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Abstract

We consider a bi-dimensional viscous incompressible fluid in interaction with a beam located at its
boundary. We show the existence of strong solutions for this fluid-structure interaction system, extending a
previous result [3] where we supposed that the initial deformation of the beam was small. The main point of
the proof consists in the study of the linearized system and in particular in proving that the corresponding
semigroup is of Gevrey class.
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Figure 1: Our geometry

1 Introduction

This work is devoted to the mathematical analysis of a fluid-structure interaction system where the fluid is
modeled by the Navier-Stokes system whereas the structure is a beam situated at a part of the fluid domain.
We consider here the bi-dimensional case in space, that is the fluid domain is a subset of R? whereas the
beam domain is an interval. Another important assumption for our analysis is to assume periodic boundary
conditions in the direction orthogonal to the beam deformation. To be more precise, let L > 0 be the length
of the beam and let us set

I R/LZ. (1.1)

For any deformation n: Z — (—1,00), we also consider the corresponding fluid domain
Fo = {(z1,22) €T X R; @2 € (0,1 + (1))} - (1.2)

The boundary of F,, can be splitted into a “deformable” part

Ly < {(s,1+n(s)), s € I},

and a “fixed” part
def

]._‘71 =7Xx {O}

We recall the geometry in Figure
Let us denote by v and p the velocity and the pressure of the fluid. Then, the system modeling the
interaction between the viscous incompressible fluid and the beam is

0w+ (v-V)o—divT(v,p) =0, t>0, € Fpyu),
dive =0, t>0, z€ Fyu),
v(t,s,1+n(t,s)) = (0m)(t,s)e2, t>0, s€Z, (1.3)
v=0 t>0, xel'_q,
Buen + 0105555 — @25 = —H,(v,p), t>0, s €L,

with the initial conditions
n(0,-) =m, 9m(0,-)=n> and v(0,-) =v"in Fy. (1.4)

The two first equations correspond to the Navier-Stokes system, whereas the last equation is the beam
equation. We have considered the no-slip boundary conditions (third and forth equations). The canonical
basis of R? is denoted by (e1, e2) and we have also used the following notations:

def

T(v,p) = 2vD(v) —pla, D(v) = % (Vo + (Vv)"), (1.5)

By (0,p) = {1+ 100) /2 [P0, )] (t5, 1+ n(t,5)) - e2 ) (16)

We assume that the constants satisfy

v > 0 (viscosity), a1 >0, a2 >0.



Finally, the vector fields n is the unit exterior normal to fn(t): n = —ez onI'_1 and on Fn(t),

n(t,z1,x2) = 1 —0sn(t, 1)
(s = s )] (17)

An important remark is that a solution to (1.3)) satisfies

d L

@/ n(t,s) ds = 0.

By assuming that the mean value of 77? is zero, this leads to
L
/ n(t,s) ds=0 (¢t>=0). (1.8)
0
We denote by M the orthogonal projection from L*(Z) onto Lg(Z) where
def L
LY(T) = {f € L*(T) ; / f(s) ds = 0}. (1.9)
0
Taking the projection of the last equation of (L.3) on L3(Z) gives

Oun + Ain = —Hy(v,p), t>0, s€Z, (1.10)

where
def o
Hy (v, p) = MHy (v, p), (1.11)

and where A; is the operator for the structure defined by

Hs S I3(D), D(A) E HY(D)N I3(D), (1.12)
Al : D(A1) — HS, n— Oélassssn - a26ssn~ (113)

One can check that for any 6 > 0,
D(AY) = H*(T) N L3(T). (1.14)

The projection of the last equation of on Lg (Z')l allows us to determine the constant for the pressure
(see [3] for more details): at the contrary to the classical Navier-Stokes system without structure, here the
pressure is not determined up to a constant.

The classical Lebesgue and Sobolev spaces are denoted by L%, H ¥ and we use the notation C° for the
space of continuous maps and C,? for the space of continuous and bounded maps. We use the bold notation
for the spaces of vector fields: L* = (L*)?, H" = (H")? etc. Since the fluid domain is moving, we introduce
spaces of the form H'(0,T; LY(Fy,)), L*(0,T; H*(F,)), etc. with T < oo. If n(t,-) > —1 (t € (0,T)), then

ve H'(0,T; L(Fy) if y e vltyys,y2(l+n(t 1)) € H'(0,T5 L7 (Fo))
and similarly, for the other spaces. We also write
HS((T) € H*(T)NLy(T) (o >0).

Finally, we use C' as a generic positive constant that does not depend on the other terms of the inequality.
The value of the constant C' may change from one appearance to another.
Let us write our hypotheses for the initial conditions: there exists € > 0 such that

W eWS(@)NIAT), 1Y€ HYH(T) 7l > -1 i, (1.15)

v’ e H' (Fpp), (1.16)

with
dive® = 0 in Fn0 (s, 1+ 10(s)) =n3(s)ez s€Z, =0 onTl_y. (1.17)

Our main result on (1.3) is the existence and uniqueness of strong solutions for small times:



Theorem 1.1. For any [v°, 03, n3] satisfying [.15)-(L.17), there exist T > 0 and a strong solution (1, v, p)
of (L.3) with
n(t,) > -1 telo,T], (1.18)

ve L*(0,T;H(F,) n CO([0, T); HY (F,)) N H'(0, T; L*(F,)), pe L*0,T; H'(F,)), (1.19)
n € L*(0,T; Hy*(2)) n C°([0, T); Hy*(2)) N H'(0,T; Hy "™ (Z)),
dm e L*(0,T; HY*(T)) n C°([0,T]; HY*(T)) n H' (0, T; (Hy*(T))),
the first four equations of (1.3|) are satisfied almost everywhere or in the trace sense and (1.10) holds in
L*(0,T; HY*(T)").
This solution is unique locally: if (n<*),v<*),p(*>) is another solution with the same reqularity, there exists
T" > 0 such that

(1.20)

(0™ p) = (n,v,p)  on [0,77].
In order to prove the above result, a first standard step consists in rewriting the Navier-Stokes system in
the fixed spatial domain
FE Fop, (1.21)
by using a change of variables. Then, one of the main ingredients to obtain Theorem is a result on a
linear system associated with (|1.3):

Ow —divT(w,q) =F, t>0, y€EF,
divw=0 t>0, y€F,

w(t,s,14+n](t,s)) = (8n)(t,s)ea t >0, s €T, (1.22)
Oun + Ain = —Hng(w,q) +G, t>0,s€eTL,
with the initial conditions
For this system, we have the following result
Theorem 1.2. Assume
mewr=(Z), nl>-1 inl
Suppose F € L*(0,00; L*(F)) and G € L*(0, oo;D(A}/S)), e >0,
¢ e HYT (D), ¢ e Hyt*(Z), w’e H'Y(F), (1.24)
divw’ =0in F, w’(s,1+¢(s))=C(s)ex s€Z, w’'=0 onT_i. (1.25)
Then (1.22)-(1.23) admits a unique solution
w € L*(0, 00, H(F)) N G4 ([0, 00); H' (F)) N H' (0,00 L7(F)), g € L*(0,00; H' (F)/R), (1.26)
0 € L*(0,00; D(A]'®)) N C1([0, 00); D(AT™) 1 H' (0, 003 D(AT)), (1.27)
and
din € L*(0,00; D(A}*)) N CY([0, 00); D(AT'®)) N H' (0, 00, D(A;®)). (1.28)
Moreover, there exists Co > 0 such that
||wHL2(0,oo;H2(f))ncg([o,oo>;H1(f))mHl(O,oo;LZ(f)) + llallz2 0,002t (7)/m)
+ ”’7”L?(o,oo;DmI/S>>ncg([o,oo);D(A§/8>)mH1<o,oo;D(A?/8)>
+ HamHL2(o,oo;D(A?/S))mcg([o,oo);D(A}/g))mHl(o,oo;D(A}/g)')
< Co ([l llexs ) + 1162 /sy + 1168 1)
1P 2000n2) + 1G] 2o wpiat ey ) - (129)

In [3], we obtained Theorem only in the case 77(1) = 0 so that the result on was reduced to the
case of small initial deformations. Here we are no longer restricted to this hypothesis. As in [3], the proof
of Theorem [I.2] relies on resolvent estimates and results on semigroup of Gevrey class. More precisely, it is
a consequence of Theorem



Remark 1.3. As explained above, the main novelty here is to remove the restriction of smallness of 77? that
was needed in [3]. Our method to obtain the result for the linear system is based on commutator estimates
(see Section . The main drawback of such approach is that we need a more reqular initial deformation
(W7’°° instead of H3+5). Even without this condition, we have as in our previous result a loss of reqularity
for (n,8m): the continuity of (n,dm) lies in H**(0,L) x H"*(0,L) but we need to impose that at initial
time, it belongs to W7’°°(0,L) X HHE(O,L) for some € > 0. This is due to this model that couples two
dynamical systems of different nature and in particular the linear system couples the Stokes system
and the beam equation and the corresponding semigroup is not analytic but only of Gevrey class as stated in
Theorem [L.2.

