
HAL Id: hal-02303153
https://hal.science/hal-02303153

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking Application Fingerprint in a Trustless Cloud
Environment for Sabotage Detection

Jean-Emile Dartois, Jalil Boukhobza, Vincent Francoise, Olivier Barais

To cite this version:
Jean-Emile Dartois, Jalil Boukhobza, Vincent Francoise, Olivier Barais. Tracking Application Finger-
print in a Trustless Cloud Environment for Sabotage Detection. MASCOTS 2019 - 27th IEEE Inter-
national Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, Oct 2019, Rennes, France. pp.74-82, �10.1109/MASCOTS.2019.00018�. �hal-02303153�

https://hal.science/hal-02303153
https://hal.archives-ouvertes.fr


Tracking Application Fingerprint in a Trustless Cloud Environment for Sabotage
Detection

Jean-Emile Dartois∗†, Jalil Boukhobza∗‡, Vincent Françoise∗, and Olivier Barais∗†
∗b<>com Institute of Research and Technology, †Univ Rennes, Inria, CNRS, IRISA, ‡Univ. Bretagne Occidentale
Email: jean-emile.dartois@b-com.com, boukhobza@univ-brest.fr, vincent.francoise@b-com.com, barais@irisa.fr

Abstract—Companies are more and more inclined to use
collaborative cloud resources when their maximum internal
capacities are reached in order to minimize their TCO.
The downside of using such a collaborative cloud, made of
private clouds’ unused resources, is that malicious resource
providers may sabotage the correct execution of third-party-
owned applications due to its uncontrolled nature. In this paper,
we propose an approach that allows sabotage detection in a
trustless environment. To do so, we designed a mechanism
that (1) builds an application fingerprint considering a large
set of resources usage (such as CPU, I/O, memory) in a
trusted environment using random forest algorithm, and (2) an
online remote fingerprint recognizer that monitors application
execution and that makes it possible to detect unexpected
application behavior. Our approach has been tested by building
the fingerprint of 5 applications on trusted machines. When
running these applications on untrusted machines (with either
homogeneous, heterogeneous or unspecified hardware from
the one that was used to build the model), the fingerprint
recognizer was able to ascertain whether the execution of
the application is correct or not with a median accuracy of
about 98% for heterogeneous hardware and about 40% for
the unspecified one.

Keywords-Correct Execution, Resource Management, Cloud,
Fingerprint, Sabotage

I. INTRODUCTION

Companies are using more and more computing resources
for processing their data and for providing the best Quality
of Service (QoS) possible to their customers [1]. These
computing resources have a significant cost and companies
are seeking solutions to reduce their Total Cost of Ownership
(TCO) without sacrificing the correct execution of their
applications.

A promising alternative for optimizing the cost of pro-
cessing applications on Cloud infrastructures is to oppor-
tunistically exploit their allocated but momentarily unused
computing resources [2]. Many platforms (e.g., BOINC [3],
Condor [4]) enable the leveraging of these unused resources
for a variety of purposes (e.g., scientific computing, big
data) and business models (e.g., free, reward). However, any
infrastructure owner (i.e, Farmer) can join such platforms
to provide/share his computation capacities. These farmers
seek to reduce their TCO by making their unused computing
resources available to other users. Allowing any farmer
to join such platforms exposes an Operator (i.e, interface

organizations between the farmers and the customers) to ma-
licious behavior. Malicious farmers can potentially produce
erroneous or inaccurate results without effectively running
the applications to obtain higher benefits from the Operator
(e.g., while saving their computation capacities) [5]. In such
a scenario, one needs to investigate how can an operator
prevent malicious infrastructure owners from sabotaging the
remote computation of its customers.

Many studies have been conducted to provide secure
remote computation [6], [7]. Most of the traditional ap-
proaches such as replication voting, ringers, and spot check-
ing - whether with or without blacklisting - have a high
overhead on the compute resources (it may double the used
resources) to verify each application execution or requires
a dedicated hardware such as Intel SGX with 60% of the
native throughput and about 2x increase of the application
code size [6].

In this paper, we propose a different but complementary
solution to state-of-the-art work having the following prop-
erties:

• Backward compatibility: non-invasive/non-intrusive
on the application code and not limited to a type of
application or hardware.

• Online execution: continuous verification of the correct
execution of the application.

