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ABSTRACT
We derive the constrained Cramér-Rao bounds for a coupled
CP model with linear constraints applied to the hyperspectral
super-resolution problem. For this problem, we consider two
tensors representing low-resolution hyperspectral and mul-
tispectral images. In a practical measurement setup, white
Gaussian noise sequences are added to each tensor with dif-
ferent variances. The coupling constraints are expressed be-
tween the factor matrices of the canonical polyadic model for
each tensor. We show that the estimator given by the coupled
alternating least squares algorithm achieves the bounds for
given Signal-to-Noise Ratios, but requires the knowledge of
the ratio of variances of the additive Gaussian noise sequences
on each tensor.

Index Terms— hyperspectral super-resolution, data fu-
sion, multimodal data, coupled decompositions, Cramér-Rao
bounds.

1. INTRODUCTION

Hyperspectral super-resolution (HSR) [1] is a problem of
growing interest in the signal processing community. It con-
sists in fusing a multispectral image (MSI), which has a good
spatial resolution but few spectral bands, and a hyperspec-
tral image (HSI), whose spatial resolution is lower than that
of the MSI. The aim is to recover a super-resolution image
(SRI), which possesses both good spatial and spectral reso-
lutions. This problem lies in the framework of multimodal
data fusion [2] between heterogeneous datasets. In this case,
the datasets have different parametric models with shared
variables, linked through possibly non-linear deterministic or
statistical relations.

In [3], a tensor-based method was proposed for solving
the HSR problem. Assuming that the super-resolution image
itself admits a low-rank canonical polyadic (CP) decompo-
sition (CPD), the problem is reformulated as a coupled CP
approximation. An alternating least squares (ALS) algorithm
called STEREO (Super-resolution TEnsor REconstruction)
was also proposed.

In [4, 5, 6], performance bounds for uncoupled CP models
have been provided . In [7], a Bayesian framework were pro-

posed for flexible coupling models, and hybrid Cramér-Rao
bounds were derived. In [8], constrained Cramér-Rao bounds
(CCRB) [11] for partially coupled complex tensors and pos-
sibly non-linear couplings were explored. In this paper, we
derive the CCRB for the HSR problem, where all variables
are coupled through linear relations.

This paper is organized as follows: in Section 2, we
present a general coupled model. In particular, we express
the HSR model as a parametric coupled CP model. In Sec-
tion 3, we derive the expressions for the Fisher information
matrix (FIM) in the uncoupled case, and extend the work
in [8] by formulating the CCRB for a fully coupled model.
Section 4 presents our experiments on performance bounds
and mean squared errors on the parameters for coupled and
uncoupled ALS.

Notation. In this paper we mainly follow [9] in what con-
cerns the tensor notation (see also [10]). We use the symbol�
for the Kronecker product and � for the Khatri-Rao product.
We use vec{·} for the standard column-major vectorization
of a tensor or a matrix. The operation •p denotes contrac-
tion on the pth index of a tensor; for instance, [A •1M ]ijk =∑
`A`jkMi`. For the matrices A ∈ RI×N , B ∈ RJ×N ,

C ∈ RK×N , we will use a shorthand notation for the CPD .

[[A,B,C]] = [[IN ; A,B,C]]

where IN ∈ RN×N×N is a diagonal tensor of ones. For the
matrices A,B, the notation A � B means that A −B is a
positive semidefinite (PSD) matrix. By ∂θiθj ,

∂2

∂θiθT
j

, we
denote the second order derivative operator w.r.t. parameters
θi and θTj arranged in a Hessian matrix .

2. COUPLED DATASET MODEL

2.1. General coupled model

We consider a general coupled model for two real datasets
x1 ∈ Ω1 ⊆ Rn1 and x2 ∈ Ω2 ⊆ Rn2 :{

x1 ∼ fx1;θ1,φ1
and x2 ∼ fx2;θ2,φ2

g(θ1,θ2) = 0 and h(φ1,φ2) = 0.
(1)



The probability density functions (PDF) fx1;θ1,φ1
and fx2;θ2,φ2

are parametrized by the unknown deterministic real pa-
rameter vectors (θ1,φ1) ∈ Θ1 × Φ1 ⊆ Rm1 × Rp1 and
(θ2,φ2) ∈ Θ2 × Φ2 ⊆ Rm2 × Rp21.

