
HAL Id: hal-02303216
https://hal.science/hal-02303216

Submitted on 2 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Critical Automotive Embedded Applications on
Multicores: A Safe Scheduling Approach for

Dependability
Daniel Loche, Michaël Lauer, Matthieu Roy, Jean-Charles Fabre

To cite this version:
Daniel Loche, Michaël Lauer, Matthieu Roy, Jean-Charles Fabre. Mixed Critical Automotive Embed-
ded Applications on Multicores: A Safe Scheduling Approach for Dependability. 5th International
Workshop on Critical Automotive Applications: Robustness & Safety, Sep 2019, Naples, Italy. �hal-
02303216�

https://hal.science/hal-02303216
https://hal.archives-ouvertes.fr


Mixed Critical Automotive Embedded Applications
on Multicores: A Safe Scheduling Approach for

Dependability
Daniel Loche†∗,

∗ Technocentre RENAULT
F-78280, Toulouse, France

Email: daniel.loche@renault.com

Michaël Lauer†, Matthieu Roy†, Jean-Charles Fabre†
† LAAS-CNRS

31400, Toulouse, France
Email: first.lastName@laas.fr

Abstract—Memory access durations on multicore architectures
are highly variable, since concurrent accesses to memory by
different cores induce time interferences. Consequently, critical
software tasks may be delayed by noncritical ones, leading to
deadline misses and possible catastrophic failures. We present an
approach to tackle the implementation of mixed criticality work-
loads on multicore chips, focusing on task chains, i.e., sequences
of tasks with end-to-end deadlines. Our main contribution is a
Monitoring & Control System able to stop noncritical software
execution in order to prevent memory interference and guarantee
that critical tasks deadlines are met. This paper describes our
approach, and the associated experimental framework to conduct
experiments to analyze attainable real-time guarantees on a
multicore platform.

Index Terms—multicore, real-time, deadline, task chains,
mixed-criticality

I. INTRODUCTION

Software-intensive embedded systems are getting increas-
ingly resource-demanding. Moreover, system requirements on
energy consumption, weight and space of embedded archi-
tectures are calling for a drastic reduction of computing units.
Combining both trends leads to consider multicore processors
as a platform to run mixed criticality workloads on a sin-
gle system that integrates services inherited from federated
resources.

Yet, multicore architectures impose that software has to cope
with execution interferences due to memory, I/O & resource
sharing, cache overwriting, and tasks synchronization. Such
interferences imply that execution times are hardly predictable.
In this context, schedulability analysis and WCET (Worst-
Case Execution Time) estimations require high computing
resources, related to the NP-completeness of the problem.
A mixed criticality application runs both critical tasks and
noncritical tasks with no real-time constraints. In such case,
interferences from noncritical tasks may impair the temporal
behavior of critical ones.

Future computers of automotive system are implemented as
a set of functions implemented as chains of tasks. To handle
real-time constraints, chains of tasks need to comply with end-
to-end deadlines. A function has an input (request, sensor...)
and generates an output (response, activation...). For instance,

manual braking corresponds to a function where a driver
braking input must activate the braking system, with some
deadline. To fulfill this function, a chain of software tasks is
executed (from the sensor to the actuator), passing through
computing and decision components. Our primary goal is to
ensure that, given a task chain, its end-to-end deadline is
the maximum admitted response time— braking is a perfect
example for this.

Running chains of tasks on a mixed criticality multicore
may lead to deadline misses which may have strong side ef-
fects on safety. The main problem is to respect such constraints
with the least possible compromises on noncritical software.
The focus on tasks in the chain is thus of high interest to
get more scheduling flexibility. Our approach takes advantage
of mixed criticality software to satisfy highly critical task
chains timing constraints in a multicore environment and on
the same time give as much computing resources as possible
to noncritical tasks.

The main difference with other approaches relies on the as-
sumptions regarding deadlines. We consider end-to-end dead-
lines for task chains, instead of individual task deadlines. Most
of competing solutions do not make this assumption, which
matches some real-time industrial applications. In this paper,
we first present the concept of our embedded Monitoring and
Control Agent. Then we propose an evaluation framework
and a tool to execute a task set on a real physical multicore
platform and collect measurements. Ongoing experiments are
run to analyze the behavior of our system regarding tasks
allocation, scheduling policies, task set characteristics and
deadline satisfaction.

