is to 

characterise large-scale patterns. The effects of pooling vary by taxa and depending on the 

measurement of interest. Osborne et al., (2011) found that pooling detected less variability than not 

pooling, but caused no change in the observed differences between sites. However, another study 

found that pooling substantially reduced the ability to detect rare species, particularly for fungi as 

compared to bacteria (Manter et al., 2010). One further advantage of not pooling subsamples is that it 

permits the estimation of spatial variance within plots. This may be a key objective in its own right, or 

may help partition variance (e.g., within plot versus temporal, if re-sampling is intended). 

 

Pooling is very common, either at the level of plot or, in a few cases, within subset categories (i.e., 

soil depth (Tveit et al., 2013); water depth or oxygen status (Peura et al., 2015); or distance from trees 

within plots (De Beeck et al., 2015). It is also possible to pool subsets of subsamples. For example, 

Keshri et al. (2015) pooled nine subsamples into three. Finally, it is possible to keep subsamples 

independent through DNA extraction and PCR and subsequently pool (Wilkins et al., 2015); two 

studies suggest that pooling before or after PCR has little effect on the perceived community (Manter 

et al., 2010; Osborne et al., 2011). 

 

The decision whether or not to pool will depend on a careful evaluation of costs, including trade-offs 

between increased replication and increased precision per replicate, the spatial heterogeneity of the 

organism(s) being studied, and potential effects of pooling on the community metrics being analysed. 

Across studies, we only found three examples where multiple samples were taken within a statistical 

replicate and not pooled. In at least two of these, not pooling samples allowed the authors to measure 

both within and between plot variability in community composition (Drummond et al., 2015; 

Navarrete et al., 2015). 
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Substrate 

 

Future reproducibility of a study relies on clarity on what actual substrate was sampled. Particularly in 

the case of soil sampling, the definition of soil can either include or exclude leaf litter and other 

organic layers. The choice of which layers to include or exclude could have dramatic effects on the 

perceived community, given vertical stratification of soil biota into different soil horizons (Dickie et 

al., 2002). Across the 51 studies in our dataset that sampled soil, 82% did not specify whether litter 

was included in samples. 

 

A further decision is whether to specify to a specified depth, or as in a few cases (4% of studies), 

sample by soil horizon, where a soil horizon is defined by physical features. Sampling by horizons 

can help reduce variability in samples and may be essential to test specific hypotheses. However, 

determination of soil horizons can require significant technical expertise and may vary across 

researchers. Further, specific horizons may not be present at all sites, or may be confusing (e.g., 

buried organic horizons, exposed C-horizons). 

 

Sample quality assurance 

 

Soil and other ecological sampling can be a fantastically filthy job, often conducted in adverse 

weather conditions and at remote locations. This presents a very real challenge to obtaining clean 

DNA samples, as any foreign material could compromise the results. Major sources of field 

contamination include: pre-existing DNA on sampling equipment, DNA from the researcher and their 

personal microbiome, carry-over between samples, and, for some samples, unintentional movement of 

DNA from the surface into a sample. Determining if a particular taxon is a contaminant can be 
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challenging as, for example, some common human-associated microbes such as the fungus 

Malassezia are also common in environmental samples (Amend, 2014). 

 

Field negative controls 

Most molecular ecologists routinely include negative controls in PCR reactions, recognising the 

power of PCR to detect very low levels of DNA. Typically, negative controls account only for 

contamination in the laboratory. Arguably, accounting for contamination in the field may be more 

important, albeit also more challenging. Field equipment can, and probably should, be sampled 

through swabbing in order to gain some insight into the potential for contamination. Sample storage 

media and containers can also be tested. No study in our review reported whether or how field 

negative controls were included. This stands in contrast to the almost universal use of negative 

controls in laboratory stages of analysis, an environment where maintaining sample integrity is 

relatively straightforward. 

 

Sample contamination 

Field sampling equipment can also contaminate samples. Some studies avoid contamination through 

single-use, pre-sterilised equipment, particularly for water sampling. Where sampling equipment is re-

used, soaking in a solution of sodium hypochlorite, such as commercial bleach, is an effective method 

of decontamination (Prince and Andrus, 1992; Kemp and Smith, 2005) provided the length of 

exposure and solution concentration are sufficient. Household bleach is a variable concentration 

solution of sodium hypochlorite (3 - 8%). For stringent decontamination, a solution as strong as 2 to 

3% sodium hypochlorite may be needed (Kemp and Smith, 2005), but general cleaning should be 

effective with as low as 0.55% [10% v/v dilution of commercial bleach (Prince and Andrus, 1992)]. 