Unlike [8], this model is referred to as fully coupled since
all parameters are coupled through the relations g(θ1,θ2) = 0
and h(φ1,φ2) = 0. We assume that:

(i) g(θ1,θ2), h(φ1,φ2) are non-redundant deterministic
functions differentiable for all (θ1,φ1) ∈ Θ1×Φ1 and
(θ2,φ2) ∈ Θ2 × Φ2, respectively;

(ii) the PDF fx1;θ1,φ1
and fx2;θ2,φ2

are differentiable w.r.t.
(θ1,φ1) (resp. (θ2,φ2)) , and that their respective sup-
ports do not depend on these parameters;

(iii) the variables x1 and x2 are statistically independent.

In a multimodal data fusion scenario, we also assume that
fx1;θ1,φ1

and fx2;θ2,φ2
can be different even if the model pa-

rameters are the same.
In [11, Lemma 2], some regularity conditions were

proposed, under which the maximum-likelihood estimator
(MLE) for the constrained parameters is asymptotically opti-
mal in the mean squared error (MSE) sense and achieves the
CCRB. Such an estimator is called and efficient constrained
estimator, provided that it exists [11]. Thus, we wish to
analyze the performance of model (1) for the estimation of
(θ1,φ1) and (θ2,φ2).

2.2. HSR degradation model

We consider an HSI cube Y1 ∈ RIH×JH×K and a MSI
cube Y2 ∈ RI×J×KM acquired from existing sensors (for
instance, LANDSAT or QuickBird [12]). While I , IH , J
and JH denote the size of the images in the spatial dimen-
sions, K and KM stand for the size of the data cubes in the
spectral dimensions. The spectral resolution of MSI is lower
than that of HSI (KM � K) , while its spatial resolution
is higher (I > IH , J > JH ). The acquired MSI and HSI
usually represent the same target, and Y1 and Y2 are viewed
as two degraded versions of a single super-resolution image
(SRI) data cube Y ∈ RI×J×K . The hyperspectral data fusion
problem [1] consists in recovering the SRI Y from Y1 and
Y2.

In this paper, as in [3], we adopt the following degradation
model, that can be compactly written as contraction of SRI:{

Y1 = Y •1P •2Q+ E1,

Y2 = Y •3R+ E2,
(2)

where P ∈ RIH×I , Q ∈ RJH×J and R ∈ RKM×K are
known degradation matrices2. In a realistic setup, we follow
the commonly used Wald’s protocol [13] for spatial degra-
dation of the HSI. The spectral degradation matrix R is a
selection-averaging matrix. In this paper, we consider the
case where the first rows of P , Q and R are equal to the

1ni, mi and pi denote the size of the vectors xi, θi and φi, respectively.
2We suppose that the spatial degradation for the HSI is separable.

first rows of the identity matrix. The entries of the noise
terms E1 ∼ N (0, σ2

1I), E2 ∼ N (0, σ2
2I) are independent

and identically distributed (i.i.d.) real Gaussian variables with
zero mean and variance σ2

1I and σ2
2I , respectively.

2.3. CP-based data fusion

In [3] it was proposed to model the SRI as a tensor of low
tensor-rank N . Under the assumption that the SRI admits a
low-rank CPD, the degradation model (2) becomes{

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,
(3)

subject toA1 = PA2,B1 = QB2, and C2 = RC1,

where A1 ∈ RIH×N , B1 ∈ RJH×N , C1 ∈ RK×N , A2 ∈
RI×N , B2 ∈ RJ×N , C2 ∈ RKM×N are the factor ma-
trices of the CPD. Thus, the SRI admits a CPD such that
Y = [[A2,B2,C1]].

Following [8], we define the model parameters

θ1 = vec{C1} ∈ RKN×1, φ1 =

[
vec{A1}
vec{B1}

]
∈ R(IH+JH)N×1,

θ2 = vec{C2} ∈ RKMN×1, φ2 =

[
vec{A2}
vec{B2}

]
∈ R(I+J)N×1,

corresponding to the vectorization of the factor matrices for
each tensor. The choice to group Ai and Bi factors, separate
from theCi (i = 1, 2) factor matrices is motivated by the fact
that spatial and spectral degradations never occur in the same
tensor, according to the model (2). Thus, θ2 and φ1 can be
seen as degraded versions of θ1 and φ2 by the spectral and
spatial degradation matrices, respectively.

Since E1 and E2 are i.i.d., the HSI and MSI are distributed
according to



fY1;θ1,φ1
=

(
1√
2πσ2

1

)IHJHK
exp

(
− 1

2σ2
1
‖Y1 − [[A1,B1,C1]]‖2F

)
,

fY2;θ2,φ2
=

(
1√
2πσ2

2

)IJKM

exp
(
− 1

2σ2
2
‖Y2 − [[A2,B2,C2]]‖2F

)
,

(4)

where ‖ · ‖F denotes the Frobenius norm. The criterion min-
imized by STEREO is

‖Y1 − [[PA2,QB2,C1]]‖2F + λ‖Y2 − [[A2,B2,RC1]]‖2F ,
subject toA1 = PA2,B1 = QB2, and C2 = RC1.

