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Abstract
In the problem of fair resource allocation, envy freeness

is one of the most interesting fairness criterion as it ensures
that no agent prefers the bundle of another agent. However,
when considering indivisible goods, an envy-free allocation
may not exist. In this paper, we investigate a new relax-
ation of envy freeness consisting in minimizing the Ordered
Weighted Average (OWA) of the envy vector. The idea is
to choose the allocation that is fair in the sense of the distri-
bution of the envy among agents. The OWA aggregator is a
well-known tool to express fairness in multiagent optimiza-
tion. In this paper, we focus on fair OWA operators where
the weights of the OWA are decreasing. When an envy-
free allocation exists, minimizing OWA will return this al-
location. However, when no envy-free allocation exists, one
may wonder how fair min OWA allocations are.

After some definitions and description of the model, we
show how to formulate the computation of such a min OWA
allocation as a Mixed Integer Program. Then, we investigate
the link between the min OWA allocation and other well-
known fairness measures such as max min share and envy
freeness up to one good or to any good.

1 Introduction

In this paper, we investigate fair division of indivisible
goods. In this context, several approaches have been pro-
posed to model fairness. Amongst these models, one pro-
minent solution concept is to look for envy-free allocations
[9]. These allocations are such that no agent would like to
swap her own bundle with the bundle of any other agent.

Envy-freeness is a very attractive criterion : the fact that
each agent is better off with her own share than with any
other share is a guarantee of social stability. Besides, since
this criterion is only based on personal comparisons, it
does not require any interpersonal comparability. Unfortu-
nately, envy-freeness is a very demanding notion, and it is a

well-known fact that in many situations, no such allocation
exists (consider for instance the simple situation where the
number of items to allocate is strictly less than the number
of agents at stake). Hence several relaxations of the envy-
freeness notion have been studied in recent years. Two or-
thogonal approaches have been considered. A first possibi-
lity is to “forget” some items when comparing the agents’
shares. This leads to the definition of envy-freeness up to
one good [10] and envy-freeness up to any good [6]. Re-
cently, Amanatidis et al. [1] explored how different relaxa-
tions of envy-freeness relate to each other. Another pos-
sible approach is to relax the Boolean notion of envy and
to introduce a quantity of envy that we seek to minimize.
This is the path followed by Lipton et al. [10] or Endriss
et al. [7] for instance. Several approximation algorithms
dedicated to minimize these measures were subsequently
designed, see e.g. [11].

In this paper, we elaborate on the idea of minimizing the
degree of envy. More precisely, we explore the idea of fin-
ding allocations where envy is “fairly balanced” amongst
agents. For that purpose, we start from the notion of indivi-
dual degree of envy and use a fair Ordered Weighted Ave-
rage operator 1 to aggregate these individual envies into a
collective one, that we try to minimize. After giving some
preliminary definitions in Section 2, we formally introduce
our fairness MinOWA envy criterion (Section 3) and we
show of OWA minimization problem can be formulated as
a linear program. We then relate this criterion to other fair-
ness notions and study properties of the allocations obtai-
ned by minimizing the OWA of the envy vector (Section 4).
Finally, we present some experimental results investigating
the fairness of min OWA solutions (Section 5).

1. By “fair”, we mean an OWA where weights are non-increasing.



2 Model and Definitions

We will consider a classic multiagent resource allocation
setting, where a finite set of objects O = {o1, . . . , om} has
to be allocated to a finite set of agents N = {1, . . . , n}. In
this setting, an allocation is a vector −→π = 〈π1, . . . , πn〉 of
bundles of objects, such that ∀i,∀ j with i , j : πi ∩ π j =

∅ (exclusion : a given object cannot be allocated to more
than one agent) and

⋃
i∈N πi = O (no free-disposal : all the

objects are allocated). πi ⊆ O is called agent i’s share.
Any satisfactory allocation must take into account the

agents’ preferences on the objects. Here, we will make the
assumption that these preferences are numerically additive.
Each agent i has a utility function ui : 2O → R+ measuring
her satisfaction ui(π) when she obtains share π, which is
defined as follows :

ui(π) def
=
∑
ok∈π

w(i, ok),

where w(i, ok) is the weight given by agent i to object ok.
This assumption, as restrictive as it may seem, is made by a
lot of authors [10, 2, for instance] and is considered a good
compromise between expressivity and conciseness.