With an appropriate damping on the beam equation, we can recover an analytic semigroup. More precisely,
in the original model proposed in [11] (for the blood flow in a vessel), the beam equation in is replaced

by

8tt7] + alassss'r] - 0428537] - 58tss77 = _Hn (U,p), (130)

with 6 > 0.

Several works analyze such a model: [6] (existence of weak solutions), [4)], [10] and [8] (existence of strong
solutions), [12] (stabilization of strong solutions), [Z] (stabilization of weak solutions around a stationary
state). In all these works, the damping term —00:ssm is crucial. Few works have tackled the case without
damping: the existence of weak solutions is proved in [7]. In [J], the existence of local strong solutions is
obtained for a structure described by either a wave equation (an = 3§ =0 and oz > 0 in ) or a beam
equation with inertia of rotation (a1 > 0, as = & = 0 and with an additional term —Ossn in )
Finally, in our previous work [3] we proved the existence and uniqueness of strong solutions in the case of
an undamped beam equation but for small initial deformations.

The outline of the article is as follows: in Section [J] we construct and use a change of variables to
write system in a cylindrical domain and then linearize it. Section |3|is devoted to the introduction of
several useful operators together with their properties. In order to prove Theorem [[.2] we need to estimate
commutators appearing due the fact that our initial domain F is not flat. Such estimates allows us to
deduce resolvent estimates in Section [6| by estimating the inverse of the operator Vi (see (6.6])). At first, we
first estimate an approximation of V, ~ in Section |5} Finally, in Section [7] we recall the idea of the proof of
Theorem [T.I] based on Theorem [I.2] by using a fixed point argument.

2 Change of variables and linearization

2.1 The system written in a fixed domain

In this section, we defined and use a standard change of variables to rewrite system ((1.3) in a cylindrical
domain. We set

: 1+ 7°(y1)
X’IIWZ : .Fnl — ‘Fﬂ2’ (ylv y2) — (yhyQ 1+ 771 (y1) s (2.1)
whose inverse is X, 2 1. In our case, we consider
det ) 1+ n(t,y1)
X(t,) = Xn?m(t) D (y1,y2) = (yl’yQW ) (2.2)
det -1 _ . 1L+ 79 (1)
Y(t,)=X(@-) = Xn(t)m‘f Dz, w2) = <m1,x2m s (2.3)
so that X (¢, -) transforms F = F,0 onto F,«). Then, we write
def * def *
a = Cof(VY)", b= Cof(VX)", (2.4)
w(t,y) Z b(t,y)o(t, X(t,y))  and  q(t,y) = p(t, X (L)), (2.5)
so that
o(t,z) = a(t,x)w(t,Y(t,z)) and p(t,x) =q(t,Y(t ). (2.6)



After some calculation (see for instance [3]), system (1.3]), (1.4) rewrites,

ow — divT(w, q) = F(&,w,q) in (0,00) x F,
divw =0 1in (0,00) X F,
w(t, s, 1) = (0m)(t,s)ea t>0, s€, (2.7)
w=0 t>0, yel_,
atm—&—Am: —Hng(w,q)—kén?(&,w), t >0,

with the initial conditions

n0,) =ni, 9m(0,) =n3 and w(0,y) = w’(y) = b0,y (X(0,y)) (y € F), (2.8)

where we have the following definitions:

= o 8? azk Oagk Owi, OYy
Fa( Z v baivg g (Xwk +20 Y baig (X (X)
i,5,k ©,5,k,€ 8 i ayl 83:
aQwa oYy, . OYpm Owe &> n
' Vj;n YyeOym (8%( ) Ox; (X) = 8es mJ) v Z Oye 8$

) NG ) 2 o
; (d t(VX) o 2 (X) axl( ) — 5a,25,€,1>

Bam 1
; X)ajm (X )wrwm — W [(w-V)w],

~ o) (Xul, — [(Tw)@Y)(X)], . (29)
Gy w)(t.s —vM{ 2[62,;@62,4—%@)%@)}%}’“w(n—n?)(

k.l

811}2 + 8w1)
8y1 8y2

Yy Owy, )7 Owy,
+ 0s7m [Z <a2k(X)8Tvl(X) - 52,1«51,2) D + ; (alk(X)BTcg(X) _ 51’,652,[) aw]

kL

+3 (o |Gz + G2 00| - 2522 00) wk}u, s14m(). (210)
Moreover, we recall that
Hg (1,q)(t, 5) = M { (14 [0082)"/2 [T(w, p)n] (¢, 5,1+ 73(5)) - e } (2.11)

2.2 The linear system

From the previous section, and in particular from system (2.7)-(2.8]), we are led to consider the linear system
(1.22)-(1.23)) written in the fixed domain F (defined by (1.21)). We introduce the notation

CrE{reC; Re(\) =0}. (2.12)
Ci={heC; Al >a}. (2.13)
Let us consider the following functional spaces
VO (F) & {f cH(F); divf = o}, (2.14)
VY(F) d:ef{feHe(]-') S divf=0, f-n=0 on 8]-'} (0 €[0,1/2)), (2.15)
VI(F) ‘*:ef{fer’(f); divf=0, f=0 on 8]—'} 0 e (1/2,1]), (2.16)



0 def 0 ; -n = > 0). .
V(@J-‘)_{feH(c’)]-'),/aFf dy o} (0 > 0) (2.17)

We introduce the operator A : L*(Z) — L*(8F) defined by

%
Mn(s)) e if y=(s,14+ni(s)) € Lo,

An)(y) =
(An)(y) = ( (2.18)
(An)(y) =0 if yel 1.
The adjoint A* : L*(0F) — L*(Z) of A is given by
(A"v)(s) =M ((1 +10:15 ()| 20 (s, 1 4 n(s)) - 62) . (2.19)
Since 7y € W"*°(ZI), then for any 6 € [0, 4],
A(H(T)) ¢ V°(0F) (2.20)
and
A*(H(8F)) c D(AYY). (2.21)
In particular
0/4 0/4
ANk o7) 2 cONAY nllns  (n€ D(AYT)). (2.22)
We can also define the Stokes operator
DA) ¥ VL(F)NH*(F), AL PA:DA)— VIUF), (2.23)
where P : L?(F) — V5 (F) is the Leray projection operator.
We consider the space L? (F) x D(A}m) X Hs equipped with the scalar product:
([ ® 0] [0 0, 0P ]) :/ w® - w® dy+ (A0, A0 P) (008
F Hs Hs
and we introduce the following spaces:
H {[w,m,ng] € L3(F) x D(A)?) x Hs ; w-n = (Ana) -n on 8F, divw = 0in ]:} , (2.24)

y e {[w,m,ng] € HY(F) x D(AY*) x D(A}*) ; w = A on 8F, divw =0in ]-'} .
We denote by Py the orthogonal projection from L*(F) x D(A}m) x Hs onto H. We have the following
regularity result on Py (see [3]):

Lemma 2.1. For any 6 € [0, 1],
Py € LH’(F) x DA% x D(AY*Y), (2.25)

and
Py € L(L3(F) x D(AY®) x D(AY®)). (2.26)

We now define the linear operator Ag : D(Ao) C H — H:
D(Ao) VN [HQ(}') % D(A1) X D(A}/Q)], (2.27)

and for [w,nh 772} € D(Ap), we set

Aw
_[w
Ao [ | 2 o (2.28)
2 —Aim — A" (2D(w)n)

and ~
Ao & Py A. (2.29)



By using the above operators, we can rewrite the linear system (1.22)), as follows

dlw w F w w®
= Ao | n | +P [0], n|©)=|nt]|. (2.30)
8,57] 81577 G at’q 7)8

We also recall the following result (see [2] Proposition 3.4, Proposition 3.5 and Remark 3.6]).