This criterion is proportional to the log-likelihood crite-
rion, provided that λ =

σ2
1

σ2
2

.



3. PERFORMANCE ANALYSIS

In this section, we derive the FIM for the uncoupled and cou-
pled cases of model (3). In a HSR framework, we wish to es-
timate the parameters of the SRI model, i.e θ1 and φ2. Here,
we also provide performance analysis for the degraded pa-
rameters θ2 and φ1. We only focus on the case where the
model is identifiable so that the Fisher information matrix
(FIM) F is non-singular and CRB = F−1.

3.1. Uncoupled CP model

In this subsection, we consider the uncoupled CP model{
vec{Y1} ∼N (µ1(θ1,φ1), σ2

1I),

vec{Y2} ∼N (µ2(θ2,φ2), σ2
2I),

(5)

with µ1(θ1,φ1) = vec{[[A1,B1,C1]]} and
µ2(θ2,φ2) = vec{[[A2,B2,C2]]}.

Here, we only derive the CRB for the HSI Y1, but the
expression for the MSI can be obtained similarly. In fact, to
solve the scaling indeterminacy of the CPD [14], we need to
fix the first rows ofA1,B1 to known values; here we normal-
ize the factors by setting the first rows to ones. As a result, we
define the parameter φ̃1 , only composed of the unknown en-
tries of φ1. The matrixM1 ∈ R(IH+JH−2)N×(IH+JH)N is a
mask obtained by removing the 2N entries corresponding to
known parameters of φ1 such that φ̃1 = M1φ1 . Thus, we
want to analyze the performance of the uncoupled model by
deriving the CRB on θ1 and φ̃1.

The Fisher information matrix on the uncoupled parame-
ters is given by:

F (θ1, φ̃1) =

[
Dθ1θ1

Dθ1φ̃1

Dφ̃1θ1
Dφ̃1φ̃1

]
,

whereDθiθj = −E[∂θiθjL1] and L1 = ln fY1;θ1,φ1
(Y1) is

the log-likelihood function of Y1.
Basic operations on tensor unfoldings yield:

vec{[[A1,B1,C1]]} = [(C1 �B1)� IIH ]︸ ︷︷ ︸
SA1

vec{A1},

= J
(1)
21 [(C1 �A1)� IJH ]︸ ︷︷ ︸

SB1

vec{B1},

= J
(1)
31 [(B1 �A1)� IK ]︸ ︷︷ ︸

SC1

vec{C1},

where J (1)
21 , J (1)

31 ∈ RIHJHK×IHJHK are permutation matri-
ces mapping the entries of the second (resp. third) unfolding
of vec{[[A1,B1,C1]]} to those of the first unfolding.

The elements of F (θ1, φ̃1) can thus be written in a com-

pact form due to the Slepian-Bangs formula [15]:
Dθ1θ1

= 1
σ2
1
ST
C1
SC1

,

Dθ1φ̃1
= 1

σ2
1
ST
C1

[
SA1

SB1

]
MT

1 ,

Dφ̃1φ̃1
= 1

σ2
1
M1

[
ST
A1

ST
B1

] [
SA1

SB1

]
MT

1 .

The CRB can then computed by block inversion of the
Fisher information matrix. For a full derivation of the CRB
for the uncoupled CP models, please refer to [8].

3.2. Coupled CP model

We now consider a joint estimation of the vector parameters
θ1, θ2, φ̃1 and φ̃2 for the coupled CP model. According to
[11, 8], a simple expression of the CCRB can be obtained
such that

CCRB = F−1 − F−1JT
(
JF−1JT

)−1

JF−1 � 0, (6)

where F , Diag{F (θ1, φ̃1),F (θ2, φ̃2)}. Equation (6)
means that the CCRB is always lower than the CRB.

The matrix J , J(θ1, φ̃1,θ2, φ̃2) is the Jacobian of the
constraints in (3). They can be expressed with respect to the
model parameter such that

g(θ1,θ2) = (IN �R)θ1 − IKMNθ2 = 0,

h(φ̃1, φ̃2) = I(IH+JH−2)N φ̃1

−M1

[
IN �P 0

0 IN �Q

]
︸ ︷︷ ︸

P

MT
2 φ̃2 = 0,

(7)
where M2 is a mask matrix obtained similarly to M1 such
that φ̃2 = M2φ2.

