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Résumé

La réduction de domaines est un outil essentiel
dans la résoluion de problemes de satisfaction de
contraintes (CSP). Pour les CSP binaires, la substi-
tution de voisinage constiste a éliminer une valeur s’il
existe une autre valeur qui peut la remplacer dans
chaque contrainte. Nous démontrons qu’il est possible
de rendre plus forte la notion de substitution de voi-
sinage de deux fagons distinctes sans augmenter la
complexité temporelle. Nous démontrons que contrai-
rement a ce qui se passe pour la substitution de voi-
sinage, trouver la séquence optimale de ces nouvelles
opérations est NP-difficile.

Abstract

Domain reduction is an essential tool for solv-
ing the constraint satisfaction problem (CSP). In the
binary CSP, neighbourhood substitution consists in
eliminating a value if there exists another value which
can be substituted for it in each constraint. We show
that the notion of neighbourhood substitution can be
strengthened in two distinct ways without increasing
time complexity. We also show the theoretical result
that, unlike neighbourhood substitution, finding an
optimal sequence of these new operations is NP-hard.

1 Introduction

Domain reduction is classical in constraint satisfac-
tion. Indeed, eliminating inconsistent values by what
is now known as arc consistency [28] predates the first
fomulation of the constraint satisfaction problem [23].
Maintaining arc consistency, which consists in elimi-
nating values that can be proved inconsistent by ex-
amining a single constraint together with the current
domains of the other variables, is ubiquitous in cons-
triant solvers [1]. In binary CSPs, various algorithms
have been proposed for enforcing arc consistency in
O(ed?) time, where d denotes maximum domain size

and e the number of constraints [25, 3]. Generic con-
straints on a number of variables which is unbounded
are known as global constraints. Arc consistency can
be efficiently enforced for many types of global con-
straints [17]. This has led to the development of ef-
ficient solvers providing a rich modelling language.
Stronger notions of consistency have been proposed
for domain reduction which lead to more eliminations
but at greater computational cost [1, 2, 29].

In parallel, other research has explored domain-
reduction methods that preserve satisfiability of the
CSP instance but do not preserve the set of solu-
tions. When searching for a single solution, all but
one branch of the explored search tree leads to a dead-
end, and so any method for faster detection of unsat-
isfiability is clearly useful. One family of satisfiability-
preserving domain-reduction operations is value merg-
ing. For example, two values can be merged if the
so-called broken triangle (BT) pattern does not occur
on these two values [10]. Other value-merging rules
have been proposed which allow less merging than BT-
merging but at a lower cost [22] or more merging at a
greater cost [11, 26]. Another family of satisfiability-
preserving domain-reduction operations are based on
the elimination of values that are not essential to ob-
tain a solution [14]. The basic operation in this family
which corresponds most closely to arc consistency is
neighbourhood substitution: a value b can be elim-
inated from a domain if there is another value a in
the same domain such that b can be replaced by a
in each tuple in each constraint relation (reduced to
the current domains of the other variables) [13]. In
binary CSPs, neighbourhood substitution can be ap-
plied until convergence in O(ed®) time [6]. In this
paper, we study notions of substitutability which are
strictly stronger than neighbourhood substitutability
but which can be applied in the same O(ed®) time
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Figure 1: (a) A 4-variable CSP instance over boolean
domains; (b) a 3-variable CSP instance over domains
{0,1,2} with constraints 1 # x2, 1 # x3 and xo >
xIs.
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Figure 2: A 4-variable CSP instance over domain
{0,1,2,3} with constraints x; # 3, 1 # T3, T1 7# X4,
9 < w3, T2 > 74 and x4 < 3.

complexity.

To illustrate the strength of the new notions of sub-
stitutability that we introduce in this paper, consider
the instances shown in Figure 1 and Figure 2. These
instances are all globally consistent (each variable-
value assignment occurs in a solution) and neighbour-
hood subsitution is not powerful enough to eliminate
any values. In this paper, we introduce three novel
value-elimination rules, defined in Section 2: SS, CNS
and SCSS. We will show that snake substitution (SS)
allows us to reduce all domains to singletons in the in-
stance in Figure 1(a). Using the notation D(x;) for the
domain of the variable x;, conditioned neighbourhood-
substitution (CNS), allows us to eliminate value 0
from D(z3) and value 2 from D(z3) in the instance
shown in Figure 1(b), reducing the constraint between
22 and x3 to a null constraint (the complete relation
D(x2) x D(x3)). Snake-conditioned snake-substitution
(SCSS) subsumes both SS and CNS and allows us to
reduce all domains to singletons in the instance in Fig-
ure 2 (as well as both instances in Figure 1).