Proposition 2.2. The operator Ao defined by (2.27)—(2.29) has compact resolvents, it is the infinitesimal
generator of a strongly continuous semigroup of contractions on H and it is exponentially stable on H.

We have also the following result (see [2, Proposition 3.8]).
Proposition 2.3. For 0 € [0, 1], the following equalities hold

D((~A0)’) = [H”(f) x D(AYF0/2) D(Af”)] NH if 0€(0,1/4), (2.31)

D((—A0)?) = {[w, m, 2] € [H”(f) x D(AY0/2) D(Af/z)] NH;w=Ans on 8]-'}
if 0€(1/4,1). (2.32)

One of the main goals of this article is to show the following result:
Theorem 2.4. There exists C > 0 such that for all A\ € CT

A2 ||(AL — Ao <C. (2.33)

)" e

Moreover, there exists a constant C > 0 such that for all A € C*

||()\I — A0)712H 7/8 3/8 + Al ||()\I — A0)71Z||

H2(F)xD(A;"")xD(A] L2(.7:)><'D(A:1;/8)><D(A}/S)’

S Cllzllce () pas/syxpials®

(z eMHN (L2(]-') x D(AY®) x D(A}/S))) . (2.34)

Using the above theorem and Theorem 5.1 in [3], we deduce Theorem

3 Definition and properties of some operators

This section is devoted to the introduction of several operators that are used to prove the resolvent estimates
in Theorem In this section we assume 77(1) S W4’°°(I). It implies in particular that the domain F is of
class C**.

For all A € C", we define the solution (wy, g,) (that depends on ) of

Awy, — div T(wy,¢y) =0 in F,
divw, =0 in F, (3.1)
wy =An  on OF,

where A is defined by (2.18). The above problem is well-posed (see, for instance, [3, Proposition 4.4]) and if
we define the operators

Wan = wy,  Qan = gn, (3.2)
since F is of class C**, we have
Wi € L(D(A]*), H*(F)) N L(D(A}*), H"(F)) N L(D(A}/®),L*(F)) (3.3)
and
Qx € L(D(AY®), H' (F)/R). (3.4)

We also define the operator
Ly € L(D(AY®), D(4,%)



by
Lxn =T {T(wn, q7l)n|8]-'} . (3.5)

We decompose Ly with the operators
K € L(D(A)"), D(AY%),  Gx € L(D(A)%), D(AT®)) N L(D(AY®), D(4)")
defined by
(KA, C) 4173y pal/oy déf/fwn - wedy (3.6)

and
<G)\77,C>D(A1/S), DAL £ 21// Dw,, : Dwedy = 21// A*((Dwy)n) ¢ ds — 1// Aws, - wedy.
e 1 F 0 F

(The second relation holds if € D(A:f/ ).
The operators K and G are related to the operator Ly defined by : multiplying by w¢ and
integrating by part, we deduce that
Ly = MK + Gy. (37)

We recall the following result (see Proposition 3.1 in [3]):

Proposition 3.1. The operators Kx and Gy defined above are positive and self-adjoint. Moreover there
ezist 0 < p1 < p2 such that for any A such that Re A > 0, we have

1/8 1/8 —1/8 1/8
PUlAY*nls < (Gamm) i a1ss, poarsy < o2 (14T nlfes + MIAT o0l ) (e D)), (38)

—1/8,_12 1/8\7
0< <K>‘777n>D(A}/S),’D(A}/S)/ < pZHAl 77“7‘1.5 (77 € D(Al ) ) (39)
Note that we have
Kxn = —A{T(on, m)nlor} (3.10)
where o
Aoy — divT(pn, ;) = Wan  in F,
divp, =0 in F, (3.11)
pn =0 on0F,
and where W), is defined by (3.2).
Next, we define an important operator in what follows:

Va = NI+ ALy + A1 = N2 (I + K»)) + AG» + Ay, (3.12)
and an “approximation”:
Va NI+ Ky + 2004 + A, (3.13)
where p > 0 is a constant to be fixed later.

Let us consider

div 0 in F, (3.14)

Mo —divT(v,p) = f in F,
i]\:
U= on OF.
Proposition 3.2. Lety € [0,1/4), 6 € [v,1].

1. There exists C > 0 such that for any f € HZA’(]-') and for any X € Cf, the solution (T,p) of (3.14)
satisfies
~ 0—~—
[Bllzz20 7y < CIA" ™" 7|l ) - (3.15)

2. There ezists C > 0 such that for any f € H* (F) and for any X\ € Cg, the solution (0,p) of (3.14)
satisfies

[9llges20 7 + [Bllrrc2o ey < € (NI ey + I o ) - (3.16)



Proof. Using that the Stokes operator A (defined by (2.23)) is the infinitesimal generator of an analytic
semigroup and that CJ C p(A), we have the existence of a constant C such that

[(=A)* (AT — A)719‘|L2(F) < C|>‘|a71‘|g”L2(]—‘) (9 € Va(F), AeCq, a€0,1]).
Using that for v € [0,1/4), P € L(H*(F),D((—A)")) (see [T, Section 2.1]), we have
I(=A)"BfllL27) < Cllflezvir (v €[0,1/4), f € HY(F)).
Gathering the two above estimates with the fact that D((—A)%) ¢ H?*’(F), we can deduce

[ollezo ) < C [[(=8)° L= ) BF| < O ez -

L2(F)
For the second estimate, we use the following classical estimate for Stokes system:
[9leg2 430 ey + [Pllerssao zy < € (Al eczo iy + 11 ez )
and we combine it with (3.15)). O
Using the above proposition, we can define the following operator
Th € LILX(F), D(AY®)), Taf = —A" {T(%,p)njor} - (3.17)

We have in particular that the norm of 7y in £(L?(F), D(A}’®)) is independent of A.
Proposition 3.3. For 8 € [0,1], ¢ € (0,1/4) and X € C{, the operators W and Qx defined by (3.2) satisfy

IWanllgszo ry < CIAT g (0 <1/4), (3.18)

IWanlleszocry < C (14327 Pllaeg + NIATPnllng ) (0> 1/4), (3.19)
IWanlleszo ey < C (14727 *nllaeg + N4 lnllas ) 0> 1/4 =<, (3.20)
WA lsz220 ) + [ Qanllmsaory < C (1A nllaes + YA e ) (3.21)
IWanllegze20 () + [ @anll e szocry < C (AT s + NP+ Il ) - (3.22)

Proof. We write
Win = Won+zy,  Qan= Qon+ (n,

with
Azy —divT(zy, () = —AWon in F,
divz, =0 in F, (3.23)
znp =0 on OF.

Using , there exists a positive constant C' such that
1Wonllesze iy < CIIAY* ™ ®nllas (6 € [0,2], n € D(AT*%)). (3.24)
Combining the above relation with we deduce the following relations:
lznllezo ) < CIA AT P nlls,
lznllszoz) < CIAY T Fnllas i£6 € [0,1/4),

Iznllezze ) < CIN T4 Il (02 1/4 —¢).

