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Abstract. Gauge-invariance is a mathematical concept that has pro-
found implications in Physics—as it provides the justification of the fun-
damental interactions. It was recently adapted to the Cellular Automa-
ton (CA) framework, in a restricted case. In this paper, this treatment
is generalized to non-abelian gauge-invariance, including the notions of
gauge-equivalent theories and gauge-invariants of configurations.
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1 Introduction

In Physics, symmetries are essential concepts used to derive the laws which
model nature. Among them, gauge symmetries are central, since they provide
the mathematical justification for all four fundamental interactions: the weak
and strong forces (short range interactions), electromagnetism [6] and to some
extent gravity (long range interactions). In Computer Science, cellular automata
(CA) constitute the most established model of computation that accounts for
euclidean space. Yet its origins lies in Physics, where they were first used to
model hydrodynamics and multi-body dynamics, and are now commonly used
to model particles or waves. The study of gauge symmetries in CA is expected to
benefit both fields. In order to obtain discrete systems that can simulate physics
on the one hand. In order to bring gauge theory to Computer Science, as a tool
to study redundancy and fault-tolerant computation for instance, on the other
hand.

A study of gauge symmetries in CA has been recently studied, by the same
authors, in the particular case of abelian gauge symmetries [3]. Here, we provide
a generalization to non-abelian gauge symmetries. In Physics, the generalization
from abelian to non-abelian gauge theories was a non-trivial but crucial step,
that enabled taking into account a wider range of phenomena.

The paper is organized as follows. Sec. 2 is a reformulation in a more general
framework of the gauge-invariance in CA definitions and procedure given in [3].
It provides the context and notations used in the rest of the paper. In Sec.
3, a complete example of non-abelian gauge-invariant CA is given through the
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application of the gauging procedure. It provides an example of the route one
may take in order to obtain a gauge-invariant CA, starting from one that does
not implement the symmetry. Sec. 4 discusses the equivalence of theories and
develops the notion of invariant sets. We summarize in Sec. 5 and provide related
works perspectives.

2 Gauge-invariance

Theory to be gauged. In this paper, theories stands for CA. We start from a
theory R, which internal state space is Σ and local rule is λR. We denote by ψx,t
the state of the cell at position x and time t. ψt denotes a configuration which
is a function from Z into Σ that gives a state for each position x. As a running
example, we pick possibly the simplest and most nature physics-like reversible
CA (RCA) : one that has particles moving left and right. More precisely, in this
example Σ = {0, ..., N}2, therefore, we can write ψx,t = (ψlx,t, ψ

r
x,t) where the

exponents l and r denotes the left and right parts, each being an element of
{0, ..., N}. The local rule λR takes the right-incoming left sub-cell (i.e. ψlx+1) to
the left, and the left-incoming right sub-cell (i.e. ψrx−1) to the right:

ψx,t+1 =
(

ψlx,t+1, ψ
r
x,t+1

)

= λR
(

ψrx−1,t, ψ
l
x+1,t

)

=
(

ψlx+1,t, ψ
r
x−1,t

)

(1)

Such a CA is said to be expressed in the block-circuit form which is often re-
ferred as the (Margolus-)Partitioned CA in Computer Science vocabulary [8], or
Lattice-gas automata in Physics [11]. Fig-1 gives an example of this dynamics
for N = 2 (where the three colors represent the three possible states), and Fig-2
introduces the conventions used.

t

t+1

t+2

t+3

x-2 x-1 x x+1 x+2 x+3

Fig. 1. A spacetime diagram of R.

λR

ψl ψr

x-1 x x+1

t

t+1

Fig. 2. Conventions.

This theory R is to be gauged because does not yet implement the gauge
symmetry, which is a local invariance under a group of operators called gauge

transformations. The theory R will eventually be extended into a theory T that
does implement the symmetry, through a gauging procedure.
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Gauge transformations. The gauge symmetry is an invariance of the evolution
under a gauge transformation. What we call a gauge transformation is based
on a monoid Γ of operators acting on the internal state space Σ. A gauge
transformation is the application, onto the state of each cell in a configuration,
of one of the operators of Γ . More formally, for each cell x is attributed an
element γx in Γ . Thereby specifying a gauge transformation γ̄ acting over entire
configurations:

γ̄ :
ΣZ → ΣZ

c 7→
(

x 7→ γx(cx)
)

We denote Γ̄ ∼= Γ Z the set of these gauge transformations γ̄.