The effectiveness of bleach depends on the length of time of exposure, requiring at least a few 

minutes at typical concentrations. Particularly where large numbers of samples are being collected, it 
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may be most efficient to have multiple sets of sampling equipment, allowing multiple samples to be 

taken before having to decontaminate. 

 

Some confusion exists over the difference between sterilizing and decontaminating sampling 

equipment. Alcohol, in particular, has been reported by some authors as the sole cleaning agent for 

field gear (e.g., Prober et al., 2015). Alcohol sterilizes by killing microbes, but does not remove DNA 

contamination. Indeed, ethanol is routinely used in DNA precipitation and processing. 

 

Across the 75 studies in our survey, 59 did not specify anything about decontamination of sampling 

equipment, eight stated sampling devices were "clean" or "sterile" without giving details, three used 

ethanol, one (a water sampling) repeatedly purged a pump, two used bleach and one specified 

autoclaved spoons. Given that alcohol (which does not effectively remove DNA) is as widely reported 

as bleach or autoclaving, it is likely that many of the studies that fail to report decontamination 

procedures may be using ineffective techniques. 

 

Movement of DNA from the surface into samples is a specific issue for some sampling, including 

sampling of soils or water at depth or sampling of the interior of deadwood. To avoid this the surface 

can be removed or samples can be broken or split open, such that the sampling tool does not pass 

from the outside surface into the interior. This can include the use of customised tools [e.g., the A-

Xenic Extractor (Dickie et al., 2012)].  
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Sample storage and transport 

eDNA results may be affected by sample storage, from the moment a sample is collected, through 

transport to the laboratory, and during storage in the laboratory before DNA extraction. At least one 

study suggests that storage conditions caused minor changes in community composition patterns 

relative to the much larger effects of the environment where samples were collected (Lauber et al., 

2010). However, the relative importance of sample storage may be greater where more subtle patterns 

are being tested. Nonetheless, other studies have shown declines in the abundance of some species 

(Orchard et al., 2017), growth of cold-adapted microbes in storage (e.g., Wood et al., 2015), and 

fragmentation of DNA (Cardona et al., 2012) during storage. Important decisions include the 

temperature samples are stored at, whether naturally anaerobic samples are maintained in anaerobic 

state, and the length of time samples are stored. Recommended times between collection and freezing 

are as low as 2 hours (von Wintzingerode et al., 1997). In some cases it may be possible to preserve 

samples chemically, both preventing microbial growth and loss of DNA (Seutin et al., 1991; Frantzen 

et al., 1998). 

 

Many studies either freeze samples quickly (10% of studies), or keep samples between 0 and 4 °C 

(34% of studies). A further 11% store samples at room temperature which, although sub-optimal, can 

be unavoidable in certain situations (e.g., very remote sampling), and may not be problematic for all 

samples (e.g., where samples are minimally disrupted, such as animal faeces that has already been at 

room temperature for some time). Overall, we found that 40% of studies failed to specify the 

temperature at which samples were transported. A further 4% specified -80°C as an immediate 

storage temperature, with no further details given of how this was achieved. We considered this 

suspect, given that achieving -80°C in field conditions would be a substantial challenge (noting that 

liquid nitrogen would reduce sample temperatures to -196°C). 
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Metadata 

 

The term metadata refers to the information surrounding data, not the actual sample data itself. In 

other words, metadata is the what, why, where, when and how for a sample. Without the 

accompanying metadata, reuse of previously collected data is difficult. Many attempts to collect 

metadata are framed in terms of the minimum amount of information to give context to samples and 

the analyses undertaken. Flexible frameworks also allow hierarchical terms or pieces of data to be 

collected using well-defined vocabularies, e.g. ontologies (Soldatova and King, 2005; Reichman et 

al., 2011). 

 

Reporting methods 

Recording and description of methods is a fundamental component of metadata. If methods are not 

fully documented, peer review cannot be effective in ensuring scientific validity. Equally importantly, 

the ability of future researchers to replicate a study is dependent on full method knowledge (Lithgow 

et al., 2017). Perhaps the most striking result of reviewing the literature was how poorly methods 

were described (Figure 2). In more than 90% of studies, key methods were not described in sufficient 

detail to allow replication. This was true even after considering methods cited to other sources. 

 

Site metadata 

In scientific manuscripts, it is good practice to only report methods that are directly relevant to the 

results presented in that manuscript. One consequence of this, however, is that it is difficult or 

impossible to evaluate what metadata may or may not have been collected in a study. This also has 

the unfortunate side effect that potentially available metadata cannot be easily "discovered". In some 
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cases, this means data that could be relevant to novel investigations and meta-analyses are 

overlooked. 