II. STATE OF THE ART

Current solutions are dedicated either to guarantee real-
time constrains with Real-Time Operating Systems (RTOS)
[1], [2], [3] or to maximize resource use for a wide range
of applications with General Purpose OS (GPOS) [4]. Few
solutions try to mix both objectives with a more or less
satisfactory result [5],[6],[7].

1) Real-time OS: On industrial applications, uncertainty
factors are avoided as much as possible otherwise complexity

CARS - POSITION PAPER



is too high for debugging, to detect problems and unexpected
behavior.

Generally, the management of real-time constraints relies
on static scheduling with time slot reservation for each soft-
ware partition (Time Division Multiple Access scheduling)
or Worst-Case execution time (WCET) analysis. For multiple
tasks, even independent with each other, running concurrently
on a multicore processor, a Worst-Case scenario includes
maximum contention over memory access with full cache
miss, but also maximum contention on the core’s utilization
and so on. This leads to an unrealistic WCET estimation that
will never occur. Also, a formal computation of such value
is impossible, on a multicore. Estimating WCET from many
experiments and simulations is a possible solution. However,
it is admitted that WCET are much easier to estimate on
a monocore architecture. Real-time deadline can be ensured
in this case. Highly critical systems are mainly based on
monocore for this reason. Multicore-based solutions needs
much more compromises on tasks execution. For instance,
PikeOS hypervisor [1] obtained highest certification level for
rail industry on a dual-core platform using temporal parti-
tioning. Execution time is divided into slices and applicative
software is separated into multiple resource partition. A critical
resource partition can be affected alone to a temporal partition
in order to avoid interferences with other resource partitions.
This kind of method is effective but necessarily over-reserves
execution time resources. In automotive and aeronautics indus-
tries, classic AUTOSAR [2] and ARINC 653 [3] respectively
applies the same approach: processors are not used at their
full potential, in the favor of real-time constraints control.

2) General purpose OS: On the other side, general purpose
systems bring the opposite pros and cons. Scheduling policies
used are made to run lots of different kind of tasks, from highly
interactive ones to background tasks, more or less computing
resource demanding. GPOS schedulers reached a complexity
level high enough to get inexplicable behavior [8]. These
systems are highly versatile in the variety of applications they
can run at the expense of predictability. It is possible to run
both classic Linux processes but also real-time ones but with
no strong guarantees with a vanilla kernel. Linux scheduler
evolved a lot, even recently, and offers multiple scheduling
strata to use, from the Completely Fair Scheduling [4] (CFS)
for common process, to Round-Robin (RR) and Earliest Dead-
line First (EDF) for real-time tasks as described in [9]. Vanilla
Linux has latencies at around hundred ms, but some patches
reduce it down to micro-seconds. Comparisons can be found
in [10] and [11]. For this reason, we decide to start with Linux,
to take benefit from this versatility and add software tools to
guarantee real-time constraints.

III. MONITORING & CONTROL AGENT

A. Concept Description

Our approach presents software execution monitoring and
control with a Monitoring and Control Agent (MCA) to guar-
antee end-to-end deadline constraints. We focus on the respect
of end-to-end constraints of tasks chains, not individual tasks

constraints. MCA role is to pause best-effort tasks execution
to free computation time for more critical tasks only when
needed.

We consider critical and noncritical periodic tasks respec-
tively considered as soft real-time and best-effort tasks. Critical
task belongs to a task chain with an end-to-end deadline.
Critical tasks have the following parameters:

• Priority level
• Periodicity
• Deadline - for simplification purpose, equal to period
• Core allocation - tasks are mapped to specific cores to be

executed, to avoid migration
Best-effort tasks have only a periodicity and a static Core
allocation. We need to be able to switch to a backup mode
by disabling all noncritical tasks and let only critical tasks
running. The goal is to dispose of guaranteed WCET for
the critical task chain when executed in backup mode. Such
analysis is to be done offline and we describe in section IV-A -
Framework Setup a first method. Finally, we need an isolated
entity able to communicate and control the system execution.