Gauge-invariance. A theory T is said gauge-invariant if its evolution is impervi-
ous to gauge-transformations. In other words, applying a gauge transformation
γ̄ followed by the evolution T , amounts to the same as applying the evolution
R directly. What is meant by amounts to the same is that both outputs are the
same, up to a gauge-transformation γ̄′. Given that we want the evolution T to
be deterministic, we impose that γ̄′ be determined from γ̄ by means of some
theory Z. After those consideration, gauge-invariance can be defined as follows
which is a reformulation from [3] :

Definition 1 (Gauge-invariance). A theory T is gauge-invariant if and only

if there exists Z a theory such that for all γ̄ ∈ Γ̄

Z(γ̄) ◦ T = T ◦ γ̄ (2)

where the symbol ◦ represents the composition.

The gauge-invariance is represented in Fig-3 where γ0, γ1 and γ′ are local
gauge transformations.

γ0 γ1

=

γ ′

Fig. 3. Illustration of gauge-invariance.

Gauging procedure. In order to extend the non-gauge-invariant theory R into a
gauge-invariant theory T we will apply a gauging procedure, which is strongly
inspired from Physics. The procedure begins by introducing new information,
namely the gauge field A, at each point in spacetime, and to extend the theory
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R into an A-dependant theory RA that features gauge-invariance. We also need
to decide how that gauge field changes under gauge transformations. In order to
keep the notations simple, we will write γ̄(A) for the gauge transformation of the
gauge field A. Even though the gauge field may not transform the same way as
the initial configuration, the context shall be enough to lift any ambiguity. Let
us make precise what we mean by gauge-invariance, whenever a theory depends
on an external field.

Definition 2 (Inhomogeneous gauge-invariance). A theory T• is said to be

inhomogeneous gauge-invariant if and only if there exists Z a theory such that

for all γ̄ ∈ Γ̄ ,

Z(γ̄) ◦ T• = Tγ̄(•) ◦ γ̄ (3)

Typically, this condition puts a strong constraint on the way the gauge trans-
formation must act over the gauge field, i.e. γ̄(A). An example is given in Sec.3.

Having determined such gauge transformation, the final step of the gauging
procedure is to give a theory that specifies the dynamics of the gauge field. This
theory, joint together with RA, must give a global theory T that verifies the
original gauge-invariance condition (2). Again, an example is given in Sec.3.

All-in-all, the gauging procedure can be summarized in these four steps which
we will use as a basis for the rest of the paper :

1. Start with a theory to be gauged R and a set of gauge transformations Γ̄ .
2. Introduce the gauge field A, transform R into RA.
3. Define γ̄(A) through the requirement that RA verifies condition (3).
4. Give a theory A in order to define a global gauge-invariant theory T .

The first two steps are free for the user/physicist to choose according to the
system to be modelled. The third step however is mostly determined by the
gauge-invariance condition. Finally, the degree of freedom in the choice of the
dynamics for A – i.e. the last step – may depend on the specific cases and no
general characterization of the leftover degrees of freedom exists. In the abelian
case however, the gauge fixing soundness result helps [3].

3 Non-abelian gauge-invariance

In gauge theories, we use the term abelian or non-abelian to refer to the (non-)
commutativity of the monoid Γ of operations over Σ, or equivalently to that
of the gauge-transformations Γ̄ . In physics, abelian gauge theories give rise to
electromagnetism, while non-abelian gauge-theories (Yang-Mills theories in par-
ticular) allow for the formulation of the whole standard model—namely the elec-
tromagnetic, weak and strong interactions. Whether gravitation is a non-abelian
gauge theory is open to interpretation, but it certainly has some flavour of it.
By-the-way, non-abelian really means possibly-non-abelian, it still comprises the
abelian subcase. In this section, we produce a complete example of a non-abelian
gauge-invariant CA by applying the gauging procedure.
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Back to the running example.

Step 1. Recall that our point of departure was the theory R, whose rule λR given
by Eq.(1) is takes two subcells into two subcells through a bijection. In order to
have as simple an example as possible, we choose N = 2, thus Σ = {0, 1, 2}2. Let
us choose a monoid Γ that follows the same structure as in [3], i.e. so that the
operators γ ∈ Γ act identically on both elements of Σ (this choice is traditional
in gauge theories, but not a necessity of our definitions). That is, they act by
applying the same permutation on both subcells. More formally, let us denote
by S(N) the set of permutations over {0, ..., N − 1}, we let:

Γ = {s⊗ s | s ∈ S(N)}.

Given some γ = s⊗ s, the notations γl = γr will be short for s.