• Efficiency: proving a small overhead to verify each
application execution

Our approach relies on the use of classification techniques
to build a fingerprint model of an application execution in
a trusted environment using the Random Forest learning
algorithm. In this work, we assume that performance metrics
are continuously sent by the farmer as in [8], [9]. Then,
the built trusted fingerprint model is continuously compared
with the current workload metrics sent from the untrusted
environment to detect an application execution sabotaging
or the alteration of its behavior. To do so, three different
cases can be observed:

• The homogeneous hardware case where the targeted
hardware is both standardized and specified. This
means here that the model is trained with this stan-
dardized hardware as the targeted one.

• The heterogeneous hardware case where the targeted



hardware is specified but varies from machine to ma-
chine. This means that the model is trained with the
same (heterogeneous) hardware mix as the targeted one.

• The unspecified hardware case where the targeted
hardware is both unspecified and heterogeneous. This
means that the model is not trained with the same
hardware mix as the targeted one.

We have investigated five applications: multimedia pro-
cessing, file server, 3D rendering, software development,
web application. The used dataset represents about 10 hours
of applications execution on the four tested physical hetero-
geneous machines.

Our experimental results show that our fingerprint recog-
nizer is able to detect the correct execution of applications in
a trustless environment with a median accuracy of 99.88%
for homogeneous hardware, 98% when using heterogeneous
hardware and 44% in case of unspecified hardware during
the training phase (see Section IV).

The remainder of the paper is organized as follows.
Section II presents some background knowledge. Then, our
methodology is described in Section III. Section IV details
the experimental evaluation performed. Section VI reviews
related work. Finally, we conclude in Section VII.

II. BACKGROUND

This section gives some background on machine learning.
Machine learning investigates automatic techniques to

make accurate forecasts based on past observations [10].
Datasets contain a set of parameters called features, used to
build a forecasting model for some specific output response
metrics. Datasets can either be quantitative (e.g., through-
put) or categorical (e.g., spam/not spam). Metrics such as
CPU, memory, I/O, and network resources are examples of
features while the application name is the label.

There are three different categories in machine learning:
supervised, unsupervised and reinforcement learning. Our
objective in this study is to build a forecasting model that
detects existing relationships between features (e.g., CPU
usage, dirty page, I/O read, active file) and a label (the
running application). As a consequence, our problem fits in
the supervised learning category. Since we want to predict
the running remote application which is a categorical value,
we used classification-based algorithms.

III. METHODOLOGY

In order to monitor application resource usage, different
metrics (e.g., CPU usage, memory usage, throughput, etc.)
are utilized. Analyzing and characterizing these metrics
would enable one to create predictive fingerprint recognition
models that make it possible to verify that the remote ma-
chines are effectively executing the requested applications.
One assumption we made is that the farmers are providing
those resource usage metrics online for the container used
to execute the customer application.

To create such predictive fingerprint recognition models,
we propose a framework that is able to control the correct
execution of applications in a trustless environment. Our
framework is made of three components (see Figure 1). This
paper focuses on the Fingerprint Tracker and Fingerprint
Builder.

1) The Decision Engine is responsible for handling
customer requests which consist in executing the des-
ignated applications (1). To do so, the decision engine
first verifies whether the fingerprint recognition model
for the requested application is available. If not, it
requests the Fingerprint Builder to generate one for
this new application (2). Then, the Decision Engine
chooses a suitable farmer that will be in charge of
executing the customer application (3) [11]. Finally, it
requests the Fingerprint Tracker to verify the correct
execution of this application (4).

2) The Fingerprint Builder is responsible for construct-
ing the predictive fingerprint recognition models. To
do so, this component uses an environment of trust in
order to ascertain the correctness of such models (see
Section III-A).

3) The Fingerprint Tracker is in charge of controlling
continuously the correct execution of applications in a
trustless environment (i.e., the farmer infrastructure)
using the predictive fingerprint recognition models
previously built by the Fingerprint Builder. In order
to achieve that, it first collects the required execution
metrics (5). Then, it identifies the application based on
its fingerprint obtained via its resource usage. Finally,
it compares this result with the expected application
that was communicated by the Decision Engine to
determine whether or not the application was correctly
executed to trigger potential counter measurements
when necessary (6) (see Section III-B).