In Section 2 we define the substitution operations
SS, CNS and SCSS. In Section 3 we prove the va-
lidity of these three substitution operations, in the
sense that they define satisfiability-preserving value-
elimination rules. In Section 4 we explain in detail
the examples in Figures 1 and 2 and we give other ex-
amples from the semantic labelling of line drawings.
Section 5 discusses the complexity of applying these
value-elimination rules until convergence. Unlike NS,
finding an optimal sequence of value eliminations by
SS or CNS is NP-hard: this is shown in Section 6.

2 Definitions

We study binary constraint satisfaction problems.
A binary CSP instance I = (X, D, R) comprises

e n variables x1,...,x,,

e a domain D(z;) for each variable z; (i = 1,...,n),
and

e a binary constraint relation R;; for each pair of
distinct variables x;, z; (4,5 € {1,...,n})

For notational convenience, we assume that there is ex-
actly one binary relation R;; for each pair of variables.
Thus, if z; and x; do not constrain each other, then
we consider that there is a trivial constraint between
them with R;; = D(x;) x D(x;). Furthermore, R;;
(viewed as a boolean matrix) is always the transpose
of Rij. A solution to I is an n-tuple s = (s1,...,5p)
such that Vi € {1,...,n}, s; € D(z;) and for each
distinct 4,5 € {1,...,n}, (s, s;) € Rij.

We say that v; € D(z;) has a support at variable
x; if Jv; € D(x;) such that (v;,v;) € R;;. A binary
CSP instance [ is arc consistent if for all pairs of dis-
tinct variables x;,x;, each v; € D(x;) has a support
at z; [20].

In the following we assume that we have a binary
CSP instance I = (X, D, R) over n variables and, for
clarity of presentation, we write j # i as a shorthand

fori e {1,...,n}\{i}. We use the notation b Y, a for
Ve € D(l‘j), (b7 C) S Rij = (a,c) S Rij

(i.e. a can be substituted for b in any tuple (b,¢) €
R;j).

Definition 1 [13] Given two values a,b € D(x;), b
is neighbourhood substitutable (NS) by a if Vj # i,

Iy
b a.

It is well known and indeed fairly obvious that elim-
inating a neighbourhood substitutable value does not
change the satisfiability of a binary CSP instance.
We will now define stronger notions of substitutabil-
ity. The proofs that these are indeed valid value-
elimination rules are not directly obvious and hence



Figure 4: An illustration of the definition of condi-
tioned neighbourhood-substitutability of b by a (con-
ditioned by z;).

are delayed until Section 3. We use the notation b %
for

Vd € D(xy), (b,d) € Rix =
Je € D(w)((a,e) € Ry A VO ¢ {i,k},d 5 e).

This is illustrated in Figure 3, in which ovals repre-
sent domains, bullets represent values, a line joining
two values means that these two values are compati-
ble (so, for example, (a,e) € R;;), and the {} means
that (e, f) € Rige = (d, f) € Rye. Since e in this def-
inition is a function of 7, k,a and d, if necessary, we
will write e(z k,a,d) instead of e. In other words, the

notation b & a means that a can be substituted for b
in any tuple (b,d) € Ry prov1ded we also replace d by

e(i, k,a,d). It is clear that b *a implies b %aq smce

it suffices to set e(i, k, a, d)
for all £ ¢ {i, k}.

= d since, trivially, d LN

Definition 2 Given two values a,b € D(x;), b is
snake substitutable (SS) by a if Vk # 4, b % q.

In the following two definitions, b can be eliminated
from D(x;) because it can be substituted by some
other value in D(x;), but this value is a function of
the value assigned to another variable ;. Definition 3
is illustrated in Figure 4.