B. Monitoring & Control Agent Architecture

The Monitoring and Control Agent is made of two com-
ponents: a Core Control Component and a Task Wrapper
Component as shown in figure 1.

1) Core Control Component (CCC): The Core Component
updates the timing state of task chains execution at a given
frequency. For each task chain it stores an execution timing
state with the current chain execution time and the list of
executed/unexecuted tasks in the chain. It is then possible to
compute a Remaining Worst-Case Execution Time (RWCET)
in backup mode from the unexecuted critical tasks in the
chain. If a potential end-to-end deadline miss is anticipated,
best-effort tasks are stopped to switch to backup mode and
guarantee said WCET under the deadline.

To sum up, CCC has at disposal:
• end-to-end deadline for every task chain
• individual tasks last execution time
• RWCET in backup mode

From this data, it is possible to compute the task chains current
run-time WCET. We know a) the current task chain execution
time, i.e. how much time has elapsed since the activation of
the first task of the chain b) the remaining tasks to execute and
c) in backup mode, how long they could take to be executed.
We compare this current run-time task chain WCET to the
end-to-end deadline. This is made with the following formula
adapted from [12], at a given time t:

ET (t) +RWCET (t) +Wmax + tSW ≤ Dcj (1)

Where ET (t) stands for the current execution time,
RWCET (t): the task chain Remaining WCET when exe-
cuted in isolation, Wmaxis the CCC updating period (seen
as a “reaction time”) and tSW the latency to switch to the
monocore backup mode. When equation (1) becomes false,
we need to trigger the CCC to switch to backup mode with

2



Wrapped TaskWrapped TaskWrapped TaskWrapped Task

write

Task Wrapper
Component

Task-AfterTask-Before Task i binary

Tasks
Parameters

Core Control 
Component

launch chain state
exec. time

Fig. 1. Monitoring & Control Agent Architecture

only the critical task chain executed to guarantee its deadline.
The mode switch is made first by sending a signal to every
Best-effort task from the CCC. Upon reception, they pause
themselves. In addition, the “Before” wrapper block checks
whether the CCC allows task execution.

2) Task Wrapper Component (TWC): To monitor its exe-
cution, any task is wrapped with two software blocks: a
“Before” and an “After” block. The “Before” bloc is activated
before best-effort tasks execution, to prevent their execution
if the Core Component detected a potential overloaded state
and before critical tasks to inform the CCC about their start.
The “after” bloc communicates execution time of every critical
task to the Core Component. The Core component can update
the task chains execution timing state with that information.

IV. IMPLEMENTATION FRAMEWORK

We describe in this section how we decided to implement
the Monitoring & Control Agent principle.

A. Framework Setup

The Core Control Component is launched with highest
priority on an isolated core. It could be implemented on a
separated processor or even a dedicated FPGA. Both the Core
Component and the Task Wrapper Component get as an input
a configuration file. It contains the full information about the
tasks to run, their periodicity, task chains data and so on. as
described previously. With such inputs the CCC is ready to
run, and the TWC can encapsulate all the tasks and run them
into the real-time environment. All the tasks are launched
according to their core allocation. Moreover, we decided to run
every critical task on the same core: the task chain uses only
one core. This choice simplifies the task chain WCET analysis
and avoid latencies from tasks migration for our experiments.
This way offline backup mode WCET analysis is easier to
compute with methods presented by [13] for instance, as only
one core is activated in such state. We can also choose a semi-
partitioned solution with migration allowed only for noncritical
tasks. An analysis of the tasks behavior, depending on the
scheduling policy is planned later.

B. Operating system and Run-time environment

The run-time environment defines how the MCA is con-
cretely implemented. We describe here our chosen platform.

1) Linux OS: We decided to use Linux (latest Linux Mint
xfce distribution) to take benefit of its possibility to run
both classic Linux processes and Real-time processes with
different scheduling policies (see II-2). Its versatility grants
easier compatibility with benchmarking suites.