Figure 1. Overall Approach



A. Fingerprint Builder: Building the fingerprint models in
an environment of trust

This section details how the Fingerprint Builder con-
structs the fingerprint recognizer models. Figure 2 describes
the overall approach followed with three different steps
performed in the trusted environment: Data generation step,
Learning step, and Evaluation step.

1) Data Generation step: In the dataset generation phase,
we have mainly two steps (see Figure 2): generating the
traces by executing different applications and collecting
their respective container metrics. We have selected five
applications that were deployed in a container-based envi-
ronment covering various use-cases. Table I summarizes the
benchmarks used.

Table I
APPLICATIONS AND BENCHMARKS USED

Name Category Description
web Server application N-tiers web application

email Server application Email server
video Multimedia processing H.264 video transcoding

rendering Multimedia processing 3D rendering
compilation Software build Linux kernel compilation

To generate the dataset, we used the tools Nginx [12],
MySQL [13], and WordPress [14] for the web application,
FileBench [15] for the email, ffmpeg [16] for the video ap-
plication, and blender 1 for the rendering application, GNU
Compiler Collection [17] for the compilation application.
Server application: We chose two typical enterprise server

applications: an n-tiers web application (WordPress),
and email servers (Filebench). WordPress is an Open
Source content management system. In our setup,
WordPress is deployed with Nginx, PHP, and MySQL.
In the case of a WordPress website, we varied the
number of concurrent readers/writers between 1 and
50. Varying the number of users has a direct im-
pact on resource usages. The tool that generates the
traffic was executed on a separate host. We used
Filebench to evaluate email to generate a mix of
open/read/write/close/delete operations.

Multimedia processing: ffmpeg is a framework dedicated
to audio and video processing. We used two videos, a
FullHD (6.3 GB) and an HD (580MB) video. For the
transcoding of the H.264 video, we varied the PRESET
parameter between slow and ultrafast. This parameter
has a direct impact on the quality of the compression as
well as on the file size. Blender is a toolset for making
3D rendering, visual effects, art, and interactive 3D
applications. We used five 3D models.

Software build: Linux kernel compilation uses thousands
of small source files. Its compilation demands intensive
CPU usage and short intensive random I/O operations

1blender.org

to read a large number of source files and write the
object files to the disk. For the sake of our study, we
compiled the Linux kernel 4.2.

2) Learning step: Choosing the right learning algorithm
for a specific problem is a challenging issue. Many state-
of-the-art studies such as [18] have discussed the way
to select the appropriate learning algorithm(s) depending
on the datasets and the type of problem to solve. The
accuracy of a model strongly depends on the dataset and
the used learning algorithm. In our case, we used Random
Forests (RF) to recognize application fingerprints. RF was
introduced in [19], the authors enhanced decision trees by
building a large collection of de-correlated trees, and then
averaging them. RF are a combination of CART (Classi-
fication and Regression Trees) models, which are binary
trees, such that each model depends on the values of a
random vector sampled from training data independently
with the same distribution for all trees in the forest. In
CART, the split aims to maximize the accuracy score by
splitting the training data with the best feature on each node
of the tree. RF accuracy depends on the tuning parameters,
called hyperparameters. These hyperparameters impact the
complexity of the learning model, and they are estimated to
minimize the error.

3) Data Pre-processing: The goal of the pre-processing
step is to create the matrix of input features noted x
and the vector of the observed labels noted y (i.e., the
running application) from the traces stored in the time-series
database. The selection of the input features x is a key step
to build a good predictive fingerprint model. One needs to
consider the variables that have an influence on application
fingerprints for the learning algorithms to find the (hidden)
relationships between x and y (see Section II).

4) Feature Extraction: In a container environment, there
are more than 50 collected metrics such as active files,
CPU usage, I/O async, mapped file, pgpgout. This large
number of potential features does not allow for an exhaustive
search [20]. According to [21] a good feature selection
algorithm can be used based on the following considerations:
simplicity, stability, number of reduced features, classifi-
cation accuracy, storage, and computational requirements.
According to [22], PTA(l,r), GPTA(l,r), Sequential Feature
Selection (SFFS), and genetic algorithm perform well for
such a task.