Definition 1 An instance of the additive multiagent re-
source allocation problem (add-MARA instance for short)
I = 〈N ,O,w〉 is a tuple with N and O as defined above
and w : N × O → R+ is a mapping with w(i, ok) being the
weight given by agent i to object ok. We will denote by P(I)
the set of allocations for I.

2.1 Envy-free allocations

A prominent fairness notion in multiagent resource allo-
cation is envy-freeness. Envy-freeness (EF) can be defined
as follows :

Definition 2 Let I = 〈N ,O,w〉 be an add-MARA instance
and −→π be an allocation of I. −→π is envy-free if and only if
∀i, j ∈ N , ui(πi) ≥ ui(π j).

In other words, every agent i weakly prefers her own
share to the share of any other agent j.

In the context of fair division of indivisible goods, this
notion is very demanding and there exists a lot of add-
MARA instances for which no envy-free allocation exists.
To relax envy-freeness, a possibility is to introduce a notion
of degree of envy based on pairwise envy [10].

Definition 3 Let I = 〈N ,O,w〉 be an add-MARA instance
and −→π be an allocation of I. The pairwise envy between
agents i and j is defined as follows :

pe(i, j,−→π ) def
= max{0, ui(π j) − ui(πi)}.

In other words, the pairwise envy between i and j is 0
if i does not envy j, and is equal to the difference between
the utility for agent i if she had agent j’s bundle and her
actual utility in the allocation −→π . It can be interpreted as
how much agent i envies agent j’s bundle.

From that notion of pairwise envy, we can derive a no-
tion of total envy of an agent, that we define as the maximal
pairwise envy that this agent experiences for another agent :

Definition 4 Let I = 〈N ,O,w〉 be an add-MARA instance
and −→π be an allocation of I. The envy of agent i is :

e(i,−→π ) def
= max

j∈N
pe(i, j,−→π ).

The vector −→e (−→π ) = 〈e(1,−→π ), ..., e(n,−→π )〉 will be called vec-
tor of envy of allocation −→π .

Note that an allocation −→π is envy-free if and only if
−→e (−→π ) = 〈0, ..., 0〉.

2.2 Relaxations of envy-freeness

Different relaxations of the envy-freness notions have
been proposed to measure the fairness of an allocation
when there is no envy-free solution. They correspond to
weaker solution concepts that are easier to satisfy. Envy-
freness up to one good (EF1) [10, 4] is one of the most
studied relaxations. An allocation is said to be envy-free
up to one good if, for each envious agent i, the envy of i
towards an agent j can be eliminated by removing an item
from the bundle of j.

Definition 5 Let I = 〈N ,O,w〉 be an add-MARA instance
−→π be an allocation of I. −→π is envy-free up to one good if
and only if ∀i, j ∈ N , either ui(πi) ≥ ui(π j) or ∃ok ∈ π j

such that ui(πi) ≥ ui(π j)\{ok}.

It has been proved that an EF1 allocation always exists
and, in the additive case, an EF1 allocation can be obtained
using a round-robin protocol.

Caragiannis et al. [6] proposed another relaxation of
envy-freeness that is closer to the original notion. An al-
location is said to be envy-free up to any good (EFX) if for
all envious agents i, the envy of i towards j can be elimina-
ted by removing any item from the bundle of j.

Definition 6 Let I = 〈N ,O,w〉 be an add-MARA instance
and −→π be an allocation of I. −→π is envy-free up to one good
if and only if ∀i, j ∈ N , either ui(πi) ≥ ui(π j) or ∀ok ∈ π j

ui(πi) ≥ ui(π j\{ok}).

Clearly, we have EF =⇒ EFX =⇒ EF1. While
an EF1 allocation can be computed in polynomial time, the
guarantee of existence of an EFX allocation (where the full
set of objects is allocated) remains an open issue [5].



2.3 Other fairness notions

Other notions of fairness have been introduced in the li-
terature. Bouveret et al. [3] showed that some connections
can be drawn between some widely used notions among
which the min-max fair share, the proportional fair share
and the max-min fair share.