Definition 3 Given a value b € D(x;), b is condi-
tioned neighbourhood-substitutable (CNS) if for some
j # i, Ye € D(x;) with (b,c) € R;j, Ja 6 D(x;) \ {b}

such that ((a,c) € Ry; N Yk & {i,j},b LN a).

Ly

4D

Figure 5: An illustration of the definition of snake-
conditioned snake-substitutability of b by a.

A CNS value b € D(x;) is substitutable by a value
a € D(x;) where a is a function of the value ¢ as-
signed to some other variable x;. Observe that CNS
subsumes arc consistency; if a value b € D(z;) has
no support ¢ in D(x;), then b is trivially CNS (con-
ditioned by the variable ;). It is easy to see from
their definitions that SS and CNS both subsume NS
(in instances with more than one variable), but that
neither NS nor SS subsume arc consistency.

We now integrate the notion of snake substitutabil-
ity in two ways in the definition of CNS: the value d
(see Figure 4) assigned to a variable k ¢ {i,j} may be

replaced by a value e (as in the definition of b % a,
above), but the value ¢ (see Figure 4) assigned to the
conditioning variable x; may also be replaced by a
value g. This is illustrated in Figure 5.

Definition 4 Given a value b € D(z;), b is snake-
conditioned snake-substitutable (SCSS) if for some
Jj # i, Ye € D(x;) with (b,c) € R;j, Ja € D(x;) \ {b}
such that (Vk ¢ {i,5},b Ea A (39 € D(z;)((a,9) €
Rij A Vm ¢ {i,j},c = g))).

We can see that SCSS subsumes CNS by settlng
g = cin Deﬁmtlon 4 and by recalling that b s a

implies that b % . Tt is a bit more subtle to see that
SCSS subsumes SS: if b is snake substititable by some
value a, it suffices to choose a in Definition 4 to be this
value (which is thus constant i.e. not dependent on the
value of ¢), then the snake substitutability of b by a

implies that b 4 for all k #14,7and b 4 a, which in
turn implies that (a,9) € Rij A Vm ¢ {i,5},¢ 2 g
for g = e(4, j,a,c); thus b is snake-conditioned snake-
substitutable.

3 Value elimination

It is well-known that NS is a valid value-elimination
property, in the sense that if b € D(z;) is neighbour-
hood substitutable by a then b can be eliminated from
D(xz;) without changing the satisfiability of the CSP
instance [13]. In this section we show that SCSS is
a valid value-elimination property. Since SS and CNS



are subsumed by SCSS, it follows immediately that SS
and CNS are also valid value-elimination properties.

Theorem 1 In a binary CSP instance I, if b € D(z;)
is snake-conditioned snake-substitutable then b can be
eliminated from D(x;) without changing the satisfabil-
ity of the instance.

Proof: By Definition 4, for some j # i, Vc € D(z;)
with (b,¢) € R;j, Ja € D(z;) \ {b} such that

V¢ {i, it b5 a A (1)
39 € D(z;)((a,g) € Ri; A Ym ¢ {i,j},c 2 g) (2)

We will only apply this definition for fixed ¢, j, and
for fixed values a and ¢, so we can consider g as
a constant (even though it is actually a function of
i,j,a,c¢). Let s = (s1,...,8,) be a solution to I with
s; = b. It suffices to show that there is another solution
t=(t1,...,tn) with ¢; # b. Consider ¢ = s;. Since s is
a solution, we know that (b,c¢) = (s;,s;) € R;;. Thus,
according to the above definition of SCSS, there is a
value a € D(z;) that can replace b (conditioned by the
assignment x; = ¢ = s;) in the sense that (1) and (2)

are satisfied. Now, for each k ¢ {i,j}, b % e

Vd € D(zy), (b7 d) € Ry, =
3e € D(xx)((a,€) € Rip A V& {i,k},d 25 e).