Step 2. This step is to introduce an external gauge field A and make R into an
A-dependent rule RA. We take the gauge field A to be defined at every half-
integer space position (and every time step). This definition is physics-inspired
and corresponds to the convention used in [2]. We let A take its values in S(3) the
set of permutations over 3 elements. We let RA be defined by the A-dependent
local rule λRA , which is spacetime-dependent since A is spacetime-dependent:

(λRA)x,t = λR ◦ (Ax−1/2,t ⊗A−1
x+1/2,t)

The induced evolution that used to be described by Eq.(1) now becomes :

(

ψlx,t+1, ψ
r
x,t+1

)

= (λRA)x,t
(

ψrx−1,t, ψ
l
x+1,t

)

=
(

A−1
x+1/2,tψ

l
x+1,t, Ax−1/2,tψ

r
x−1,t

)

The local rule λRA is represented in Fig-4.

λRA

A A

x-1 x x+1x-1/2 x+1/2

t

t+1

Fig. 4. Introducing the gauge field.

The way RA depends on the gauge field and the definition of the gauge field
itself is motivated through the fact that A can be made to cancel any gauge-
transformation done on the input.
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Step 3. The gauge transformation of the gauge field A is dictated by the condition
(2). Such condition can be developed locally due to the locality of the theory
and of the gauge transformation. It gives : there exists Z a theory such that for
all γ̄ ∈ Γ̄ and x ∈ Z

Z(γ̄)x ◦ (λRA)x = (λRγ̄(A)
)x ◦ (γ

r
x−1 ⊗ γlx+1).

Replacing the local rule by its expression gives the following equation:

Z(γ̄)x ◦ λR ◦ (Ax−1/2 ⊗A−1
x+1/2)

= λR ◦ (γ̄(A)x−1/2 ⊗ γ̄(A)−1
x+1/2) ◦ (γ

r
x−1 ⊗ γlx+1).

This equation is equivalent to the following system

{

γ̄(A)x−1/2 ◦ γ
l
x−1 = Z(γ̄)lx ◦Ax−1/2

γ̄(A)−1
x+1/2 ◦ γ

r
x+1 = Z(γ̄)rx ◦A

−1
x+1/2

⇔

{

γ̄(A)x−1/2 = Z(γ̄)lx ◦Ax−1/2 ◦ (γ
l
x−1)

−1

γ̄(A)x+1/2 = γrx+1 ◦Ax+1/2 ◦ (Z(γ̄)
r
x)

−1

Such a system gives an information and a constraint. First, the gauge trans-
formation of the gauge field A is given explicitly in terms of that over ψ, which
was the main objective. Second, it puts some constraints over Z. In order to
satisfy both these equations for any A and γ̄ given as input, the choice of Z
is limited. For instance, Z cannot be a translation to the right, because that
would impose for γ to be the same at every position. One solution is to choose
Z(γ̄) = γ̄. Such choice, common in physics, was also taken in [2] which gives a
quantum CA for one-dimensional QED (quantum electrodynamics).

In the end, the gauge-transformation of the gauge field A reads, for x an
half-integer and using γr = γl:

γ̄(A)x = γlx+1/2 ◦Ax ◦ (γ
l
x−1/2)

−1 (4)

Step 4. We now have an inhomogeneous gauge-invariant theory RA, with
respect to Γ and Z = I. The last step is to provide a theory for the dynamics
of the gauge field A, in order to yield a complete gauge-invariant theory T that
evolves both ψ and A—i.e. over the internal state space S(N)×Σ× S(N). The
usual way to do this is to propose an inhomogeneous gauge-invariant theory
Sψ, with respect to the same Γ and Z, that acts on A but depend on ψ. Then
combining RA and Sψ, which are both inhomogeneous gauge-invariant, will give
a gauge-invariant theory T with respect to Γ and Z. Let us justify this by writing
down the inhomogeneous gauge-invariance condition (3) for RA and Sψ: for all
ψ ∈ ΣZ, A ∈ S(N) and γ̄ ∈ Γ̄ :

Rγ̄(A) ◦ γ̄(ψ) = Z(γ̄) ◦RA(ψ)

Sγ̄(ψ) ◦ γ̄(A) = Z(γ̄) ◦ Sψ(A)
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Combining both, we obtain

T ◦ γ̄(ψ,A) =
(

Rγ̄(A) ◦ γ̄(ψ), Sγ̄(ψ) ◦ γ̄(A)
)

=
(

Z(γ̄) ◦RA(ψ), Z(γ̄) ◦ Sψ(A)
)

= Z(γ̄) ◦ T (ψ,A)

which is exactly the gauge-invariance condition (2) for T .
In order to find a suitable Sψ, one therefore has to write the inhomogeneous

gauge-invariance condition (3), substituting for Z and γ by their definitions,
including γ(A) as given by (4). Several possible Sψ may meet this condition: to
the our best knowledge there is no general notion of a minimal Sψ. However,
the running example does exhibit a minimal solution which is the identity. The
inhomogeneous gauge-invariance can then be verified easily : for all x ∈ Z and
γ̄ ∈ Γ̄ ,

Z(γ̄)x ◦ (λSψ )x = (λSγ̄(ψ)
)x ◦ γx ⇐⇒ γx ◦ I = I ◦ γx.