Then ‘3.18‘, I3A19’ and ([3.20) follow by combining the above inequalities with ([3.24)).

From (3.16) we deduce

e+60
lznllezzs20 ) + Iallrao ey < C (AP H | Wonllggajamze ) + INIWonllgszogry ) (3:25)

10



and
125 lex2+20 (7 + 1[Gl rree 7y < C (|>‘|1+0HW077”L2(]—') + |)‘|HW077||H29(]-')) . (3.26)

Moreover, from (3.24), we have

2]

1
; o
|>‘|||W077||H29(]-') <C <|>\|1+9||W07I||L2(f)) o (||W077||H2+29(J-')) e
< C (IWonlsszs0 ) + A Wonllea iy ) < © (A2 g + I OIAT 5 llacs )

and

6—1/4+¢

1
IMIWonllgze (7 < C (|)‘|1+971/4+5”WOnHHl/Q*?E(]—')) e (‘|W077|\H2+29(f)) Promt/ate

0 6/24+3/8 0
< C (IWonllgsas20z) + AP Wonllgja-e () ) < C (1AV* g + NP4 Il ) -

Combining the above estimates with (3.25) and (3.26]), we deduce (3.21) and (3.22). O
Proposition 3.4. Let 6 € [1/4,1/2) and X € CJ, then

147 Kxnllres < CIIAY ™ llpes. (3.27)
Let e € (0,1/4), A € C{ and 0 € [1/2,2], then
147 Kxnllres < C (14727 4nllacs + 1072 s ) - (3.28)
Proof. From and properties on the trace operator and on A*,
1422 Ksmllres < C (Ilpnlegs ava0 ey + Il gasovan ) - (3.20)

Using (3.11)), (3.16) and (3.18]), we deduce from the above estimate that

0/2 0/2—1/4
1A Kanllas < ClIWanllgzo-1/27) < CIAY > 4]l

if 6 €[1/4,1/2).
On the other hand, if 6 € [1/2,2], using (3.11)), (3.16), (3.18) and (3.20), we deduce from (3.29) that

0 —
AT Knllas < C (I/\|9 Y Wl 22 () + ||W/\77HH29*1/2(]-‘))

< O (NP2 s 114772

|Hs)-

O
Proposition 3.5. Assume a > 0. Let 0 € (—1/2,1/2), then
14372(T + K3) " Mallws < CIAY *nllns - (A€ CT). (3.30)
Lete >0 and 0 € [1/2,2], then
1YL+ Kx) M llaes < C (147 nlls + N7 llnllag ) (A € CL). (3.31)
Proof. We write
C=U+EK)n (=n-Kx
First, using the positivity of K stated in (3.9)), we find
[Cll#s < llmlls- (3.32)
Moreover, we have the relation
0 0 0
1432 Cllaes < 1432 nllaes + 14T 2 KnC s - (3.33)
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Assume first § € [1/4,1/2). Then combining (3.27) and (3.32) with (3.33)), we deduce (3.30). Interpolating
(3-30) and (3.32)), we also deduce that (3.30) holds for 6 € [0,1/2). To prove (3.30) for 6 € (—1/2,0) we use
a duality argument. First, for 6 € (0,1/2) (3.30) can be rewritten as

AT (I + Kn) T AT o) < oo,
Thus, noticing that (Af/Q(I + KA)_IAIH/Q)* = AIG/Q(I + KA)_IAi)/2 we also have
IAT?2(1 + Kx) 7 A2 2 < oo,

which is equivalent to ) for 6 € (—1/2,0).
Next, we assume 6 € [1/2 2] and € > 0. We deduce from and ([3:28) that

145 Cllns < 1ALl +C (HA?/““CHHS I s ) (3.34)

If0 € [1/2,1), then 6 —1/2 € [0,1/2) and we can use (3.30) and (3.32]) in the above relation to deduce (3.31).
If 0 € [1,3/2), then § —1/2 € [1/2,1) and we can use 3 31) and (3.32) in (3.34) to deduce

6/2 6/2 6/2—1/4 60— 60—
1472 Cllaes < 14 2 nllmg + € (A>T "l + NPT + A4 lles ) -

Since |A| > a we have |A|”7'7 < o Y2A\?72% and it yields (B.31). We can then repeat the same
argument for 6 € [3/2,2) and 0 = 2. O

4 Commutator estimates

The aim of this section is to show the following result:

Lemma 4.1. Assume 1} € W"™(Z). For e € (0,1/4), there exists a constant C > 0 such that for any
XecCy,
AT, Kalnllzes < CONTHIAY 2 = nllg + A Inllacs)-
Here we have denoted by [A, B] the commutator of A and B: [A, B] = AB — BA.

4.1 The system written in a domain with a flat boundary
We transform the systems (3.1) and (3.11)) written in F = Fyo into systems written in the domain

Fo=27Ix(0,1).
We use the change of variables

X:Fo—F, (y1,92) = (y1,92(1 +10(31)))

?:f—)fo, ($1,$2)0—> (ml,L>.

L4 nf(x1)
We write
@< Cof(VY), b Cof(VX)".
We set _ B B
w(y) Zby)wX(y) and  Gly) = (X)), (4.1)
so that _ _
w(z) =a(z)w(Y(z)) and q(z)=q(Y(z)). (4.2)
We set

]Lw] def me@ ak wk+2 Z bmaalk > 8wk 8Y4(X

vt T 8% 8yz ox;
%Wy (9Y4 AWy 02 Yg
+ Z 8yg8ym 31’] Z Oye ax (4-3)
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(4.4)

def 7(] > BYk
(Galo = det kz oYk 83:1 axl (X)

Then some calculation yields
= [Lal,, [Ve(®)] =(cd, (4.5)

[e3

We recall the derivation of (4.5)) in Appendix
13.1) and (3.11)) and using the change of variables (4.1)), we introduce the new

We now consider systems

[BAw()?)]

~ def

states
~ def 7
wn—b(wnoX) Qn—(InoX

~ def7°
LPn = by o X ),
From the above relations, systems (3.1)) and (3.11) are transformed into the following systems

AWy, — VLw, +Gg, =0 in Fo,
divi, =0 in Fo, (4.6)
Wy = Aon  on 0Fo

~ det
Ty —Tr,,oX

and o
Apy — VLo, + Gy = wy  in Fo,
div@, =0 in Fo, (4.7)
¢n =0 on dF.
Here, we have also transformed the operator A defined by ([2.18]) into the operator Ag : L*(Z) — L*(8F0)
defined by
A 1) =M
(Aom)(s1) = (Mn()er ws)
(Aom)(s,0) =0
From (3.10) and (2.19), we have the following formula
—0sn?
Kxn=-M (VD(gon)(s, 14+ 710(s)) { ’171 (8)] cex — (s, 14+ n?(s))) . (4.9)
(4.10)

M (VDZE;(Sv 1) - %77(57 1)) )

Thus
Kyn=—
with
— 1 0 8a2k ‘Pn k 8Ye )k aYy
Dy, = = (-0
¥n 2( m) zk: 0z1 )(@n) k+za2k 0ye 33:1 ; 82/[ Bm( %)
e 0% 50411y

Gazk
+ Z kz 8ye D72

In what follows, we write the above operators by splitting the derivatives with respect to y1 and y2. More

precisely, we introduce the set o8 (B > a) of operators of the form
fedoe? o, (4.12)

i<a

(k) are functions of the form
(4.13)

where c;
95 (y1), v2),

P =aGmd (), -,

K3
with & a smooth function and k € N. These operators are thus depending on y» but it can be seen as a

parameter.
For instance, using (A.1)—(A.8)), we deduce
Lf =L®f +LV0f +LV8f, Gf=6"f+6%af,  (414)

Df =DM f + D8, f,
where L& € 03, DU LM 6M € 03, DO, L, G € 0F.
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4.2 Commutator estimate

First we show the following result:

Proposition 4.2. Assume B € 0% and n e W4+B’°°(I). For any 0 € (0,1) and for any s > 0, if
s> 40 + a — 1, then there exists C' > 0 such that