We used a genetic algorithm to derive a combination
of features that maximizes the accuracy of the fingerprint
recognition model. Genetic Algorithms (GA) are stochastic
optimization methods that mimic the process of natural evo-
lution [23]. In GA, a population is composed of individuals.
An individual is a potential solution of the optimization
problem (i.e., the selection of the best features for detecting
the running application). Individual can be scored using at
least one fitness function (FF). In our study, the individual
is composed of a vector of 1 and 0 indicating whether or



Figure 2. Training Fingerprint Models Approach

not the feature (i.e., the metrics) is selected and the fitness
function which is the accuracy classification score calculated
by counting the number of correct classifications and divide
it by the total number of samples. At each GA step,
individuals from a generation of a population mutate using
two-point crossover to generate new individuals who inherit
from both parents on which random flip could be applied
(i.e., a previously selected feature can become unselected).
Then, through the fitness function, the best children of the
new generation (i.e., those who maximize the classification
score) are selected to produce the next generation. Finally,
after 100 generations the selected features are then used in
a classification process with a Random Forest classifier.

B. Fingerprint Tracker: Tracking application executions

This section details how the fingerprint tracker leverages
the fingerprint recognition models in order to ascertain both
remotely and online whether or not a sabotage is taking
place.

In Figure 3 we highlight the interactions that occur
between the trusted (i.e., Operator) and the trustless envi-
ronment (i.e., Farmer) in order to track the correct execution
of the customer applications. To do so, the methodology is
the following. First, the operator requests the execution of
an application to a farmer (i.e., a trustless resource provider)
(1), which subsequently triggers the creation of a container
that will host the execution of the application. Then, this
designated farmer is asked to supply, every second, the
resource usage measurements of the machine that is used
to execute the customer application within a predefined
time interval (3). These measurements are then ingested
by the Fingerprint Tracker to detect the correctness of
the execution of the application (4). If either the resource
usage measurements are not delivered in a timely fashion
or the Fingerprint Tracker detects that the fingerprint is
not complying with the expected one for a duration of at

Figure 3. Sequence diagram of the interaction between the trusted
environment and the trustless environment



least 2 minutes (this duration can be adjusted based on the
desired confidence level as explained in Section IV), then
the Fingerprint Tracker considers that there is a sufficiently
high likelihood that a sabotage has taken place during
this time frame. In such a case, the Fingerprint Tracker
notifies the Decision Engine of a potential sabotage with
the associated confidence level (5) so that it can trigger
countermeasures, such as spot-checking with blacklist [7].
Finally, upon completion of the application and after its
hosting container has stopped, the Fingerprint Tracker ends
its tracking and notifies it to the decision engine (6).

IV. EVALUATION

This section describes the obtained results. Through this
experimental part, we try to answer 4 research questions
(RQ):

• RQ1: What are the best features for tracking
application fingerprint?

• RQ2: What is the accuracy of the fingerprint Tracker
for the three use cases: homogeneous, heterogeneous,
and unspecified hardware?

• RQ3: How does the accuracy change with regards to
the size of the training dataset (learning curve)?

• RQ4: What is the minimum period of monitoring
required?

A. Experimental setup

We used four heterogeneous physical machine configura-
tions running Ubuntu 14.04 with Docker 18.06.0-ce. Table II
describes the hardware characteristics of machines used
by the farmers. We used two DELL server configurations
that are very common in data center infrastructures and
two uncommon configurations (a laptop and an embedded
board).

We made use of Python with the scikit-learn [24] version
0.18 library which provides state-of-the-art machine learning
algorithms. Besides, all training and forecasts done by
the Operator were performed on servers with an Intel(R)
Xeon(R) E5-2630 v2 CPU clocked at 2.60GHz and with
130GB of RAM. In our experiments, we used five applica-
tions: video processing, 3D rendering, email server, software
development, and web application, which are detailed in
Section III-A1. We used the Ubuntu 14.04 LTS GNU Linux
distribution with a kernel version 4.2 for M1, M2, and M3,
and for M4 a kernel 4.14. The virtualization system used
was Docker version 18.06. Finally, we have experimented
with 4 heterogeneous physical machines in terms of CPU
performance and architecture, and storage (e.g., SSD or
HDD) to explore the fingerprint accuracy as compared to
the used hardware.