Recall that e is a function of 4, k, a and d. But we will
only consider fixed i, a and a unique value of d depen-
dant on k, so we will write e(k) for brevity. Indeed, set-
ting d = s we can deduce from (b,d) = (s;, ;) € Rix
(since s is a solution) that Vk # i, j,

Je(k) € D(zk)((a, 5

Define the n-tuple ¢ as follows:

a ifr=1

S ifr#i A (a,8:) € Ry

g ifr=45 A (a,8) ¢ Rir

ifr#£i,5 A (a,8:) ¢ Ry

Clearly ¢; # band ¢; € D(z,) forallr € {1,...,n}. To
prove that ¢ is a solution, it remains to show that all
binary constraints are satisfied, i.e. that (tx,t.) € R,
for all distinct k,r € {1,...,n}. There are three cases:
W) k=i, r#i (2 k=4, r#i74, (3) kr#ij.

(1) There are three subcases: (a) r = j and (a, s;) ¢
R, (b) r # ¢ and (a,s,) € Ry, (¢) 7 # 4,7 and
(a,s7) ¢ Rir. In case (a), t; = a and t; = g, so
from equation 2, we have (t;,t,) = (a,9) € R;j.
In case (b), t; = a and ¢, = s, and so, trivially,

e(k)) € Ry AL & {i, K}, s, 25 e(k)).

( (a,sr) € Rir. In case (c¢), t; = a and

tr (r), so from equation 3, we have (¢;,t,) =

(a, ( ) € Riy.

) There are four subcases: (a) (a,s,) € R and

(a’ S]) € RZJ? ( ) (a757’) ¢ R;r and (aasj) € Rij’
() (@5,) € Rir and (a,5,) & R, (d) (a,5,) ¢
R and (a,s;) ¢ R;j. In case (a), t; = s; and
tr = S, so (tj,t,) € Rj, since s is a solution. In
case (b), t; = s; and ¢, = e(r); setting k = r,
¢ = j in equation 3, we have (t;,t,) = (s;,e(r)) €
Rj, since (sj,s,) € Rjr. In case (c), t; = g and
t, = s;; setting ¢ = s; and m = r in equation 2
we can deduce that (¢;,¢.) = (g9,5,) € Rj, since
(sj,sr) € Rjr. In case (d), t; = g and t, = e(r).
By the same argument as in case 2(b), we know
that (s;,e(r)) € Rjr, and then setting ¢ = s;
and m = 7 in equation 2, we can deduce that
(t5,tr) = (9.€(r) € Rj..

(3) There are three essentially distinct subcases: (a)
(a,sr) € Ry and (a,s;) € Rik, (b) (a,s,) ¢ Rir
and (a, si) € R, (c) (a,s,) ¢ Rir and (a,sy) ¢
Rix. In cases (a) and (b) we can deduce (tg,t,) €
Ry, by the same arguments as in cases 2(a) and
2(b), above. In case (c), tx, = e(k) and t, = e(k).
Setting ¢ = r in equation 3, we have sy LN e(k)
from which we can deduce that (e(k),s,) € Ry,
since (S, $r) € Rir. Reversing the roles of k and
r in equation 3 (which is possible since they are
distinct and both different to ¢ and j), we also
have that s, % e(r). We can then deduce that
(tg,tr) = (e(k),e(r)) € Ry, since we have just
shown that (e(k), s;) € Rgp.

We have thus shown that any solution s with s; = b
can be transformed into another solution ¢ that does
not assign the value b to z; and hence that the elimi-
nation of b from D(x;) preserves satisfiability. m

tisty) =
e\r

2

Corollary 1 In a binary CSP instance I, if b €
D(x;) is snake-substitutable or conditioned neighbour-
hood substitutable, then b can be eliminated from D(x;)
without changing the satisfability of the instance.

4 Examples

We illustrate the power of SS, CNS and SCSS using
the examples given in Figure 1 and Figure 2. In Fig-
ure 1(a), the value 0 € D(x;) is snake substitutable
by 1: we have 0 21 by taking e(1,2,1,0) = 1 (where
the arguments of (4, k, a, d) are as shown in Figure 3),
since (1,1) € Ry3 and 0 23, 1;and 0 2 1 since 0 X4 1.
Indeed, by a similar argument, the value 0 is snake
substitutable by 1 in each domain. In Figure 1(b),



Figure 6: The six different types of trihedral vertices:
A B, C,D,E, F.

the value 0 € D(z2) is conditioned neighbourhood-
substitutable (CNS) with z; as the conditioning vari-
able (i.e. 7 = 1 in Definition 3): for the assignments

of 0 or 1 to 1, we can take a = 2 since 0 2, 2,
and for the assignment 2 to x;, we can take a = 1
since 0 22 1. By a symmetrical argument, the value
2 € D(x3) is CNS, again with z; as the condition-
ing variable. We can note that in the resulting CSP
instance, after eliminating 0 from D(z3) and 2 from
D(z3), all domains can be reduced to singletons by
applying snake substitutability.