(MBI | | <Clfllusy (f € B (D). (4.15)

L2(T)

Proof. We write
Bf = ¢’ oif.

i<a

Then we recall the following formula (see for instance [I3], p. 98]):

A= L [T A ar
= raraog ), ¢
In particular,
[AIM,B] = A{MB — BAIM = A{MBM — MBA{M — (I — M)BAM + A{MB(I — M). (4.16)

By using the identity A;(tI + A1)"" =1 —t(tI + A1)~ " we deduce that

Ay (tT + A)) " MBM — MBA, (t] + Ay) "M = —t(t1 + Ay) " MBM + tMB(tI + A;)" ' M
= t(tI4+A))  (—MBEI+ A+ (T +A)MB)(tI+AL) "M = t(tI+A))  (~MBA,+ A, MB) (tI+A,) " M

and the first two terms in (4.16)) give

1 > N i
A'MBM — MBA'M = 7/ Ot + AT M[ALM, B)(t] + A1) M dt.
1 1 T =0 /, (tI + A1) [A1 M, B](tI + A1)

Moreover,

[A\M,Blf = (010} — 207) MY P 7001f =" 790 (010} — 207) Mf

i<a 1<
= (0} — a207) Y701 f = > el 7V01 (0] — 020l f
i<a i<a
and thus
[A1M,B] € 0515, (4.17)

We deduce that for f € H*(Z),

1 o _ _
[(AYMBM — MBAYM) f||12(z) < 9)/ PNt + A1) T  MIAIM,B)(t + A1) M| 2o dt
0

(01—
< c/ "M I[AL M, B](t] + A1) M f]| 2y dt < c/ UL + A)) T M f || gavar dt
0 0

—s

1 a—1 oo a+3 s
<c(/ A+ A) T AT Mg de+ [ ATT @4 AT A M e dt)
0 1

1 oo
_ _ 1
<C (/o " M £l gra—1 () dt+/1 t0 17t1*(a+3*5>/4 | M £l #r= () dt> < OIM fllgs ). (4.18)

For the third term in (4.16)), we write

(I = M)BAYM [ = %/ <Z cgﬁ—”a;A?Mf) ds = %/ (Z(_l)zAgMaicgﬁ—w) I ds
0 0

i<a i<a

%/ Alt <Z(—1)1M(a18{+4—azai“)cgﬁ1)) fds (4.19)
0

i<a
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that yields

I(T = MYBAYM f|2(z) < C (Z ||c§“>||m+4(z>> £l 2z)- (4.20)

i<

For the last term in (4.16)), we simply write

1 L
IASMB)T = 30y = A1) [“ras| < Ul 2o
0 L2(7)
Combining this, (4.20) and (4.18)), we deduce the result. O

From Proposition and (@.14), we deduce in particular that if n{ € W"°°(Z) then for all € > 0 there
exists C' = C(e) > 0 such that

|4/, iy

L2(T) <C ||fHH3/2+6(I) (4-21)

and

H[A‘i’/SML]f’ < Cllf llgga/are ) - (4.22)

) < C||f||H5/2+g(}—0)7 H[A?/gM,G]f‘

L2(Fo
We are in position to prove Lemma {4.1]

Proof of Lemma[]-dl We recall that K is given by (3.70), B-11), (3-2) and (3.1). After the change of
variables, we have formulas (4.10)), (#.11)) and (£.14) and thus

L2(Fo)

[AY® K\n = M [VD, Ai/SM] Fn(s,1) — MuD@(s, 1) + M7 (s, 1) (4.23)

where
$=A My — G o5, and T =AY M7, — 7 578 . (4.24)
1" 1"
From and ([£.7), we have
A — VLG + GF = @ + [AY3 M, vL) 5, — [AY°M,G]7, in Fo,
divg =0 in Fo, (4.25)
@/ =0 on 8.7:0

where ]
@ =AY Mw, — @55, and  g= A MG, — Gars,
satisfy
NG — VLo ~ [ 43/8 ~ [ ,3/8 ~
w —vLw + Gq = [A}" M, vL|w, — [A7""M,Glg, in Fo,
divw =0 in Fo, (4.26)
w=0 ondFy.

From (3.15), (3.16) and using the change of variables in Section [{:1} we deduce

~ — 3/8 ~ 3/8 ~
|@llacry) < CIATH|AY* M, vLI@, — [43° M, Glg,|

4.27
L2(Fo) ( )
and

1Bl m) + 7l ey < C || @+ [AYM, 011G, - [4Y°M,GIF, (4.28)

L2(F) |
From (4.27), (4.22), (3.22) and using the change of variables in Section we deduce

~ — ~ ~ — 1/2 2
Il gy < O (Ialless/zve gy + 1Ballissravecryy ) < C (AT nllaeg + A lInllcs ) - (4:20)
Using (4.28]) and (4.22), we find
@lla2 (7o) + 1Tl a1 (7o) S C (”’[EHLz(]‘_O) + 1@nllex5 /242 () + ‘|%77||H3/2+5(J-'0)) : (4.30)
From (3.16)), (3.18), (3.20) and using the change of variables in Section we deduce

||5n“H5/2+5(f0) + ”%”IHHB/QJFE(_‘FO) <C (|)‘|€H{6”IHH1/2*E(FO) + H{En”Hl/Hs(fg))

< C (IAFImllaes + 1147 nllns ) - (4.31)
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Combining the above equation with (4.29) and (4.30), we deduce

~ ~ — 1/2 2 2
1lleez ) + Il ) < € (INHIAY >l + NIl + 145 *llncs ) - (4.32)

By using the above estimate, (4.23)), (4.31]), (4.21)), and trace estimates,

1 ksl < [ [0 AYEM) B 1)+ IMDEC, D)l + IMFC D)l
~ ~ ~ — 1/2 2 2
< C (IBallsree oy + 1Blee2 ) + 17l my) < € (AT 1AV llas + A Imllacs + 14T *nllacs ) -

The conclusion follows from

1 e

14T nlrs < (NIInllg) T2 (1A 1AL nllaes ) 7 < € (INF Il + IN7H1AY > llsg ) -

5 Estimation of ‘N//\_l

The aim of this section is to estimate \N//\fl where Vj is defined by (3.13). We recall that the notation CJ is
introduced in (2.13).

Theorem 5.1. There exists a > 0 such that for all A € (C; the operator ‘N/)\ : D(A1) — Hs is an isomorphism
and for 6 € [0,1] the following estimates hold

sup A2 AVT | 2wy < 400 (5.1)
rect
Moreover,
—260 O r*—
sup [A¥ 272 AIVITY coas) < Ho0. (5.2)
rect

Proof. Note that it is sufficient to consider the cases § = 0 and § = 1, the other cases are obtained by

interpolation.
Let us consider A € C} and n € D(A;). Then from (3.13)

~ 2 2
Van 2041*n Ay
_ = [ K _— .
\2 I+ EKn+ 2 + 2 (5.3)
Hs Hs
Using (3.9) and Proposition we deduce that
Inllaes < I+ Ex)?nllacs < Clinllns- (5.4)
Thus, combining (5.3) and (5.4), we deduce
~ 2 2
Van I+ K724 | (L+ K72
e > ([+K,\)1/27)+2p( ))\ L + ( ;2 !
Hs Hs
2
_ A 2 I+ Ky)~ /2414
= |(1+ K72 (n+ FKoan + 55 +4p° d+ K L1
2 )|, )y
s Hs
+4pRe (L |a® H2 +4pRe #<(I+K )~ A, A ) (5.5)
P Y 1 77Hs P BB A 11,41 1 ns ) .
We can write
(Um0 Am At =10+ )2 AT Pl + ([ 4+ KAV Ao A )
= (2 + K072 AY Pl 4+ (U 4+ KT AV, [AYS K] (4 KT A ) (5.6)
S
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Let use introduce the following notation,