 

This is not an insurmountable challenge to overcome. There are notable examples from vegetation 

surveys where national databases allow comprehensive metadata to be archived and queried, even if 

not used in the initial manuscripts published from a study (Wiser et al., 2001). Publishers of molecular 

studies have a strong history of requiring archiving sequence data in public databases, but metadata 

archiving remains haphazard. Recent efforts to develop metadata archives for genomic data from 

individual organisms (Deck et al., 2017) might provide some role model for eDNA biodiversity 

metadata. 

 

Conclusions and Recommendations 

 

Overall, our review suggests that the majority of current eDNA studies are based on incompletely 

reported and, in many cases, questionable methods. Across the various studies and aspects of their 

sampling design, we found 

1. Only 5% of studies provided sufficient information to allow sampling to be repeated by an 

independent researcher. 

2. There is very little consistency across studies in methods being used to sample eDNA. 

3. For the most part, there is no documented reason or rationale for these differences. 

4. Sampling is often based on methods that make samples non-representative of the sampling 

universe, bias results, and make results unnecessarily difficult to compare across studies. 
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5. There are potentially major methodological issues in terms of dealing with DNA contamination and 

sample handling across many studies, including temperature of storage, lack of effective DNA 

decontamination, and lack of controls for field contamination. 

 

The net effect of poor reporting and subjective methods was that of the 75 studies we examined in 

detail, we found only 4 (5%) that we were confident could be repeated by future researchers based on 

reported methods. While, in part, poor reporting may reflect word limits on the length of publications, 

there is no reason that sampling protocols cannot be fully detailed in electronic supplements. 

 

Poor reporting and subjective methods are a general issue in ecological science, but the problem 

appears particularly acute in eDNA studies. In a recent review, Haddaway and Verhoeven (2015) 

found that 14 – 58% of reviewed literature in ecology lacked sufficient details for future repeatability 

or analysis. Our finding of only 5% reproducibility suggest the situation may be worse in eDNA 

studies than in the broader ecological literature. Similarly, Smith et al. (2017) found that 43% of 

general ecological studies failed to report how spatial sampling units were chosen, compared to our 

finding of 80% in eDNA studies, while 21% of ecological studies used systematic or random 

methods, compared to only 10% of eDNA studies. This may, in part, reflect a focus on ongoing 

methodological development in eDNA studies, rather than a focus on actual measurement of 

biodiversity. Nonetheless, only 5% of the 75 studies we included were primarily about methods, and 

all the studies presented data that could be interpreted as being potentially representative of 

ecosystems. 

 

Prosser (2010) noted that the high cost of molecular methods did not obviate the need for statistical 

replication, but rather made solid experimental design even more important. The same is true of 

sampling methodology. Further, because eDNA based surveys typically conduct all of their sampling 
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before any results are obtained, a failure to sample correctly can result in loss of months to years of 

analysis time. 

 

Based on our review of methods, we suggest that improved sampling protocols are essential in 

molecular ecology. In considering ways to improve protocols, we suggest that robust sampling 

protocols should: 

1. Ensure data are fit for the purpose they were collected for, including being statistically robust and 

able to be analysed [essential]. We believe that it is self-evident that sample collection should 

generate data that can be used for the purpose(s) for which it was originally collected, including 

generation of statistically meaningful results. 

2. Allow for replication by another researcher or at a future date, and hence be both completely 

described and free from subjective decisions that may differ across researchers [essential]. 

Reproducibility is a fundamental principle of the scientific method, as recognized since the early 11th 

century (Steinle, 2016; Lithgow et al., 2017).  

3. Be cost effective and as simple as possible [recommended]. Given limited research budgets, 

sampling should not be more expensive or difficult than is necessary. Having simple protocols also 

helps longevity (criterion 4). Nonetheless, being wasteful would not invalidate results, so this is not 

essential. 

4. Have longevity, including minimising particular skills needed, such that the same method is able to 

be repeated in the future, but also be adaptable to new methods and change in personnel 

[recommended]. Using methods with longevity will allow compilation of data into larger analyses, 

including potentially unanticipated measures of change over time. This partially relies on avoiding 

methods requiring highly-specialised expertise, as loss of specialist personnel can render these 

methods non-repeatable. 
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5. Be based on evidence or a stated rationale [recommended]. Basing a sampling protocol on an 

evidence base makes it more likely that methods are robust, and also helps convince other researchers 

to use a protocol consistently. 