POSIX enables to force tasks execution to dedicated cores
and change scheduling policy. As stated before, vanilla Linux
Kernel is not made for hard real-time application. Therefore,
we add a Xenomai co-kernel to improve latency down to
micro-seconds and run our MCA to respect desired real-
time constraints. Please note that from Linux point of view,
“threads” and “processes” are equivalent and correspond to
“tasks” for us.

2) Xenomai co-kernel patch: Xenomai is a real-time ker-
nel that can be installed as a co-kernel to a classic Linux
distribution as presented in deep by [14]. Our framework and
experiments are implemented on the real-time APIs proposed
by Xenomai 3.0.5.

V. EXPERIMENTAL PLATFORM & MILESTONES

A. Objectives

We plan on doing experiments with a benchmark suite.
The objectives are to a) Validate qualitatively our approach
b) Compare our approach in term of mean CPU use and check
solution weight on overhaul execution c) Perform a sensitivity
analysis to identify how the system behaves according to mul-
tiple parameters. We can vary the ratio of critical/noncritical
tasks, the time period of tasks and their execution time. Such
analysis can open the way to get some conclusions on how to
allocate the tasks between the cores and extend the system to
more tasks chains and more cores.

Experimental
Platform

Hypothesis
Static Core Allocations
Task Chains with deadline
Critical & Best-effort tasks

Inputs
MiBench Tasks
Task Chains isol. WCET

Tasks Parameters

Results
Deadline misses
Execution time profiles
Task chain execution time
CCC mode switch countSupport

SoftwareHardware

Fig. 2. Experimental Platform

In this section, we describe the different steps according
to IV - Implementation Framework in order to get a complete
system running with the MCA and monitoring tools. As
presented in 2, the experimental has 3 input domains of
which 2 are configurable. First input domain gathers the basic
hypothesis. The two others are: the tasks inputs (task set, tasks
parameters and task chains WCET method) and the execution
support (hardware and software presented above) for which
choices can be made.

3



B. Platform Setup

1) Hardware: The platform used for the experimentation is
a bare-bone computer equipped with an Intel Core i5-8250U.
This processor embeds 4 cores, with possible multi-threading
(8 threads, disabled for our tests), from 1.60 GHz to 3.40 GHz.
It has 3 caches level, L1, L2 and L3 (shared), with respectively
32 KiB/core, 256 KiB/core and 8 Mib.

2) Software Setup: The MiBench Benchmark suite [15] will
be used for our experiments. MiBench consists of a large panel
of tasks with different memory needs and execution profiles
to mimic existing applications. It is used here to validate the
framework and put into practice our experiments.
We selected a set of 15 applications from the benchmark for
our experiments: basicmath, bitcount, qsort, susan, jpeg,
typeset, dijkstra, patricia, stringsearch, blowfish, sha,
adpcm, CRC32, fft and gsm. From these 15 tasks, we
form task chains composed of around 5 tasks each, those
tasks chains could represent real critical applications. Our
Task Wrapped Component only needs to wrap MiBench tasks
binaries to work.

C. Off-line characterization

The first step is to characterize the task set on our platform
to assign task deadlines and task chains end-to-end deadlines,
as MiBench does not include such information. The off-line
analysis of backup mode is made by executing only the
selected task chain in isolation on one core several times and
monitor execution time. Then, we extract for each task τi of
the chain their maximum WCET (τi) in such condition. This
way, we define that at time t, if it remains N tasks in the
chain to execute that:

RWCET (t) =

N∑
i=1

WCET (τi) (2)

. This way, we have all the needed information to compile
them into input files for the framework and launch it.

D. Sensitivity Analysis and Prospective

We described how to generate a task set to work with, made
of 1 task chain (with associated offline analysis), and a certain
number of best-effort tasks selected from MiBench suite. The
amount and the profile of those tasks is the first parameter
we will be able to change in order to see its influence on our
experiments (see Input domain in figure 2: MiBench tasks). We
can select tasks following their memory use profile, change the
number of “small” and “large” tasks... Tasks parameters allows
to set processor charge, by changing their execution period.
Also, the RWCET computation method could be changed for
possible enhancements.