€ 1 —_ —
O apRe (o (1K) AY5, [AY° ko] (14 k)~ Al ') ). (5.7)
‘)\‘ A Hs
Using (5.4 . and . in we deduce,
~ 2 2
% A At
S5 Hn+Kw+len i +Cy (5.8)
Hs Hs Hs
and thus
Van) ’ A ]? Ain " ’
S e (e ke | 4| -2 (Getas ) |+ |4 fon (59)
Hs Hs Hs Hs
Let us estimate
Ain
‘<;2 (I+K>\)17>
Hs
To do this, we start by noticing that
|Asm | < CIAY Dllas 14T il
On the other hand, using ([3.28)),
|Aum, Kam) g | < I Il Al
so that
| (A, (5 + B, | < CILAY s (uAi/‘*nan - |>\E||77|Hs)- (5.10)
From interpolation inequality and Young inequality we deduce
] 2
ns o (M) <o (|52
< < Nllus | - (5.11)
IA[3/2 A2 e s

3/4

Moreover, from the interpolation inequality || A "7l

3/4 1/4 1/3 2/3
INEAY “nllacsInllzes < CINFIAY “nll3 21 Avnll32 1nllas <

. A
< C|A|4/3+ ||A1/477||H5 <H in

Hence, combining ((5.10)), (5.11)) and (5.12) with € < 1/6 yields

< O3 AY s

C||A1/477||1/3||A177H2/§, we also deduce

Alr]
)\2

1/3

||77H
Hs

+ |77|'Hs> - (5.12)

A
[, (14 K| < O AY il (H L +|Inllﬂs>7 (5.13)
Hs
and we thus obtain
2
A AV L1 A
’<§f,(1+m>n> <op | g (] 5 I Kl )
Hs Hs
Then with (5.9) it yields
2 ~ 2
A4 1% A ]?
Cal + A || 252 2 > o (1T + Kl + || 55 :
A A 22|,
Hs Hs s
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and with (5.8)), since |A| > a with a > 0, we deduce

V
IAlEAl + AT || 55

A
<w+mm% Hm

Hs

S>
where Cj is the product defined in (5.7).
Next, let us now estimate |A||Cx|. Using Lemma [4.1| and Proposition we first deduce,

|[500, AY5) (14 K0~ Al

Hs

CUNTHIAY (1 + Kn) T A s + EIU + K) ™ A *nllacs )
CUN T AT  nllacs + T2 AV  nllaes + AI1AY *Rllms)-
Thus, with (5.7) we obtain,
AICA < CIN 1A nllaes (I 1AY g + AL “llas ) -

From interpolation inequality and Young inequality we deduce

HA5/877
1
H | A1n|l# 3/8 Aﬂ]
s - <C o HH/\ +Inlls |
|A[/ RY
Hs
HA?/HEW 3/4+e
H |A177 |H 1/4—¢ A177
|\|3/2+22 = SC(‘ |/\‘|2 S) I H / < (H Jr||77H7-ts )
and
HA1/477
1
H A7l % 3/4 A17]
[A[1/2 = <C< RE = H H / < +||77||7‘ls :

The above estimates with (5.16) yield,

NN u|““%<W“"

2
+ ||77||H,5) )
Hs

and by combining (5.14) and (5.17), for |A| > « and « > 0 large enough we deduce,
~ 2 3
[ € (AP Imles + 01 lAwmlR, ) -
S

Then (5.1)) is proved for @ = 0 and 6 = 1 if we show that Vj is invertible.
For that, we first deduce from Proposition that

Vi = NI+ K)) + 20041 + Ay

Since A € CT if A € CF, we perform the same calculations as above that led to (5.18) to find

> C (I Inles + A Awmll,, )

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

Relation (5.20) yields that the image of Vi is dense in Hs and relation (5.18)) implies that the image of Va

is closed in Hs and that V) is injective. We then deduce that V) is invertible.

Finally, (5.20) gives (5.2).

Corollary 5.2. Let o > 0 be given in Theorem For 0 € [0,1] and 8 € [0,1] such that 0 + 8 <

following estimate holds
Sup |A|3/2 26— 2B||A9VA lA ||£<’HS) < 4o0.
/\E(C
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Proof. From (5.2) we deduce

—1/2 Tr—1\*
sup [\ 21V ) Il ers peay)) < +oo,
rect

from which we obtain by duality,

sup [N 72Vl eepiary sy < oo (5.22)
xeck

By combining (5.22)) with (5.1)) for # = 1 with an interpolation argument yields,

sup. |)\|71/2||V;1||g(73(,4§>/,73(,4}*’3)) <+oo (B€[0,1]). (5.23)
recd

By combining (5.22)) with (5.1]) for # = 0 with an interpolation argument yields for 8 € [0, 1],

sup N2V popasy gy < +00 (B €[0,1)). (5.24)
rect .
Then (5.21) follows by interpolating (5.23]) and (5.24). O
Proposition 5.3. Let a > 0 be given in Theorem[5.1} For 6 € [—1/8,1] the following estimates hold
sup [\ 4 2N ATVEVT A ) < oo, (5.25)
rect
sup [N/ ATV ALY 2o < Ao (5.26)
xect

Proof. In a first step, we prove the case § = 0. For that we first observe that (3.30) with § = —1/4 yields:
ATV ey < ClIALHT + KV e (5.27)
Next, we make the following calculations:
NATVEI + KNV = A7V — (200A)° + ATV (5.28)
which yields with (5.1) and (5.27),
PIAT SV sy < APIATYST + KV leots)
< C (147 P lleies) + IMIAY T leus) + ATV M leous)) < OO+ AT+ A1),

This leads to (5.25) for & = 0. Moreover, extimate (5.25) for & = 0 but for Vy instead of Vy follows
analogously from (5.2), and then (5.26]) for # = 0 by a duality argument.
In a second step, let us prove the case § = 1. For that we first observe,

AVTPATYS = ATYE NI+ KOV ALY — 20 AtV AT,

Using (5.26)) for # = 0 and (5.1) for = 1/4 we obtain the estimate
=1 ,-1/8 —1/8 So1 ,—1/8 1/455—1 4—1/8
1AV AT o) < IAT o) +C (APIVA AT llecns) + INIAY T3 AT o)
<O+ YY) <oy,

where in the last inequality we have used the fact that A € C} with o > 0. Then (5.26)) for # = 1 is proved.
Finally, (5.25) for = 1 follows by duality, and (5.25)), (5.26] for 6 € (0,1) follow by interpolation.

It remains to prove the case 8 = —1/8. The case 6 € (—1/8,0) will then follow by interpolation. We
come back to ((5.28) from which we deduce

NATYE(I 4+ K\VTEATYS = ATV — (2pAAYE + AT/ YV ATYS, (5.29)
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and with (5.27), (5.25)) with § =1/8 and 6 = 7/8, we get
INPIAT SV AT Pl eing) < INPIAT ST+ OV AT 2
<C (147 llzis) + INIAY VT AT Bl eius) + ATV AT Pleins) ) < CA+INTY) < €.

Then the case § = —1/8 is proved. O

Corollary 5.4. Let o > 0 be given in Theorem|5.1l For 6 € [-1/8,1] and B € [—1/8,1] such that 6+ < 1
the following estimate holds

sup [A*2720722) ATV AT | £y < oo (5.30)
xect
Proof. First, assume 0 € [0, 1]. From with 8 = 0 and with an interpolation argument we deduce
for 6 € [0,1] and 8 € [~1/8,0]. Then with (5.2I) we deduce or 6 €[0,1] and B € [—1/8,1].
Finally, interpolating with § = 0 and B8 € [-1/8,1] and (5.25) with § = S allows us to obtain
for € [-1/8,0] and 8 € [-1/8,1].