Thus, a general expression for J is

J =

∂g(θ1,θ2)

∂θT
1

0 ∂g(θ1,θ2)

∂θT
2

0

0 ∂h(φ̃1,φ̃2)

∂φ̃
T

1

0 ∂h(φ̃1,φ̃2)

∂φ̃
T

2

 .
In this particular case, we have

J =

[
IN �R 0 −IKMN 0

0 I(IH+JH−2)N 0 −M1PMT
2

]
.

From the expression of J , it is easy to see that the sets of
parameters (θ1,θ2) and (φ1,φ2) are uncoupled.

4. SIMULATIONS

In this section, we simulate the performance of the coupled
CP model under additive Gaussian noise for the constrained
and unconstrained cases and compare it to the bounds pre-
sented in Section 3. For basic tensor operations we used Ten-
sorLab 3.0 [16].



The model parameters are retrieved using MLE. In the un-
coupled case, an Alternating Least Squares (ALS) algorithm
[17] is used, with random initialization for the factor matri-
ces. For the coupled case, the algorithm proposed in [3] is
used. It consists in a coupled ALS algorithm based on model
(2). To speed up the convergence of the coupled algorithm,
the factor matrices obtained by uncoupled ALS are used as
initialization.

For the CP model to be identifiable, the scaling and per-
mutation ambiguities are corrected by setting the first rows of
the factorsA1,B1,A2,B2 to ones and searching for the best
permutation of C2 with fixed C1.

Simulation settings. We consider that I = J = K = 15,
IH = JH = 10, and KM = 9. All CP factors are generated
randomly according to i.i.d. real standard Gaussian variables,
and first rows ofA1,A2,B1,B2 are set to 1. The tensor rank
for both HSI and MSI is N = 3. The degradation matrices
P ,Q,R are generated from identity matrices by keeping only
the first IH , JH ,KM rows, respectively; this ensures that the
matrices are full rank and normalized as in Subsection 2.2,
which ensures that the coupling constraints in (7) are linear.

We evaluate the total MSE on the parameters by averaging
the squared errors through 500 noise realizations. For each
realization, the best of 5 initializations is picked. The SNR of
Y2 is fixed to 20dB while that of Y1 varies from 5 to 40dB.
For both uncoupled ALS and STEREO, 500 iterations at most
are performed.
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Fig. 1. Total MSE and performance bounds for the estimation
of real coupled CP models on a semi-log scale with λ =

σ2
1

σ2
2

In Figure 1, we show the MSE and the performance
bounds on a semi-logarithmic scale when the noise level is
taken into account. By this, we mean that the regularization
parameter λ is known [18, 19] and set to λ =

σ2
1

σ2
2

. We can see
that the CCRB is indeed lower than the CRB. Moreover, the
MSE for uncoupled ALS follows the CRB. Here, the MSE for
STEREO follows closely the CCRB with a small gap when

the SNR for Y1 is between 10dB and 25dB. In particular,
the outlier point on the MSE for θ2 for 5dB SNR may depict
a case where the algorithm does not converge to a global
minimum. For high SNR, the MSE for STEREO reaches the
CCRB.

Those results show that the coupled CP algorithm pro-
posed in [3] reaches the CCRB when the SNR of each tensor
Y1, Y2 is considered, and thus, the variances of the additive
noises are needed. In other words, if STEREO performs noise
variance normalization, then it is the MLE.
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Fig. 2. Total MSE and performance bounds for the estimation
of real coupled CP models on a semi-log scale with λ = 1

In Figure 2, we show similar plots but in the case where
the additive noise levels are not taken into account in the esti-
mation of the parameters, i.e. λ = 1. In this case, the MSE for
STEREO does not follow the CCRB. In particular, the outlier
points on the MSE of θ1 and φ2 for 15dB SNR on Y1 may
be explained by the fact that the algorithm does not converge
to a global minimum. For a SNR higher or equal to 20dB, the
MSE is almost constant on a semi-logarithmic scale, and does
not reach the CCRB.

5. CONCLUSION

We have proposed a formulation for constrained Cramér-Rao
bounds for fully coupled CP model with linear constraints. In
particular, we gave an expression of the CCRB for the HSR
problem using an approximate low-rank CPD . Our experi-
ments have shown that the considered coupled CP algorithm
reaches the performance bounds provided that the noise vari-
ances ratio λ between the HSI and MSI is known, and is thus
the MLE. If the noise variances are unknown, then the algo-
rithm does not reach the bounds. Thus, the choice of this reg-
ularization parameter remains open: data-driven procedures
can be envisaged [20]. Another approach would be to design
methods that are robust to a misspecification of λ [21].
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