In Figure 2, the value 3 € D(z;) is snake-
conditioned snake-substitutable (SCSS) with x5 as
the conditioning variable: for the assignment of 0 or
2 to z2, we can take a = 1 since 3 | (taking
e(1,3,1,d) = 3 for d = 0,1,2) and 3 3 1 (taking
e(1,4,1,d) =0 for d = 0,1, 2), and for the assignment
of 1 to x4, we can take a = 2 since 3 ! (again taking
e(1,3,2,d) = 3 for d = 0,1,2) and 3 *3 2 (again taking
e(1,4,2,d) =0 for d = 0,1,2). By similar arguments,
all domains can be reduced to singletons following the
SCSS elimination of values in the following order: 0
from D(x1), 0, 1 and 2 from D(z3), 0, 1 and 2 from
D(z2), 1, 2 and 3 from D(z4) and 2 from D(z1).

To give a non-numerical example, we considered the
impact of SS and CNS in the classic problem of la-
belling line-drawings of polyhedral scenes composed
of objects with trihedral vertices [4, 18, 28]. There
are six types of trihedral vertices: A, B, C, D, E and
F', shown in Figure 6. The aim is to assign each line
in the drawing a semantic label among four possibili-
ties: convex (4), concave (—) or occluding (+ or —
depending whether the occluding surface is above or
below the line). Some lines in the top middle drawing
in Figure 6 have been labelled to illustrate the mean-
ing of these labels. This problem can be expressed as

Figure 7: The catalogue of labelled junctions that are
projections of trihedral vertices.

a binary CSP by treating the junctions as variables.
The domains of variables are given by the catalogue
of physically realisable labellings of the corresponding
junction according to its type. This catalogue of junc-
tion labellings is obtained by considering the six ver-
tex types viewed from all possible viewpoints [4, 18].
For example, there are 6 possible labellings of an L-
junction, 8 for a T-junction, 5 for a Y-junction and
3 for a W-junction [9]. The complete catalogue of
labelled junctions is shown in Figure 7, where a ques-
tion mark represents any of the four labels and ro-
tationally symmetric labellings are omitted. There is
a constraint between any two junctions joined by a
line: this line must have the same semantic label at
both ends. We can also apply binary constraints be-
tween distant junctions: the 2Reg constraint limits
the possible labellings of junctions such as A and D
in Figure 8, since two non-colinear lines, such as AB
and CD, which separate the same two regions cannot
both be concave [8, 9].

The drawing shown in Figure 8 is ambiguous. For
example, any of lines AB, BC or C'D could be projec-
tions of concave edges (meaning that the two blocks on
the left side of the figure are part of the same object)
or all three could be projections of occluding edges
(meaning that these two blocks are, in fact, separate
objects). The drawing shown in Figure 8 is an exam-
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Figure 8: An example from a family of line drawings
whose exponential number of labellings is reduced to
one by snake substitution.

ple of a family of line drawings. In this figure there are
four copies of the basic structure, but there is a clear
generalisation to drawings containing n copies of this
basic structure. The ambiguity that we have pointed
out above gives rise to an exponential number of valid
labellings for this family of drawings. However, after
applying arc consistency and snake substitution until
convergence, each domain is a singleton for this family
of line drawings.

Of course, there are line drawings where snake sub-
stution is much less effective than in Figure 8. Nev-
ertheless, in the six drawings in Figure 6, which are a
representative sample of simple line drawings, 22 of the
73 junctions have their domains reduced to singletons
by arc consistency alone and a further 20 junctions
have their domains reduced to singletons when both
arc consistency and snake substitution are applied.
This can be compared with neighbourhood substitu-
tion which eliminates no domain values in this sample
of six drawings. It should be mentioned that we found
no examples where conditioned neighbourhood substi-
tution could lead to the elimination of labellings in the
line-drawing labelling problem.