Table II
FARMER PHYSICAL MACHINES

ID CPU Memory (GB) Storage
M1 Quad core Intel Core i7-4900MQ 15 Samsung Evo 850
M2 Hexa core Intel Xeon E5-2630 130 Intel Solid-State Drive 750
M3 Hexa core Intel Xeon E5-2630 130 Samsung 960 Pro
M4 ARM Cortex-A53 1 Kingston microSDHC

1) RQ1-Selected features: Our approach uses a genetic
algorithm to select a subset of the monitored metrics to be
used to efficiently train the fingerprint models. For the 5
applications, it emerged that among the 48 metrics the GA
method has selected a total of 5 features for homogeneous
hardware (see Table III) and 13 features for heterogeneous
hardware (see Table IV) for all the applications. We observed
that they are mainly related to CPU, memory and storage
usage.

Table III
SELECTED FEATURES FOR HOMOGENEOUS HARDWARE

Name Description
active-anon Anonymous memory that has been used more recently
pgpgin Number of kilobytes the system has paged in from disk per second.
I/O write and sync Number of I/O operations
write-bytes Bytes written per second to disk

Table IV
SELECTED FEATURES FOR HETEROGENEOUS HARDWARE AND

UNSPECIFIED HARDWARE

Name Description
cpu-usage Percentage of CPU utilization
active-anon Anonymous memory that has been used more recently
inactive-anon Bytes of anonymous and swap cache memory on inactive LRU list
pgpgin Number of kilobytes the system has paged in from disk per second.
pgfault Number of page faults the system has made per second
active-file Bytes of file-backed memory on active LRU list.
I/O read, write and sync Number of I/O operations
mapped-file Bytes of mapped file (includes tmpfs/shmem)
read-bytes Bytes read per second from disk
write-bytes Bytes written per second to disk
writeback Bytes of file/anon cache that are queued for syncing to disk.

Figure 4. Confusion Matrix with Homogeneous Hardware

2) RQ2-Accuracy: The confusion matrix shown in Fig-
ure 4 was built as follows: we ran each application 50
times by randomly selecting each time 70% of the dataset



(comprising all the applications) to build the model and
the remaining 30% to evaluate its accuracy for a given
hardware architecture. For each execution, we have fixed
the hardware architectures and assumed that on the trustless
side, the hardware used was the same (i.e., the homogeneous
hardware case). We observed that the resulting predictive
fingerprint recognition model was very accurate and suc-
ceeded in distinguishing between the 5 applications with an
accuracy of 99.88%.

Figure 5. Confusion Matrix with Heterogeneous Hardware

Figure 5 follows the same methodology as the previous
experiment but for the heterogeneous hardware case (i.e.,
four hardware architectures were combined in a unique
dataset so that an application could be run on very different
hardware on the trustless side). We remark that WordPress
was the most inaccurate application to track with an accuracy
of 84%.

Figure 6. Confusion Matrix on Unspecified Hardware

Figure 6 shows the confusion matrix for five applications
in case of unspecified hardware. The accuracy is evaluated
as follows: during the training the hardware M1, M2 and
M3 are used and then M4 is used for testing. We have
chosen the M4 hardware for the test because it is the most
different in terms of hardware characteristics. The goal is to

be able to evaluate the impact on the fingerprint recognizer
accuracy in the (extreme) unspecified hardware case. We
observe that compared to the heterogeneous hardware case,
the accuracy drops to about 40%. This result means that
the application fingerprinting technique may not be relevant
when the hardware used for the training is too different from
the one used for the test.

3) RQ3-Learning curve: The learning curve shows the
evolution of the model accuracy according to the number of
training samples [10], [25]. In order to build our learning
curve, we performed a progressive sampling by increasing
the dataset sizes Ntraining = 1 to Nmax with a step of 1
second. Nmax is the total number of samples available.

Figure 7. Learning curves on the testing set as a function of the number
of training samples

In Figure 7 we show the accuracy of the algorithms
according to the training set size. First, we observe, as
expected, that the accuracy improves with the increase of
the training set size. In case of homogeneous hardware, we
observe that with 3000 samples (i.e, 5 minutes) the accuracy
reaches 99.95% and 100% with 5500 samples. As compare
to heterogeneous hardware, we notice that we need about
3600 samples (i.e., 60 minutes) of application trace to be
able to distinguish between the 5 five applications with an
accuracy of 97% and it reaches 98% with 5700 samples.
Moreover, after about 100 minutes the accuracy does not
increase anymore.