O

6 Proof of Theorem 2.4

The goal of this section it to prove the Gevrey type resolvent estimates for the operator Ao defined by
7. In order to prove Theorem [2.4] we rewrite the resolvent equation in a more convenient way.
Assume A € C! for a > 0 given in Theore and [f, g, h] € H. We set [v,m1,m2] & (A — Ao) " *[f, g, h] so
that A —divT(v,p) = f inF,

divv =0 in F,

v=An on JdF, (6.1)

A =12 =g
A2 + A = —A" {T(’U,p)n‘a]:} + h.
Using W and A introduced in and , we can decompose the fluid velocity of as

v=Wanz + (M — A)"'PJ,

and using Ly € L(D(AY®), D(A}’®)) and Ty € L(L*(F), D(AL/®)) defined by (3.5) and (3.17) we can rewrite
system (6.1) as

)‘771 —n2=g (6 2)
A2 + Aini + Lanz = Taf + h. ’
This writes
m g
I = .
(M + Ay) [nz} {TA Ft h} (6.3)
with
et | O =1
A\ = [A1 LJ . (6.4)

We recall that V defined by (3.12)) is invertible. It is a consequence of the following result proved in
Proposition 4.8 of [3].

Proposition 6.1. For all A € C the operator Va is an isomorphism from D(A1) onto Hs.

Hence, direct calculations lead to the following formulas for the inverse of AI + Ay and of \I — Ag:

I-VitA,

T vt
M+ A = A S I (6.5)
—VitAL AVt
and 1 1 1 1
A —A) TP AWV T WAV AL ALY,
-1 _ _ I-vta _
()\I — A()) = vy 17& A/\ 1 vy 1 . (66)
AV TR -Vt A AV
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6.1 Estimation of V/\’1

In this section, we estimate the inverse of the operator Vy defined in (3.12)) for A € C} and a > 0 given in
Theorem From now on, we fix p < p1/4 where p; is defined in Proposition The main result of this
section is the following:

Theorem 6.2. Let o > 0 be given in Theorem [5.1 For 6 € [~1/8,7/8] and B € [—1/8,7/8] such that
0+ B8 <1 the following estimate holds

sup A28 AV A | pong) < 400 (6.7)
xect

Proof. Comparing (3.12) and (3.13]), we see that
V)\—v)\ :)\S)\, SA dICfC;)\—QpAi/4

and thus - ~
[T+ AV S\ v = vt (6.8)

We thus need to estimate the inverse of [I + AV, *Sy].
From Proposition and in particular (3.8]), we have Sy is a positive self-adjoint operator satisfying

153 *nllaes < € (14T *nllns + A2IAT nllas ) (n € D(AY™).

Combining the above inequality with and ([5.25)) we obtain for 8 € [—1/8,7/8],
1SV 2V Al nllaes < CIATY 42 s (6.9)
Analogously we can prove but for V5 instead of Vx. Then a duality argument yield for 6 € [—1/8,7/8]
[ATVTSY P llaes < O e (6.10)

From , we obtain that for any A € C* and for any ¢ € D(Ay),
Re(VAC, AC)ws = Re MM + Kx)*Cll3s + 20lIAAL*Cll3s + Re XA} %¢|[34 > 0. (6.11)
In particular, for any A € C* and for any ¢ € s,

Re(AV, ¢, Qns = 0. (6.12)

Let us now consider the equation _
n+ AV S = . (6.13)

If we multiply (6.13)) by Sxn, take the real part and use (6.12)), we obtain
153 ?nllns < 1S5 fllns
and applying such a result to equality yields
Vo€ Hs, 1SV VA nllus < 1SV VA il
Thus, coming back to equality we deduce that for n € Hs, 0 € [—-1/8,7/8], B8 € [-1/8,7/8], 0 + 8 < 1,
ATV Al s < ATV ATnllas + IMIATV SVt A nllaes

01— 01r— 1/2 1/2 —
< ATV Al nllas + INIATVT SV 2 [ 2y 1S 2V Al nllaes
- 01— 1/2 1/27,—
<AV Al nllaes + IMIATVT Y 2 Nl 2 1SN 2 Vit Al nllaes

Then using estimates (5.30)), and (6.10) yields (6.7]). O
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6.2 Proof of Theorem [2.4]

Proof. First, the exponential stability of (eAUt)t2o (see Proposition and standard results (see [5, p.101,
Theorem 2.5]) yield that ||(A — Ao) " z(3) is uniformly bounded for A € C*. This implies that

sup  {[lAdo(A — Ao) ey + AN = Ao) My } < oo
XEC"’,\)\\SQ

Using (2.24) and (2:27)), we deduce (2:33) and ) for A € C* with |A\| < . In the remaining part of the
proof, we can thus assume A € CI (see ([2.13)) for a > 0 given in Theorem From , we have

MO = A) ' Pfllezz) < Ol fllez - (6.14)
From (3.18)), (6.7) with (6,8) = and (3.17])
B.19), ( :
Ikll/zl\AWxV{lﬂf\lem SOV Tafllns < CITaflls < Clfllecr)- (6.15)
From with (6, 8) = (1/2,0) and (3.17),
Y2142V T f s < Clf e ry- (6.16)
From with (6, 3) = (0,0) and ,
A2V T Flles < Cllflleey- (6.17)
From and ( with (6, 8) = (0,1/2)
|)‘|1/2HW>\V,\_1A19”L2(}') <OV Argllas < ClIAY gllos- (6.18)
From with (0, 8) = (1/2,1/2)
I-VtA
e ars =y < oA i, (6.19)
Hs
From with (6, 8) = (0,1/2)
I IVA Augl, < CIAY gl - (6.20)
From (3.18) and (6.7) with (6, 8) = (0,0)
A2 IAWAVS Bl ) < CINP2 (VR hllacs < Ol (6.21)
From with (6, 8) = (1/2,0)
A2 A2V < Cllhllug. (6.22)
From with (6, 8) = (0,0)
IAIY/2 AV Rl < Cliblls- (6.23)

Using , we deduce ([2.33)).
Next, let us prove (2.34). From Proposition [3.2] (3.17] , with 9 = 1 with (6, 8) = (3/8,—1/8)

and (9, 8) = (—1/8,—1/8), (6.7) with (6, 8) = (7/8, —1/8 w1th (3/8 —1/8) we deduce that

(A — A)71Pf||H2(F) + H)‘WAV;17—)\f”H2(}') + HV;ITAf” /8y + AV 17~Af“D(A3/8 Cllflluzx)-

D(A;
From (3.19) with 8 = 1, with (6, 3) = (3/8,3/8) and (0, 8) = (—1/8,3/8), (6.7) with (0, 8) = (3/8,3/8),
we deduce,

HWAV{lAlgHHQ(}') + ||V/\71A19HD(A3/8 CHQHD(As/S (6.24)

22



From the relation Ag(A — Ag) ™' = —1 + A(A — Ap) ™" with (2.33)) we first first obtain

sup A2 A0 (X = Ao)Hlzgey < 400,
AE(C

and by interpolation with (2.33)) we get

sup [[(—A0)" 2 (A — A0) ™| (20 < oo (6.25)
recd
Thus using (6.25) we obtain
0 0 0
(40)* (A= 40) 7 [g||| = [(=40)2(A = Ao) T (=A0)* |g|| < C|(=40)"* |g
01115 01l 01115
and thus from Proposition and
_ I-VitA, _
IWAVY " Argllegara ) + H%g o HIV gl ors) < Cllgllpyers,
D(A]/®)
which gives
ﬂ Cllgll
A I D(AI/S) ipea/®)y:
Then, since we also have (6.24]), we have proved
_ I-Vyt A _
WAV gl + | Tt IV Al s, < Cllalogey
D(A]/®)

From with 8 = 1, with (0,8) = (3/8,—1/8) and (8,8) = (—1/8,—1/8), with (0,8) =
(7/8,—1/8), with (8, 8) = (3/8,—1/8), we deduce,

IAWAVA  Blleez ) + HVfthD(Aws + AV h||D<A3/8 C||h\|D(A1/s

Then combining the above estimates we have proved

||(AT — Ag) "'z 7/8 3/8, <Ol

L2(F)xD(AY/®)xD(A}/®)

(z cHN (L (F) x D(AY®) x D(A}fs))) . (6.26)

||H2(]-')><D(A )xD(AS

It remains to estimate in (2.34) the term |A|[[(A — Ag) 'z Assume

||L2<f>xD(A§/8>xD<A}/8y :
[w,&1,€2] € H 1 (HA(F) x D(A]®) x D(A}")) .