5 Complexity

In a binary CSP instance (X,D,R), we say that
two variables x;, x; € X constrain each other if there
is a non-trivial constraint between them (i.e. R;; #
D(z;) x D(z;)). Let e denote the number of pairs
{i,7} such that x;,x; constrain each other. We use d
to denote the maximum size of the domains D(z;).

Using standard data structures and techniques in-
spired by efficient algorithms for arc consistency and
neighbouhood substitution, we obtain the complexi-
ties for CNS and SCSS, as given below. Proofs are
omitted due to space limitations.

Theorem 2 Value eliminations by snake substitution
can be applied until convergence in O(ed®) time and
O(ed?) space.

Theorem 3 Value eliminations by conditioned neigh-
bourhood substitution can be applied until convergence
in O(ed®) time and O(ed?) space.

Thus, the complexity of applying the value-
elimination rules CNS and SS is comparable to the
O(ed?) time complexity of applying neighbourhood
substitution (NS) [6]. This is interesting because (in
instances with more than one variable) CNS and SS
both strictly subsume NS.

Theorem 4 [t is possible to verify in O(ed?) time and
O(ed?) space whether or not any value eliminations
by SCSS can be performed on a binary CSP instance.
Value eliminations by SCSS can then be applied until
convergence in O(end®) time and O(ed?) space.

6 Optimal sequences of eliminations

It is known that applying different sequences of
neighbourhood operations until convergence produces
isomorphic instances [6]. This is not the case for
CNS, SS or SCSS. Indeed, as we show in this sec-
tion, the problems of maximising the number of value-
eliminations by CNS, SS or SCSS are all NP-hard.
These intractability results do not detract from the
utility of these operations, since any number of value
eliminations reduces search-space size regardless of
whether or not this number is optimal.

Theorem 5 Finding the longest sequence of CNS
value-eliminations or SCSS value-eliminations is NP-
hard.

Proof: We prove this by givng a polynomial reduc-
tion from the set cover problem [19], the well-known
NP-complete problem which, given sets Si,...,S,, C
U and an integer k, consists in determining whether
there are k sets S;,,...,5;, which cover U (i.e. such
that S;, U...US;, = U). We can assume that
SiU...US,, = U and k < m, otherwise the prob-
lem is trivially solvable. Given sets Sy,...,S5, C U,
we create a 2-variable CSP instance with D(x;) =
{1,...,m}, D(x2) = U and Riz = {(i,u) | v € S;}.
We can eliminate value ¢ from D(z;) by CNS (with,
of course, x2 as the conditioning variable) if and only
if S1,...,8i-1,S5i4+1,...,m cover U. Indeed, we can
continue eliminating elements from D(z1) by CNS pro-
vided the sets S; (j € D(x1)) still cover U. Clearly,
maximising the number of eliminations from D(z1)
by CNS is equivalent to minimising the size of the
cover. To prevent any eliminations from the domain
of x5 by CNS, we add variables x3 and x4 with do-
mains {1,...,m}, together with the three equality



constraints zo = z3, 3 = x4 and x4 = x5. To com-
plete the proof for CNS, it is sufficient to observe that
this reduction is polynomial.

It is easily verified that in this instance, CNS and
SCSS are equivalent. Hence, this proof also shows
that finding the longest sequence of SCSS value-
eliminations is NP-hard. =

In the proof of the following theorem, we need the
following notion: we say that a sequence of value-
eliminations by snake-substitution (SS) is convergent
if no more SS value-eliminations are possible after this
sequence of eliminations is applied.

Theorem 6 Finding a longest sequence of snake-
substitution value-eliminations is NP-hard.

Proof: It suffices to demonstrate a polynomial reduc-
tion from the problem MAX 2-SAT which is known
to be NP-hard [15]. Consider an instance Isgar of
MaX 2-SAT with variables X;,..., Xy and M bi-
nary clauses: the goal is to find a truth assignment
to these variables which maximises the number of sat-
isfied clauses. We will construct a binary CSP in-
stance Icsp on O(N + M) variables, each with do-
main of size at most four, such that the convergent
sequences S of SS value-eliminations in Iogp corre-
spond to truth assignments to Xi,..., Xy and the
length of S is alN + m where «, 8 are constants and
m is the number of clauses of Iyg47 satisfied by the
corresponding truth assignment.