Definition 7 For a MARA instance I we define the min-
max share (mMS) of agent i as follows :

umMS
i

def
= min
−→π∈P(I)

max
j∈N

ui(π j)

Besides, we say that an allocation −→π is min-max fair share
if every agent gets at least her min-max share ; formally :
ui(πi) ≥ umMS

i

Definition 8 For a MARA instance I we define the propor-
tional share (PS) of agent i as follows :

uPS
i

def
=

1
n

ui(N)

Besides, we say that an allocation −→π is proportional fair
share if every agent gets at least her proportional share ;
formally : ui(πi) ≥ uPS

i .

Definition 9 For a MARA instance I we define the max-
min share (MMS) of agent i as follows :

uMMS
i

def
= max
−→π∈P(I)

min
j∈N

ui(π j)

Besides, we say that an allocation −→π is max-min fair share
if every agent gets at least her max-min share ; formally :
ui(πi) ≥ uMMS

i .

Bouveret et al. [3] showed that these notions form a li-
near scale of increasing requirements where :

EF =⇒ mMS =⇒ PS =⇒ MMS

This scale can be used to characterize the level of fair-
ness of a given allocation. In this hierarchy, EF is the most
demanding criterion while the max-min fair share impose
few restrictions.

3 MinOWA Envy

Our approach elaborates on minimizing the degree of
envy of the agents while balancing the envy among the
agents as suggested by [10]. The general idea would be
to look for allocations that minimize this vector of envy in
some sense : the lower this vector is, the less envious the
agents are. This corresponds to a multiobjective optimiza-
tion problem where each component of the envy vector is
a different objective to minimize.

3.1 Fair OWA

There are different ways to tackle this minimization pro-
blem, each approach conveying a different definition of mi-
nimization. Our approach, guided by the egalitarian notion
of fairness [13], is to ensure that the envy is as equally dis-
tributed as possible amongst agents. To this end, we will
use a prominent aggregation operator that can convey fair-
ness requirements : order weighted averages.

Ordered Weighted Averages (OWA) have been introdu-
ced by Yager [14] with the idea to build a family of ag-
gregators that can weight the importance of objectives (or
agents) according to their relative utilities, instead of their
identities. In this way, we can explicitly choose to favour
the poorest (or richest) agents, or to concentrate the impor-
tance of the criterion on the middle-class agents. Formally,
the OWA operator is defined as follows :

Definition 10 Let −→α = 〈α1, . . . , αn〉 be a vector of weights.
In the context of minimization, the ordered weighted ave-
rage parameterized by −→α is the function :

owa
−→α : −→x 7→

n∑
i=1

αi × x↓i ,

where −→x ↓ denotes a permutation of −→x where x↓1 ≥ x↓2 ≥
... ≥ x↓n.

If we want to convey some notion of fairness, we have
to give more weights to the unhappiest agents. Intuitively,
it means that the weights in −→α should be decreasing. This
notion can be formalized by the following property. Let −→x
be a vector such that x j ≥ xi (i is better off than j) and
let ε be such that 0 ≤ ε ≤ 2(x j − xi). Then, for any non-
increasing vector −→α :

owa
−→α (−→x ) ≤ owa

−→α (〈x1, . . . , xi + ε, . . . , x j − ε, . . . , xn〉)

In other words, such an OWA favours any transfer of
wealth from an happier agent to an unhappier agent. Such
a transfer is called a Pigou-Dalton transfer, and the OWA
with non-increasing weight vectors −→α are called fair OWAs.

Since our motivation is to minimize the envy while
equally distributing it between the agents, we propose to
minimise the fair OWAs of the envy vector. Our solution
concept can then be defined as follows :

Definition 11 Let I = 〈N ,O,w〉 be an add-MARA instance
and −→α be a non-increasing vector. An allocation

−→
π̂ is an

−→α -minOWA Envy allocation if :

−→
π̂ ∈ argmin−→π∈P(I)(owa

−→α (−→e (−→π ))).

It is important to note that a major advantage of this so-
lution is that it always exists as it is the result of an opti-
mization process. Moreover, as we will see, this optimiza-
tion problem can be modeled as an Integer Linear Program,



which will enable efficient computation of optimal alloca-
tions.