4) RQ4-Monitoring Interval: In Figure 8, we show the
size of the monitoring interval in seconds used to predict the
running application with regards to the accuracy for the three
use cases: homogeneous, heterogeneous and unspecified. We
observe that only 1 second is required to achieve 100%
accuracy in case of homogeneous hardware. In contrast, we
notice that 60 seconds are needed to reach an accuracy of
98% for heterogeneous hardware. Finally, in the unspecified
hardware, we observe that the accuracy is capped to 40%
and does not improve after about 40 seconds.



Figure 8. Accuracy curves as function of the number of testing samples

V. DISCUSSIONS

This application fingerprinting mechanism based on con-
sumed resources can be considered as a second level of
security that can be coupled with other existing approaches
already proposed in the state of the art studies. Indeed, it
may be difficult for a malicious user to cheat on both the
output format of the application and the associated stream
of measurements that lead to this incorrect result.

In addition, to prevent a saboteur from saving the applica-
tion usages (e.g., cpu usage) and then sending these metrics
to the operator, three actions could be implemented:

1) First, the decision engine scheduler may try to avoid
to schedule the same application to the same farmer
several times.

2) Second, we propose to use the technique of Proof of
Storage [26] to ensures that the data is actually stored
in the trustless environment.

3) Third, the application binary could be obfuscated to
prevent potential reverse engineering by analyzing the
binary.

The poor accuracy of fingerprint recognizer in the unspec-
ified hardware case is not a surprise. Indeed, for example,
when an application is executed on a physical machine with
a large volume of memory buffer, the operating system
may delay disk write operations and thus improve the
performance [27]. This could prevent the ML algorithm
from identifying the relationship between the application and
the selected feature metrics (e.g., utilization of the memory,
write back). A consequence, it may fail in identifying the
application.

There are several parameters that could affect the accuracy
of the model. In the performed experiments, we did not test
the sensitivity of the model to changes in kernel parameters.
It may be relevant to evaluate the kernel configuration
parameters that have a significant impact on model accuracy.
Container resource allocation can be configured at runtime

using the CGroup configuration interface 2. As with the static
configuration parameter of the kernel, it may be relevant to
assess the impact of such a dynamic evolution on the model
accuracy. In addition, the virtualization technique used such
as Docker, Lxd, Qemu could also have an impact on the
model accuracy.

Moreover, the use of a different version of the same
application or the modification of the application parameters
may also induce a change in the estimated model due to a
change in its behavior. We did not consider how co-located
application workloads may interfere on applications. We
have considered only a fixed capacity per host, while the
capacity may depend on all running applications [28]

Finally, monitoring may also affect the estimated model.
Indeed, a modification of the implementation of the monitor-
ing component could also affect the model accuracy (e.g., the
CPU sampling differs between the training and the testing
phase).

VI. RELATED WORK

Numerous studies have already evaluated the correctness
of an execution in a trustless environment. In this section, we
first focus on the work that tries to validate the computation
results. Then, we discuss studies that try to ascertain the
correct execution of applications.

A. Ensuring the result correctness and detecting sabotage

In [7], the objective is to execute the same work unit N
times before eventually comparing them - each result being
a vote - until converging towards a result. This method has
the advantage of ensuring a very high level of certainty with
regards to the correctness of the result of a given work unit.
However, this comes with two major drawbacks. First, it has
a high overhead: N times the initial execution cost with N
being the number of votes. Second, the time this method
requires to ascertain the falseness of a given execution can
be excessively long as many rounds of voting may occur,
postponing the decision every time.

In [29], [30], a different strategy was used. Contrary to the
previous method, the goal here is to minimize the overhead
of checking the correctness of an execution by submitting
the various resource providers to test. The kind of tests that
can be used may rely on four different techniques: naive,
quiz, ringers, and spot checking (see [7], [31]).

B. Application identification and detection

The fingerprinting approach tries to generalize application
behavior given its execution traces into a model. This
approach has been used in different contexts to identify and
detect applications. In [32], [33], the authors show the ben-
efits of fingerprints to automatically detect hardware Trojan
and in [34], Lin et al. are using packet size distribution of
the connections to create an application fingerprint.