Combining RA with Sψ = I, gives a gauge-invariant theory T with local rule λT
as follows: for any spacetime position x, t,
(

Ax−1/2, ψ
l
x, ψ

r
x, Ax+1/2

)

t+1
= λT

(

ψrx−1, Ax−1/2, Ax+1/2, ψ
l
x+1

)

t

=
(

Ax−1/2, A
−1
x+1/2ψ

l
x+1, Ax−1/2ψ

r
x−1, Ax+1/2

)

t

where the final time index applies to every element of the list. This rule is
illustrated in Fig-5.

λR

A A

A A

Fig. 5. A complete non-abelian gauge-invariant theory over ψ and A. Whenever a black
right-moving (resp. left-moving) wire for ψ crosses a red wire for A, then A (resp. A−1)
gets applied upon ψ.

This fully non-abelian gauge-invariant cellular automaton was built through
the simplest possible choices via the gauging procedure. Notice that it is not so
trivial however : the introduction of the gauge field A, motivated by the will
to restore gauge-invariant, ends up truly enriching the phenomenology of the
theory.

Having developed a gauge-invariant theory means having manage to intro-
duce. . . a redundancy. Thus, there will be other gauge-invariant theories that are
equivalent, up to that redudancy. Can we characterize those equivalent theories?
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x− 3 x− 2 x− 1 x x+ 1 x+ 2 x+ 3

t

t+ 1

t+ 2

Fig. 6. The complete theory is richer than the initial theory. Here an empty circle for
A represent the identity while a full circle represents the permutation of white and
black colours (leaving gray untouched). At position x + 1/2, the input coming from
x+ 1 is toggled from black to white.

4 Equivalence and invariant sets

Given a set of gauge transformations Γ̄ , multiple theories may lead to similar
dynamics with respect to Γ̄ :

Definition 3 (Equivalence of two theories). Let T be a gauge-invariant

theory with respect to Γ̄ and Z. T is simulated by T ′ if and only if for all

configuration c there exists γ̄, γ̄′ ∈ Γ̄ such that (γ̄′ ◦T )(c) = (T ′ ◦ γ̄)(c). They are

equivalent if both simulate each other. We denote the equivalence as T ≡ T ′.

Thus T ≡ T ′ if and only if they give rise to the same dynamics up to a gauge
transformation.

T is gauge-invariant with respect to a specific Z. Adding some constraints
on Z and Γ , one may characterize the equivalence of two theories using different
quantifiers and constraints which may be useful for some specific problems. More
specifically, it will be easier to prove that two theories are equivalent using the
characterization than the definition.

Proposition 4 (Characterization of equivalence of theories). Let T be a

gauge-invariant theory with respect to Γ̄ and Z. If Z is reversible and Γ is a

group, then T is simulated by T ′ if and only if

1. ∀c, ∃γ̄ ∈ Γ̄ such that T (c) = T ′ ◦ γ̄(c).
2. ∀c, ∀γ̄ ∈ Γ̄ , ∃γ̄′ ∈ Γ̄ such that γ̄′ ◦ T (c) = T ′ ◦ γ̄(c).

Proof. We shall prove the equivalence through three implications.

– The fact that (3) implies (1) is immediate.
– Suppose (1), then for c a configuration, we have γ̄, γ̄′ ∈ Γ̄ such that (γ̄′ ◦
T )(c) = (T ′ ◦ γ̄)(c). But since Γ̄ is a group, it implies that T (c) = (γ̄′−1 ◦T ′ ◦
γ̄)(c). And since Z is reversible, we obtain T (c) = (T ′ ◦ Z−1(γ̄′−1) ◦ γ̄)(c).
However, Z−1(γ̄′−1)◦ γ̄ is an element of Γ̄ therefore we have proven that (1)
implies (2).
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– Suppose (2), let c be a configuration and take γ̄ ∈ Γ̄ such that T (c) =
(T ′◦γ̄)(c). For any γ̄1 ∈ Γ̄ there exists γ̄3 ∈ Γ̄ such that γ̄ = γ̄3◦γ̄1. Therefore,
T (c) = (Z(γ̄3)◦T

′◦γ̄1)(c) which is equivalent to (Z(γ̄3)
−1◦T )(c) = (T ◦γ̄1)(c).