3.2 Linearization of OWA minimization

By using a linearization introduced by Ogryczak in [12]
we can model our problem (minimization of the OWA of
the envy vector) as a linear program. This linearization
smartly uses the definition of OWA with its Lorenz com-
ponents. Let e(k) denote the kth bigger envy of an agent and
L(k) the kth Lorenz component of the Lorenz vector L. Mo-
reover we consider decreasing OWA weights (because we
consider here a fair OWA) so α1 ≥ α2.... ≥ αn and we de-
note

−→
α′ = (α1−α2, α2−α3, ..., αn). Finally, we recall the de-

finition of the Lorenz vector L= (e(1), e(1)+e(2), ...,
∑n

i=1 e(i)).
The OWA of a vector can be written with its Lorenz com-
ponents :

min OWA(−→e (−→π )) = min
n∑

k=1

αke(k)

= min
n∑

k=1

α′kLk(−→e )

Besides, there is a known LP to compute Lk(−→e ) :

Lk(−→e ) = max
n∑

i=1

ak
i ei

s.t.


m∑

i=1

ak
i = k ∗rk

ak
i ∈ [0, 1] ∀i ∈ [[1, n]] ∗bk

i

However, we cannot inject this LP in the previous one as
their optimization directions are not similar. This is why
we use the dual (with the dual variables shown in red in the
previous LP) of the LP :

Lk(−→e ) = min krk −

n∑
i=1

bk
i

s.t.
{

rk + bk
i ≥ ei ∀i ∈ [[1, n]]

bk
i ≥ 0 ∀i ∈ [[1, n]]

The linearization of OWA is over but we still have to write
three types of constraints directly related to our problem.
First, we want to express the fact that any item j can be
held by at most one agent

∑n
i=1 z j

i = 1. We also should write
the constraint expressing completeness (every item has to
be allocated)

∑n
i=1
∑m

j=1 z j
i = m but we note that adding this

constraint is redundant as it is the sum over the items of
the previous constraint. Finally, we have to make the link
between the envy of agent ai denoted by ei and the utilities
of the agents. ei is the maximum of the envies between the
agents, hence we linearize that maximum easily as we are
in a minimization problem. For ei we write n constraints

expressing that ei is greater than or equal to how much ai

envies another agent. We can finally write the final Mixed
Integer Linear Program :

min OWA(−→e (−→π )) = min
n∑

k=1

α′k(krk +

n∑
i=1

bk
i )



rk + bk
i ≥ ei ∀i, k ∈ [[1, n]]

ei ≤ rk + bk
i ∀i, k ∈ [[1, n]]

ei ≥

m∑
j=1

w(i, o j)(z
j
h − z j

i ) ∀i, h ∈ [[1, n]]

n∑
i=1

z j
i = 1 ∀ j ∈ [[1,m]]

z j
i ∈ {0, 1} ∀ j ∈ [[1,m]] ∀i ∈ [[1, n]]

bk
i ≥ 0 ∀i, k ∈ [[1, n]]

ei ≥ 0 ∀i ∈ [[1, n]]

4 Link with other fairness measures

We focus here on the possible links between the min
OWA allocation and other fairness measures such as max-
min fair share, envy-freeness up to one good and envy-
freeness up to any good. We recall that if an envy-free al-
location exists, it will be returned by the min OWA optimi-
zation.

4.1 Commensurability issues

We first show that if the utilities of the agents are not
commensurable, we can find an example for which the min
OWA allocation violates EF1 and MMS. Let’s consider the
following MARA instance involving 3 agents and 4 ob-
jects :

Π1 o1 o2 o3 o4

a1 6 3 2 1
a2 0.07 0.06 0.04 0.03
a3 20 0 0 0

Π2 o1 o2 o3 o4

a1 6 3 2 1
a2 0.07 0.06 0.04 0.03
a3 20 0 0 0

Π3 o1 o2 o3 o4

a1 6 3 2 1
a2 0.07 0.06 0.04 0.03
a3 20 0 0 0

The allocation Π1 is obviously EF1. However, the alloca-
tion Π2 is the one returned by the OWA minimization and
it is not EF1. Indeed, a2 gets no item in this allocation
and a1 gets three items that a2 values strictly positively.