We require four constructions (which we explain in
detail below):

1. the construction in Figure 9 simulates a MAX 2-
SAT literal X by a path of CSP variables joined
by greater-than-or-equal-to constraints.

2. the construction in Figure 10 simulates the rela-
tionship between a MAX 2-SAT variable X and
its negation X.

3. the construction in Figure 11 allows us to create
multiple copies of a MAX 2-SAT literal X.

4. the construction in Figure 12 simulates a binary
clause X VY where X,Y are MAX 2-SAT literals.

In each of these figures, each oval represents a CSP
variable with the bullets inside the oval representing
the possible values for this variable. If there is a non-
trivial constraint between two variables x;,z; this is
represented by joining up with a line those pairs of
values a, b such that (a,b) € R;;. Where the constraint
has a compact form, such as x1 > zo this is written
next to the constraint. In the following, we write b ~ a
if b € D(x;) is snake substitutable by a € D(x;). Our
constructions are such that the only value that can be
eliminated from any domain by SS is the value 2.

>

T12> %2 To > X3

Figure 9: A construction to simulate a MAX 2-SAT
variable X: (a) X =0, (b) X = 1.

Figure 9(a) shows a path of CSP variables con-
strained by greater-than-or-equal-to constraints. The
end variables 1 and x5 are constrained by other vari-
ables that, for clarity of presentation, are not shown in
this figure. If value 2 is eliminated from D(x1 ), then we
have 2 %3 3. In fact, 2 is neighbourhood substitutable
by 3. Once the value 2 is eliminated from D(z3), we
have 2 22 3. Indeed, eliminations of the value 2 propa-
gate so that in the end we have the situation shown in
Figure 9(b). By a symmetrical argument, the elimina-
tion of the value 2 from D(x5) propagates from right to
left (this time by neighbourhood substitution by 1) to
again produce the situation shown in Figure 9(b). It
is easily verified that, without any eliminations from
the domains D(z1) or D(x5), no values for the vari-
ables x5, x3, x4 are snake-substitutable. Furthermore,
the values 1 and 3 for the variables xo, x3, x4 are not
snake-substitutable even after the elimination of the
value 2 from all domains. So we either have no elimi-
nations, which we associate with the truth assignment
X = 0 (where X is the MAX 2-SAT literal correspond-
ing to this path of variables in Icgp) or the value 2 is
eliminated from all domains, which we associate with
the truth assignment X = 1.

The construction in Figure 10 joins the two path-of-
CSP-variables constructions corresponding to the lit-
erals X and X. This construction ensures that exactly
one of X and X are assigned the value 1. It is easy
(if tedious) to verify that the only snake substitutions
that are possible in this construction are 2 % 3 and

2 28 3, but that after elimination of the value 2 from
either of D(xg) or D(Zg), the other snake substitution
is no longer valid. Once, for example, 2 has been elim-
inated from D(zg), then this elimination propagates
along the path of CSP variables (z1,z2,x3,...) corre-
sponding to X, as shown in Figure 9(b). By a symmet-
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Figure 11: A construction to create two copies X’ and
X" of the MAX 2-SAT variable X.

rical argument, if 2 is eliminated from D(Z(), then this
elimination propagates along the path of CSP vari-
ables (1,72, 73,...) corresponding to X. Thus, this
construction simulates the assignment of a truth value
to X and its complement to X.

Since any literal of Irga7 may occur in several
clauses, we need to be able to make copies of any lit-
eral. Figure 11 shows a construction that creates two
copies X', X" of a literal X. This construction can
easily be generalised to make k copies of a literal, if
required, by having & identical paths of greater-than-
equal-to constraints on the right of the figure all start-
ing at the pivot variable x3. Before any eliminations
are performed, no snake substitutions are possible in
this construction. However, once the value 2 has been
eliminated from D(x1), eliminations propagate, as in

Y12>Y2

Figure 12: A construction to simulate a MAX 2-SAT
clause X VY.