6. Ensure samples are robust to unanticipated analyses and outcomes [recommended]. Data may be 

useful for analyses beyond the scope of what was originally intended. Given the expense and effort of 

collecting DNA from environmental samples, it is advantageous to have protocols that are robust to 

these additional analyses, even though not required for the original study to be valid. 

 

One promising way to improve sampling practices would be to develop standard, fully documented 

protocols. A major advantage of standardised protocols is that they allow for concerted investment of 

time and research funding into validation and improvement of those protocols. Standard protocols in 

vegetation ecology have allowed for integration of results across research projects, researchers, and 

over long time-periods at national scale (Wiser et al., 2001). Standardized protocols also allow for 

very efficient reporting of methods, requiring only a citation and noting of any deviations. Towards 

that goal, we make specific recommendations in Table 3 where we believe that general "best practice" 

can be identified against the criteria above. Nonetheless, some aspects of eDNA sampling require 

further research before robust recommendations can be made. In particular, the contribution of spatial 

and temporal variability to observed community metrics needs to be understood, in order to optimize 

the scale of sampling, number of subsamples, and temporal re-sampling. In suggesting a movement 

towards standardization, we recognise that some specific research questions can require specific 

sampling designs. In these cases, applying a standardized protocol may be inappropriate and even 

counter-productive. However, most of the current variation in methods across studies does not appear 

to be necessary. 
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DNA-based biodiversity assessment remains a relatively young field of science (Taberlet et al., 2012; 

Holdaway et al., 2017). Our purpose in this review is not to be overly critical of the pioneering 

research in this field, but rather to point out areas where significant improvements can be easily made 

for the future. Nonetheless, our evaluation of existing eDNA studies of biodiversity does not suggest a 

robust, reproducible field of science. Peer reviewers and editors have a responsibility to ensure that 

the methods published in papers are sufficiently well described to permit future researchers to 

understand and replicate a study, either in the main text, in cited protocols, or in electronic 

supplements. Methods should be evaluated to ensure they are robust to address the research topic and 

more general future use of the data. Ultimately, however, it is up to individual researchers to ensure 

that the design and execution of field sampling receives the same attention to detail and care that is 

currently focussed on laboratory methods and bioinformatics. 
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Table 1. Glossary of terms as used in this review. 

Term Definition 

Biodiversity Any measurement of taxonomic identity and/or abundance within the context of a 

community of organisms. 

eDNA Environmental DNA, meaning DNA extracted from samples of soil, water, air, or 

other substances in order to detect and identify species present as microscopic or 

cryptic organisms in the sample, or with tissue or free DNA in the sample. 

Metabarcoding Amplification of a specific gene region from multiple organisms in an eDNA 

sample, typically for the purpose of quantifying diversity, species turnover, or 

community composition. 

Metagenomics Amplification of all DNA from multiple organisms in a sample, including for 

measurement of species or functional gene diversity. 

Plot Plot refers to a defined spatial extent from which samples are taken, although not 

all samples have an associated plot. Plots may be experimental replicates, but 

having multiple plots does not guarantee proper statistical replication. 

Sample Sample refers to a single volume of water, soil, or other substrate from which DNA 

can be extracted. Samples may be pooled from multiple subsamples, as is often the 

case when associated with a plot, or taken from a single location. 

Sampling 

protocol 

The methods used to locate plots, collect samples within plots, and transport plots 

to the laboratory. We include some discussion of the number of total replicates, 

which overlaps somewhat with experimental design, but do not focus on 

experimental design. 

Sampling 

universe 

The total area that sample plots are taken to represent. This is equivalent to 

"population" in statistical sampling. 

Subsample Non-independent samples taken within a plot or body of water. May be pooled into 

a single sample before or after PCR. 
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Table 2. Summary table of some of the critical decisions in any sample collection. 

Decision Options Implications 

Definition of sampling 

universe (What is being 

sampled?) 

What ecosystem or area are 

samples representative of?  

Ability to scale-up results (e.g., 

from the plot to a larger 

ecosystem area; (Denny and 

Benedetti-Cecchi, 2012)) 

depends on having defined the 

sampling universe. Critical to 

interpretation of results and 

future reproducibility. 

Location of plots or samples 

(Where is it being sampled?) 

Within the sampling universe, 

the locations of individual 

samples may be random, 

regular, haphazard, or 

subjective. 

Reproducibility depends on 

clearly defined criteria for 

locating plots. Subjective or 

otherwise biased sampling may 

produce results that are not 

representative of the sampling 

universe. 