Hence, removing one item from a1’s bundle is not enough
for a2 not to envy a1 anymore. Besides, we can notice that
uMMS

1 = 3, uMMS
2 = 0.06 and uMMS

3 = 0 so the allocation
Π3 is MMS. So, we have found that the min OWA alloca-
tion violates EF1 and MMS.
Finally, by going up in the hierarchy introduced by Bouve-
ret et al., we would like to check whether the absence of
commensurability prevents the min OWA allocation from
being PS or mMS. This time, we cannot conclude with the
same instance as the previous example has no PS alloca-
tion.

We thus consider the following instance :

Π1 o1 o2 o3 o4

a1 10 6 6 1
a1 0.1 0.06 0.06 0.01
a1 1 6 6 10

Π2 o1 o2 o3 o4

a1 10 6 6 1
a1 0.1 0.06 0.06 0.01
a1 1 6 6 10

The allocation Π1 is mMS as umMS
1 = umMS

3 = 100 ∗
umMS

2 = 10. It is then also PS. However, the allocation Π2
is the one returned by the minimization of the envy vector
and it is obviously not PS nor mMS. This is why from now
on we will only consider MARA instances with commen-
surable agents (with K constant) :

m∑
j=1

w(i, o j) = K ∀i ∈ [[1, n]]

4.2 Two-agent settings

In the special case where the allocation problem involves
only two agents, we highlight strong connections between
the min OWA allocation and other fairness measures.

Proposition 1 When the MARA instance involves only 2
agents then, the min OWA allocation is a max-min fair
share allocation (thus also EFX).

Proof 1 For MARA instances where an envy-free alloca-
tion exists, our proof is straightforward as min OWA re-
turns the EF allocation. It is thus also MMS, EF1 and EFX.

We now focus on MARA instances for which there is no
EF allocation. In the presence of only 2 agents any min
OWA allocation −→π is such that only one of the two agents
is envious. Indeed, if no agent is envious then it means
the MARA instance has an envy-free allocation (which is a
contradiction). Similarly, if both agent are envious it means
there is an envy-free allocation (which is again a contra-
diction) as the agents would just have to exchange their

bundles to obtain that allocation. Consequently, the sorted
envy vector will be of this form (e, 0). So, let us consider
that such an allocation is not MMS. The agent that is envy-
free obviously has her max-min share. So, under the as-
sumption that the allocation is not MMS, the envious agent
does not have her max-min share. But, in this case, the en-
vious agent could obtain a better share and hence would
have a lower envy. This leads to a contradiction because
we consider the min OWA allocation. Indeed, in this case
just, the min OWA allocation minimizes the envy of the en-
vious agent as the other was not envious. It is known [6] in
the pairwise setting that MMS implies EFX.

4.3 EF1 for the general case : n ≥ 3

We now turn to more general settings involving at least
3 agents. Since an EF1 allocation is guaranteed to exist, we
more specifically focus on the possible links between min
OWA and EF1. Unfortunately, we mainly obtain negative
results.

Proposition 2 In the general case, the min OWA alloca-
tion is not necessarily EF1.

Proof 2 We will prove this proposition through two
examples with different OWA weights :

Example 1 We consider a MARA instance involving 3
agents and 7 objects, with the OWA weights α = ( 1

3 ,
1
3 ,

1
3 ).

Minimizing OWA of the envy vector using this set of weight
consists in minimizing the sum of the envies of the agents.

Π1 o1 o2 o3 o4 o5 o6 o7

a1 5 1 1 1 1 1 1
a2 5 1 1 1 1 1 1
a3 5 1 1 1 1 1 1

Π2 o1 o2 o3 o4 o5 o6 o7

a1 5 1 1 1 1 1 1
a2 5 1 1 1 1 1 1
a3 5 1 1 1 1 1 1

The allocation Π1 is the one returned by the minimization
of the OWA of the envy vector. a1 is envy free whereas a2
and a3 both envy a1 by respectively 3 and 1. Hence, the
sorted envy vector is (3, 1, 0) and the value of OWA is 4

3 .
Moreover, this allocation is not EF1 as a2 would still envy
a3 by 1 even if one item is removed from the latter.