First, from the continuity of A* : H'/?(9F) — D(A;’®) and a trace inequality we have,

A" @D yars, < U @Dy 175, < D@l 300, < Ol

From (2.26]) and the above estimate we deduce,

Aw
w
Ao [& = || Po &
&2 llee (7 x (/%) xp(a2/5) —A1&1 — A7 (2D(w)n)
L2(F)xD(A3/®)xD(Al/ By
Aw
w
<C & <O & :
—A1&r — A" (2D(w)n) 2l n(H2(F)xD(A]/®)xD(47/®))
L2(F)xD(A/®)yxD(AL/B)
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Then with formula A(A — Ag) ™" = Ag(A — A¢) ' + I and (6.26) we deduce

IAL[(A = Ao) ™" z]| <O 5/

L2(F)xD(AY/®)yxD(AL/ By L2(F)xD(A]/ %) xD(4;/%)

which gives the result. (I

7 Proof of the local in time existence for (|1.3))

We prove here Theorem [[I] by a fixed point argument. The proof is quite similar to the same proof for the
“flat” case considered in [3]. For sake of completeness, we give here the main ideas of the proof.
For R > 0,T > 0 we consider the set

def

Brr = {(F, @) € L*(0,T; L*(F)) x L*(0, T; HS/Q(I)) s 1(F Gl 20,702 (7)) x L2 00,11 /2(2))) < R}'

For any (F,G) € Br,r, we consider the solution (w,n,q) of system (2.30) given by Theorem In
particular

w e L*(0,T; H*(F))nC°([0, T); H' (F)) N H' (0, T; L*(F)), qe€ L*(0,T; H'(F)) (7.1)
n e L*(0,T; Hy/*(2)) N C°([0, T); Hy*(2)) n H'(0,T; Hy*(Z)), (7.2)
dm € L*(0,T; HY (7)) n C°([0,T); Hy'*(Z)) n H' (0, T; Hy/*(Z)'), (7.3)

with

||w||L2(O,T;Hz(}'))ﬁCO([O,T];Hl(.F))ﬁHl(O,T;LQ(}')) + HqHLz(O,T;Hl(]-')):
+ ”n”L2(O,T;H7/2(I))mCO([O,T];H5/2(I)) + ||at77||L2(0,T-,H3/2(I))mco([o,T];Hl/Z(I))
0.0 0
< Co (R+ [I[w’, nY, me)llen (7yx m+e (zyx e (py) - (T.4)
Above and below, Cp denotes a positive constant that depends on ||77?||W7,00(I) only.
In what follows, we take R (large enough) such that
R > 14+ || [’LUO, ’I']‘f, 773] ||H1(.7:)><H3+5(I)><H1+€ (T)- (75)

First we notice that by interpolation, (7.4)) yields

1l s/a 0,722y + MMl Lo, 2im3 )y + 110enl| Lo, mim1 (2)) + Wl s 0, 7ym5/4 (7)) < CoRR (7.6)

The difference with respect to the proof in [3] is that here our formula for X and Y (see (2.2) and (2.3))
involves 7{. Nevertheless, one can write

X(ta 91792) = (y17x2(1 + C(t,l’l))) and Y(tvmhx?) = <{B1, %)

where ( ) (1)
aer N, y1) — N1 (Y1
C t,y = .
(o) L+ 79 (y1)
Using that ) € H*™(Z), n{ > —1 we deduce that

1

€ H3 (7).
1+ @)

Combining this with Sobolev embeddings, we deduce that

<l oo,y 1572 (zy) + 10:Cll L2 (0,7, 1372 ()00 (0, 1) 172 (7))

F W<l /a0, 7,12 zy) + €I a0, 53 () + 110:Cl| Lago,rim1 (2)) < CoR. - (7.7)

In particular, we have the same estimates for ¢ than for 7 except the estimate in L?(0,T; H/*(Z)). In the
proof of [3], we only need the norms in ([7.7)) for the estimates associated with the change of variables (see
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(A.1)—(A.8)) and this allows us to prove that for 7" small enough, we can construct the change of variables
defined in Section [2.1| and consider the mapping

Z:(F,G) ~ (F(n,w,q),Go(n,w)) (7.8)

where the maps F and én? are defined by (2.9) and (2.10), and (w, n, p) is solution of system ([1.22])-(|1.23]).

We can also show that
1/8 pN
||Z(F, G)HL2(0,T;L2(}'))><L2(0,T;H1/2(I)) <aiT *R Y (7-9)

for some N1 > 2. More precisely, the main difference from [3] is the following: using Proposition A.1 in [3],

(7.7) and ¢(0,-) = 0, we deduce that

1/6 1/6
1<l Lo 0,712 (7)) < OT / <I ers/4 0,73 102(z)) < CT /°R.

This yields
HVY(X) - 12‘|Lw<07T;Lw<f)4) + ” det(VX) - 1HL°°(0,T;L°°(]-')) < CTl/GR

instead of (6.16) in [3]. Then, following the computation in [3] we deduce (7.9).
From (7.9), for all T < C; *R® " we have

Z(F, G) € Br,T.

Similarly, taking T" possibly smaller, we can also show that Z is a strict contraction on Br r and using
the Banach fixed point theorem, we deduce the existence and uniqueness of (F,G) € Br,r such that

Z((F,G)) = (F.G).
The corresponding solution (1, w, q) of system li is a solution of 7.
The proof of the uniqueness is similar to the proof of uniqueness given in [3].
A Formula for the change of variables

Let us give some formulas for the change of variables

X(ta 91792) = (yhxz(]‘ + C(t,l’l))) and Y(tvmlaxQ) = <£C1, %)

that are used in Section[7]for the fixed point. We also need these formulas for the study of the linear system
(see Section , and in that case, ¢ =17, X = X, a = @ and b = b are independent of time.

VX = |5 1] e = |25 ). (A1)
L NI
VY (t,x1,22) = s 0sC 1 , a(t,xi,x2) = —55% . (A.2)
1+¢2 1+¢ ngiar 1
ET 1 0
a(X) = 1&% L VY(X)=| 9 1|, (A.3)
vaype L PT3¢ 1+¢
0 0
VY(X)-L=| 8¢ —¢ |, det(VX)=1+¢, (A.4)
BIYC 1+¢
_85C
e 0 0 0
D (+07 90
e S BRSNS L Rl P )
Y2 (1+¢)2 (1+9¢)
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8%a 0 0
(X) = | 8ssC(1 +¢) — 2(95¢)° , (A.6)
8%18%’2 (1 + C)S 0
—0,(¢ 0
%a _ (1+¢)? 0%a
97 = | 0,014 0 61+ 00,006 +60:0° (| * a3 Y (A7)
’ (1+¢)?
1o} 0 0 1 9 0
. VY (X) = y —0ssC(14¢) +2(0:s¢)> —0sC 7 VY (X) 95¢ (A.8)
' ’ 1+ (1402 ’ 1+
—0:C 0' 0
_ (1+0)? - o
0a(X) =1 5 c(1+ ()= 20.¢0C aY(X)=1_,, ¢ |. (A-9)
Y2 107 0_ 1+¢
We also recall here how to obtain formulas : differentiating , we deduce successively
ow; 8alk _ 6wk =S 8Yz
a2, = )2 T, Vg,

and

ik aam awk =~ 63/4
)+ 2
3 zk: f Z Oz 8yz ij

= BYz Yo
8a:7 ox;

+Z zkawk

Z~ awk nd 8Yz
R 836'

Composing by Y and multiplying by ba:, we deduce the first formula of (4.5). The second one can be done
in a similar way.
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