On the perspective scope, the hypothesis (see Hypothesis
domain in figure 2) can evolve to enhance our first Framework,
for example adding criticality layers to avoid stopping every
noncritical tasks at once, or changing the tasks core allocation.
Our experimental platform is summarized in figure 2. Such
setup allows sensitivity analysis based around various param-
eters from the hardware (any running Linux with Xenomai) to

task chain and the best-effort task set choice, through different
scheduling policies and CPU load changes.

E. Comparison with other approaches

This task chain-based approach compares with other indi-
vidual task timing constraints-based approaches. The first com-
parison point concerns computing resource use for noncritical
tasks: the higher the better. The second comparison point is
the tasks set coverage regarding the ability to respect end-
to-end deadlines compared to the tasks set coverage of other
solutions to respect individual tasks deadlines. We expect from
our experiments to see how the MCA a gain in CPU use
with our MCA Agent still being able to respect end-to-end
deadlines. We will check how much it triggered, the execution
time profiles and the influence of said parameters at run-time.

VI. CONCLUSION

We defined a complete process to instrument mixed-critical
tasks on a multicore real-time Linux platform with a Moni-
toring and Control Agent to guarantee end-to-end constraints
for critical task chains. Our ongoing work aims to a) val-
idate the approach compared to other strategies handling
mixed criticality application through on-going experiments and
b) analyze the effect of different factors on the execution of
critical software. Finally, we will apply our approach to a real
automotive application case with Renault.

REFERENCES

[1] S. Fisher and S. AG, “Certifying Applications in a Multi-Core Environ-
ment: The Worlds First Multi-Core Certification to SIL 4.” p. 4, 2013.

[2] AUTOSAR, “Timing Analysis,” Standard Release 4.3.0, p. 118, 2016.
[3] P. J. Prisaznuk, “ARINC 653 role in Integrated Modular Avionics

(IMA),” in 2008 IEEE/AIAA 27th Digital Avionics Systems Conference,
Oct. 2008, pp. 1.E.5–1–1.E.5–10.

[4] C. S. Wong, I. Tan et al., “Towards Achieving Fairness in the Linux
Scheduler,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 34–43, 2008.

[5] G. Giannopoulou, N. Stoimenov et al., “Scheduling of mixed-criticality
applications on resource-sharing multicore systems,” in ACM Interna-
tional Conference on Embedded Software, 2013, p. 17.

[6] B. C. Ward, J. L. Herman et al., “Making Shared Caches More
Predictable on Multicore Platforms.” IEEE, Jul. 2013, pp. 157–167.

[7] A. Blin, C. Courtaud et al., “Maximizing Parallelism without Exploding
Deadlines in a Mixed Criticality Embedded System,” p. 11, 2016.

[8] J.-P. Lozi, F. Gaud et al., “The Linux Scheduler: a Decade of Wasted
Cores,” p. 16, 2016.

[9] J. Lelli, G. Lipari et al., “An efficient and scalable implementation of
global EDF in Linux,” 7th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT11), 2011.

[10] F. Cerqueira and B. B. Brandenburg, “A Comparison of Scheduling
Latency in Linux, PREEMPT RT, and LITMUSRT.” SYSGO AG,
2013, pp. 19–29.

[11] D. J. H. Brown and B. Martin, “How fast is fast enough? Choosing
between Xenomai and Linux for real-time applications,” Tech. Rep.,
2010.

[12] A. Kritikakou, T. Marty, and M. Roy, “DYNASCORE: DYNAmic
Software COntroller to Increase REsource Utilization in Mixed-Critical
Systems,” ACM Transactions on Design Automation of Electronic Sys-
tems, vol. 23, no. 2, pp. 1–26, 2017.

[13] R. Wilhelm, T. Mitra et al., “The worst-case execution-time proble-
moverview of methods and survey of tools,” ACM Transactions on
Embedded Computing Systems, vol. 7, no. 3, pp. 1–53, Apr. 2008.

[14] P. Gerum, “Xenomai - Implementing a RTOS emulation framework on
GNU/Linux,” Xenomai, Tech. Rep., 2004.

[15] M. R. Guthaus, J. S. Ringenberg et al., “MiBench: A free, commercially
representative embedded benchmark suite.” Austin, TX, USA: IEEE,
Dec. 2001, p. 12.

4