2https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt



Side-channel analysis is composed of two steps, com-
monly referred to identification and exploitation. The iden-
tification consists in understanding the leakage and building
suitable models. The exploitation consists of using the
identified leakage models to extract an information. To
build the model, several approaches have shown that it
can be approximated in a profiling phase using machine
learning techniques. In [35], Gulmezoglu et al. show that
the use of cache access profiles could be efficient to classify
applications. Zender et al. [36] show the efficiency of un-
supervised machine learning to automatically classify traffic
and application when the network traffic. In [37], Schuster
et al. show that by monitoring an encrypted network traffic
a convolutional neural networks can accurately distinguish
movies streamed using network traffic bursts.

In this paper, we use machine learning for side-channel
analysis. We mainly demonstrate on a set of real appli-
cations that a set of 48 metrics commonly used in cloud
technology could be utilized to classify application without
any assumptions on applications. Contrary to existing work,
we neither do any assumption on these metrics nor on the
resource usage type of the application (e.g., CPU or memory
Intensive) to classify.

VII. CONCLUSION

Tracking the correctness of the application execution
over time is necessary to prevent malicious infrastructure
owners from sabotaging the computation. Machine learning
combined with a fingerprint technique seems to be a relevant
approach for homogeneous and heterogeneous hardware. It
also shows that the approach is not viable for unspecified
hardware.

This paper shows that it is not necessary to take into
account application characteristics when trying to track the
execution of applications when using our fingerprinting ap-
proach that combines both a genetic and a machine learning
algorithm.

We evaluated our approach with RF. Our results show
that we were able to detect the correct execution with an
accuracy of 99.88% with homogeneous hardware, 98% with
heterogeneous and 40% with unspecified hardware on the
five selected applications.

We will also work toward considering GPU and other
processing elements. We also plan to evaluate deep learning
algorithms such as Long Short Term Memory (LSTM) which
is designed to capture dependencies within an input sequence
and GAN (Generative Adversarial Network). Finally, other
experiments are underway to apply one-class (i.e., unary
classification) to train a model per application.

Finally, as for future work, the prediction ability for
unspecified hardware could be improved by normalizing the
performance metrics using hardware information provided
for example by sysconf. In addition, during the feature se-
lection step, we could also add in the testing set unspecified

hardware to let the feature selection algorithm select feature
more robust to hardware variations.

ACKNOWLEDGMENT

This work was supported by the Institute of Research and Technology b-com,
dedicated to digital technologies, funded by the French government through the ANR
Investment referenced ANR-A0-AIRT-07.

REFERENCES

[1] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big
data: Issues and challenges moving forward,” in System Sci-
ences (HICSS), 2013 46th Hawaii International Conference
on, pp. 995–1004, IEEE, 2013.

[2] J.-E. Dartois, A. Knefati, J. Boukhobza, and O. Barais, “Using
quantile regression for reclaiming unused cloud resources
while achieving sla,” in 2018 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom),
pp. 89–98, IEEE, 2018.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “Seti@ home: an experiment in public-
resource computing,” Communications of the ACM, vol. 45,
no. 11, pp. 56–61, 2002.

[4] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter
of idle workstations,” tech. rep., University of Wisconsin-
Madison Department of Computer Sciences, 1987.

[5] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pp. 124–134, ACM,
2011.

[6] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and
C. Fetzer, “SCONE: Secure linux containers with intel SGX,”
in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), (Savannah, GA), pp. 689–
703, USENIX Association, 2016.

[7] L. F. Sarmenta, “Sabotage-tolerance mechanisms for vol-
unteer computing systems,” Future Generation Computer
Systems, vol. 18, no. 4, pp. 561–572, 2002.

[8] “cadvisor online documentation.” Website, 2019. Accessed
May, 27st, 2019.

[9] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud
monitoring: A survey,” Computer Networks, vol. 57, no. 9,
pp. 2093–2115, 2013.

[10] E. Alpaydin, Introduction to machine learning. In MIT press,
2014.

[11] J.-E. Dartois, H. B. Ribeiro, J. Boukhobza, and O. Barais,
“Cuckoo: a mechanism for exploiting ephemeral and hetero-
geneous cloud resource,” in IEEE International Conference
on Cloud Computing, IEEE, 2019.