Figure 9: the value 2 can successively be eliminated
from the domains of variables xs, x5, 2}, zf, and =,
x¥. Each elimination is in fact by neighbourhood sub-
stitution, as in Figure 9. These eliminations mean
that we effectively have two copies X', X" of the lit-
eral X. The triangle of equality constraints at the
top left of this construction is there simply to prevent
propagation in the reverse direction: even if the value
2 is eliminated from the domains of zf, ) and z¥,z)
by the propagation of eliminations from the right, this
cannot provoke the elimination of the value 2 from the
domain of the pivot variable x3.

Finally, the construction of Figure 12 simulates the
clause X VY. In fact, this construction simply joins



together the paths of CSP-variables corresponding to
the two literals X,Y, via a variable z. It is easily
verified that the elimination of the value 2 from the
domain of x; allows the propagation of eliminations of
the value 2 from the domains of xzs, 2, y2, 1 in ex-
actly the same way as the propagation of eliminations
in Figure 9. Similarly, the elimination of the value 2
from the domain of y; propagates to all other vari-
ables in the opposite order ys, 2z, x2, x1. Thus, if one
or other of the literals X or Y in the clause is assigned
1, then the value 2 is eliminated from all domains of
this construction. Eliminations can propagate back up
to the pivot variable (x5 in Figure 11) but no further,
as explained in the previous paragraph.

Putting all this together, we can see that there is
a one-to-one correspondence between convergent se-
quences of SS value-eliminations and truth assign-
ments to the variables of the MAX 2-SAT instance.
Furthermore, the number of SS value-eliminations is
maximised when this truth assignment maximises the
number of satisfied clauses, since it is aN+m where «
is the number of CSP-variables in each path of greater-
than-or-equal-to constraints corresponding to a literal,
B is the number of CSP-variables in each clause con-
struction and m is the number of satisfied clauses.
This reduction is clearly polynomial. m

7 Discussion and Conclusion

We have given two different value-elimination rules,
namely snake substitutability (SS) and conditioned
neighbourhood substitutability (CNS), which strictly
subsume neighbourhood substitution but nevertheless
can be applied in the same O(ed®) time complexity.
We have also given a more general notion of substitu-
tion (SCSS) subsuming both these rules that can be
detected in O(ed®) time. The examples in Figures 1
and 2 show that these three rules are strictly stronger
than neighborhood substitution and that SS and CNS
are incomparable. We found snake substitution to be
particularly effective when applied to the problem of
labelling line-drawings of polyhedral scenes.

Further research is required to investigate general-
isations of SS, CNS or SCSS to non-binary or even
global constraints. Another obvious avenue of research
is the generalisation to valued CSPs (also known as
cost-function networks). It is known that the general-
isation of neighbourhood substitution to binary valued
CSPs [16, 21] can be applied to convergence in O(ed?)
time if the aggregation operator is strictly monotonic
or idempotent [7]. The notion of snake substitutabil-
ity has already been generalised to binary valued CSPs
and it has been shown that it is possible to test this

notion in O(ed?*) time if the aggregation operator is ad-
dition over the non-negative rationals (which is a par-
ticular example of a strictly monotonic operator) [12].
However, further research is required to determine the
complexity of applying this operation until conver-
gence.

It is known that it is possible to efficiently find all
(or a given number of) solutions to a CSP after ap-
plying neighbourhood substitution: given the set of
all solutions to the reduced instance, it is possible to
reconstruct K > 1 solutions to the original instance
I (or to determine that I does not have K solutions)
in O(K(de + n?)) time [6]. This also holds for the
case of conditioned neighbourhood substitution, since,
as for neighbourhood substitution, for each solution
s found and for each value b eliminated from some
domain D(z;), it suffices to test each putative solu-
tion obtained by replacing s; by b. Unfortunately,
the extra strength of snake substitution (SS) is here a
drawback, since, by exactly the same argument as for
the 32snake value-elimination rule (which is a weaker
version of SS) [5], we can deduce that determining
whether a binary CSP instance has two or more solu-
tions is NP-hard, even given the set of solutions to the
reduced instance after applying SS.

This work begs the interesting theoretical ques-
tion as to the existence of reduction operations which
strengthen other known reduction operations without
increasing complexity.
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