And writing γ̄2 = Z(γ̄3)
−1 which is in Γ̄ , we conclude that (2) implies (3).

⊓⊔

Invariant. Γ̄ defines a set of transformations over the set of configurations.When
one configuration can be transformed into another, the two are thought of as
physically equivalent. For a gauge-invariant theory T , equivalent configurations
with respect to Γ̄ lead to equivalent configurations after the evolution T . There-
fore, one may think that such a theory would be better formulated to act over
the set of equivalence classes of configurations instead, i.e. those sets that are
left invariant under Γ̄ . Formally, for Σ the internal state space of T , for ψ ∈ Σ,
let Iψ = {γ(ψ) | γ ∈ Γ}. If Γ is a group, which was the case in our running
example, then for all ψ and ψ′ :

∃γ ∈ Γ, ψ′ = γ̄(ψ) ⇐⇒ Iψ = Iψ′ .

Then T is indeed equivalent to a theory T ′ having these invariant sets at its
internal state space—or rather the canonical representant elements of these.
However, for an inhomogeneous gauge-invariant theory RA one needs to be more
careful. that is this is true only if the invariant sets are built from (ψ,A) and not
just ψ. Indeed, an invariant set built only over ψ and not considering A would
be like disregarding the gauge transformation of A and therefore, breaking the
inhomogeneous gauge-invariance.

Moreover, to be more subtle, it is not enough to consider the invariant sets
for ψ and A separately. Indeed the invariant set for (ψ,A) is generally not the
cartesian product of the invariant set of ψ with that of A, because the gauge-
transformation acts on both ψ and A synchronously. A simple example is given
Fig-7, which works already when we restrict ourselves to Σ = {0, 1}2 for sim-
plicity, i.e. back in the abelian case. It starts with both sides having the exact
same ψ but two different gauge fields related by a gauge-transformation. Here
the gauge-transformation applied on A is the identity everywhere except at po-
sition x, for which γl = γr is the permutation of 0 and 1. This means both
sub-figures have the same invariant sets for A because they are linked through a
gauge-transformation, and idem for ψ. After a time step however, the invariant
sets for ψ are not identical on both sides, because we cannot consider ψ and
A separately when looking at the invariant sets. Again this problem does not
appear when considering the invariant set for the couple (ψ,A) directly.

5 Conclusion

Summary. In this paper, we reformulated and generalized the theory of gauge-
invariance in CA [3], to cater for non-abelian symmetry groups. The gauging
procedure was then made explicit and developed through an example : starting
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λR

x x+1 x+2

λR

x x+1 x+2

Fig. 7. Both sub-figures initially have the same invariant sets for ψ and A respectively.
After a time step, this is not true for ψ: they do not share an invariant set. This figure
shows that it is not enough to consider the invariant sets for ψ and A separately

from a non-gauge-invariant theory and a set of gauge transformations, we intro-
duced an external gauge field upon which the theory was made dependant, and
extended the gauge transformation to this field, so as to obtain gauge-invariance.
Finally the gauge field was ‘internalized’ by providing a theory for its dynamics,
yielding a complete gauge-invariant theory. Now, gauge-invariant theories are re-
dundant almost by definition, and thus several theories may be equivalent to one
another up to this redundancy. Equivalence between theories was formalized and
characterized. Configuration that are related by a gauge-transformations were
gathered into invariant sets, called invariant sets, and CA over these invariant
sets were discussed.

Perspectives and related works. Since gauge-invariance comes from Physics, the
first extension of this model would be a non-abelian gauge-invariant Quan-
tum CA (QCA). An abelian gauge-invariant QCA was already provided in [2],
whereas a non-abelian gauge-invariance has been studied in the one-particle sec-
tor of QCA, namely quantum walks [1]: this extension is rather promising.
In the field of quantum computation, gauge-invariance is already mentioned for
quantum error correction codes [4,5] which can be understood through the re-
dundancy inherent to gauge-invariant theories. The study of gauge-invariance in
CA ought to be related, therefore, to questions of error correction for spatially-
distributed computation models [9,10].
Finally, gauge-invariance brings another symmetry to field CA, which may be
interesting to study for itself, e.g. along the same methods used for color-blind
CA [7], where all cells get transformed by the same group element.
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