[12] W. Reese, “Nginx: the high-performance web server and
reverse proxy,” Linux Journal, vol. 2008, no. 173, p. 2, 2008.



[13] A. MySQL, “Mysql,” 2001. https://www.mysql.com.

[14] A. Brazell, WordPress Bible, vol. 726. John Wiley and Sons,
2011.

[15] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexi-
ble framework for file system benchmarking,” The USENIX
Magazine, vol. 41, no. 1, 2016.

[16] F. Bellard, M. Niedermayer, et al., “Ffmpeg,” Available from:
http://ffmpeg.org, 2012.

[17] R. M. Stallman et al., “Using the gnu compiler collection,”
Free Software Foundation, vol. 4, no. 02, 2003.

[18] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Advances in Neural Information Pro-
cessing Systems, pp. 2962–2970, 2015.

[19] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.

[20] A. Jain and D. Zongker, “Feature selection: Evaluation, ap-
plication, and small sample performance,” IEEE transactions
on pattern analysis and machine intelligence, vol. 19, no. 2,
pp. 153–158, 1997.

[21] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40,
no. 1, pp. 16–28, 2014.

[22] H. Hao, C.-L. Liu, and H. Sako, “Comparison of genetic
algorithm and sequential search methods for classifier subset
selection,” in Seventh International Conference on Document
Analysis and Recognition, 2003. Proceedings., pp. 765–769,
Citeseer, 2003.

[23] J. Yang and V. Honavar, “Feature subset selection using a
genetic algorithm,” in Feature extraction, construction and
selection, pp. 117–136, Springer, 1998.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, et al., “Scikit-learn: Machine learning in python,”
Journal of machine learning research, vol. 12, no. Oct,
pp. 2825–2830, 2011.

[25] T. H. R. T. J. Friedman, The Elements of Statistical Learning.
Springer Series in Statistics, 2013.

[26] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,
“Proofs of ownership in remote storage systems,” in Pro-
ceedings of the 18th ACM conference on Computer and
communications security, pp. 491–500, Acm, 2011.

[27] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies
to improve disk system performance,” Computer, vol. 27,
no. 3, pp. 38–46, 1994.

[28] J.-E. Dartois, J. Boukhobza, A. Knefati, and O. Barais,
“Investigating machine learning algorithms for modeling ssd
i/o performance for container-based virtualization,” IEEE
Transactions on Cloud Computing, vol. 14, pp. 1–14, 2019.

[29] W. Du, M. Murugesan, and J. Jia, “Uncheatable grid com-
puting,” in Algorithms and theory of computation handbook,
pp. 30–30, Chapman & Hall/CRC, 2010.

[30] S. Zhao, V. Lo, and C. G. Dickey, “Result verification
and trust-based scheduling in peer-to-peer grids,” in Peer-to-
Peer Computing, 2005. P2P 2005. Fifth IEEE International
Conference on, pp. 31–38, IEEE, 2005.

[31] P. Golle and I. Mironov, “Uncheatable distributed computa-
tions,” Topics in CryptologyCT-RSA 2001, pp. 425–440, 2001.

[32] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar, “Trojan detection using ic fingerprinting,” in 2007
IEEE Symposium on Security and Privacy (SP ’07), pp. 296–
310, May 2007.

[33] Yier Jin and Y. Makris, “Hardware trojan detection using path
delay fingerprint,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, pp. 51–57, June 2008.

[34] Y.-D. Lin, C.-N. Lu, Y.-C. Lai, W.-H. Peng, and P.-C. Lin,
“Application classification using packet size distribution and
port association,” Journal of Network and Computer Applica-
tions, vol. 32, no. 5, pp. 1023 – 1030, 2009. Next Generation
Content Networks.

[35] B. Gulmezoglu, T. Eisenbarth, and B. Sunar, “Cache-based
application detection in the cloud using machine learning,”
in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, ASIA CCS ’17,
(New York, NY, USA), pp. 288–300, ACM, 2017.

[36] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic
classification and application identification using machine
learning,” in The IEEE Conference on Local Computer Net-
works 30th Anniversary (LCN’05)l, pp. 250–257, Nov 2005.

[37] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the
burst: Remote identification of encrypted video streams,”
in 26th USENIX Security Symposium (USENIX Security
17), (Vancouver, BC), pp. 1357–1374, USENIX Association,
2017.