Exclusion of sampling points 

(What is not being sampled?) 

Avoidance of unusual features 

vs. inclusion of all; explicit vs. 

implicit, unstated, or arbitrary 

decision criteria. 

Degree to which the entire 

ecosystem is sampled, ability 

for others to replicate. 

How many samples to take  Number of replicates, whether 

replication is based on pilot 

studies and/or power analysis. 

Whether biologically relevant 

differences can be detected. 

Number of subsamples taken 

within area 

One to many. Cost and time to sample, 

amount of variance of results. 

Ability to measure spatial 

variability [if samples not 

pooled]. 

Size and shape of area sampled 

[if area based] 

Scales from cm to km; circular, 

transect, square, etc. 

Variance of results, ability to 

detect small scale patterns, 

impact of edge to total area 

ratio, maximum linear distance 

within an area. 

Location of subsamples within 

plot [if plot based] 

True random, haphazard, or 

regular; exclusion criteria. 

Ability for others to replicate. 

Ability to measure spatial 

variability [if not pooled]. 

Pooling of subsamples Separate subsamples within 

plots versus pooling into one 

sample per plot. 

Cost and complexity versus 

loss of spatial variability 

information. 

Substrates sampled Leaves, litter, soil, roots, water 

column, benthos. 

Consistency across landscape, 

variability of results, ability to 

compare across studies. 

Depth versus horizon based Sampling a given depth, or Ability to link to soil 
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sampling [soils only]  sampling a given horizon. chemistry, cross-site 

comparison, technical expertise 

required to identify horizons, 

ability to sample all locations. 

Total volume of substrate 

sampled 

Volume of material sampled in 

the field. 

Variance reduced by larger 

volume, larger volumes more 

likely to capture larger 

organisms. 

Definition of sampling 

universe (What is being 

sampled?) 

What ecosystem or area are 

samples representative of?  

Ability to scale-up results (e.g., 

from the plot to a larger 

ecosystem area; (Denny and 

Benedetti-Cecchi, 2012)) 

depends on having defined the 

sampling universe. Critical to 

interpretation of results and 

future reproducibility. 

Location of plots or samples 

(Where is it being sampled?) 

Within the sampling universe, 

the locations of individual 

samples may be random, 

regular, haphazard, or 

subjective. 

Reproducibility depends on 

clearly defined criteria for 

locating plots. Subjective or 

otherwise biased sampling may 

produce results that are not 

representative of the sampling 

universe. 
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Table 3. Specific recommendations and examples of good practice for the decision points identified 

in Table 2. 

 

Decision Recommendation 

Definition of sampling 

universe (What is 

being sampled?) 

Explicitly define the entire potential sampling area and any exclusion 

criteria. Definition can combine political and biogeographic constraints.  

Location of plots or 

samples (Where is it 

being sampled?) 

Pre-determine potential locations of plots following objective protocol (e.g., 

grid-based, true random). 

Exclusion of sampling 

points (What is not 

being sampled?) 

Clearly state what points would not be sampled if they were a pre-

determined location. 

How many samples to 

take  

Conduct a priori power analysis to determine sufficient replication. 

Number of subsamples 

taken within area [if 

area based] 

Equal numbers of samples across all plots. Further research needed to 

determine optimal sample numbers for different ecosystems. 

Size and shape of area 

sampled [if area based] 

Where possible, standardise across studies; either point or 20 x 20 m area 

being the most common at present. 

Location of subsamples 

points within plot [if 

area based] 

Take subsamples at pre-determined, defined points within plots. 

Pooling of subsamples Consider whether quantification of within-sample heterogeneity would 

justify not pooling, preferably based on power analysis. 

Substrates sampled State exactly what substrate is being sampled, for example noting whether 

litter is removed from the top of soil samples. 

Depth versus horizon 

based sampling [soils 

only]  

Specify the mean depth and variance of samples.  

Horizon based sampling is acceptable, but probably too variable across 

researchers to be widely recommended. 

Total volume of 

substrate sampled 

Ensure sufficient volume for possible re-extraction of DNA and for long-

term archival storage. 
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Sampling protocols / 

quality assurance 

Use sterile single-use sampling tools or 10% bleach for field 

decontamination with sufficient exposure time. Include a field negative 

control (swab of field equipment) to verify decontamination procedure. 

Freeze samples at earliest opportunity. 

Record metadata  Use pre-printed field data sheets that specify all necessary metadata. Report 

metadata along with results. Insure sampling methods are fully reported in 

publications. Deposit metadata in public archives (e.g. Dryad). 
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