The allocation Π2 has the same OWA value ( 4
3 ) but it

is EF1. In fact, in this allocation, a2 does not envy a3. We
could then argue that one of the min OWA allocations was
EF1. This is why we show a stronger example for which the
unique min OWA allocation is not EF1.

Example 2 We consider a MARA instance involving 3
agents and 4 objects, with the OWA weights α = (1, 0, 0).



Minimizing OWA of the envy vector using this set of weight
consists in minimizing the maximum envy of the agents.

Π1 o1 o2 o3 o4

a1 14 3 2 1
a2 7 6 4 3
a3 20 0 0 0

Π2 o1 o2 o3 o4

a1 14 3 2 1
a2 7 6 4 3
a3 20 0 0 0

The allocation Π1 corresponds to the min OWA one (this
is the only one min OWA allocation). The OWA value of
the envy vector is 9 (the envy of a1 towards a3). However,
the allocation is not EF1. In fact, regardless of the item we
remove from a1, a2 will still envy her.

The allocation Π2 is EF1 but its OWA value is 11 (it still
stands for the envy of a1 towards a3) which is quite far from
the min OWA solution. Moreover, contrary to the previous
example, a small change in the OWA weight vector does not
change the situation. For instance, even for α = (0.9, 0.1, 0)
the ordering stays the same.

From the previous examples, we can conclude that the mi-
nimization of the OWA of the envy vector does not necessa-
rily return an EF1 allocation in the general case.

However, we can wonder if we could always find a set of
weights that returns an EF1 by minimizing the OWA. We
leave this question open for the moment.

4.4 Continuity of EF1

We showed that the weights of the OWA influences the
EF1 property of the min OWA solution. We can thus won-
der whether there exists, among all the allocations, a kind
of continuity of the EF1 solutions. It would be the case if
by sorting all the allocations by their OWA value, all the
EF1 allocations would be contained in a single interval of
OWA value. We show that it is not the case through the
following example.

Example 3 We consider a MARA instance involving 3
agents and 3 objects, with the OWA weights α =

(0.44, 0.36, 0.2) :

Π1 o1 o2 o3

a1 2 1 3
a2 2 3 1
a3 1 0 5

Π2 o1 o2 o3

a1 2 1 3
a2 2 3 1
a3 1 0 5

Π3 o1 o2 o3

a1 2 1 3
a2 2 3 1
a3 1 0 5

Π4 o1 o2 o3

a1 2 1 3
a2 2 3 1
a3 1 0 5

Π5 o1 o2 o3

a1 2 1 3
a2 2 3 1
a3 1 0 5

For the purpose of the proof, we extract 5 allocations
among all possible allocations. Allocations Π1 to Π5 are
sorted by increasing values of the OWA of their envy vector.
Π1 is the best solution and Π5 is the worst among the five
selected allocations. The following table summarizes the
OWA values of these allocations and specifies whether the
allocations are EF1 or not :

Π1 Π2 Π3 Π4 Π5

OWA 0.44 1.32 1.76 2.20 2.20
EF1 True False True True False

We can easily see that there is no continuity of EF1 re-
garding the OWA values as Π2 (which is between Π1 and
Π3) is not EF1 whereas Π1 and Π3 are both EF1. Interestin-
gly, it can be noticed that Π4 and Π5 have the same OWA
values even if the allocations totally differ (not a single ob-
ject has been given to the same agent). Moreover, Π4 is EF1
whereas Π5 is not.

5 Experimental results

We drew some experiments to compare the perfor-
mances of the allocations obtained by min OWA envy with
other allocation methods. The first method is a succession
of sincere choices where the picking sequence is a conca-
tenation of round robins. From all the possible allocations
(for every possible round robin) generated by this method
we keep the minRR (maxRR) that (respectly) is the allo-
cation with the minimum OWA envy (maximum) while
meanRR is the average of all these allocations. The max
OWA util is the allocation that maximizes the OWA of the
valuations of the agents. For the OWA allocation method,
we used the following fair weight ( 1

2 , ....,
1
2n ).

We generated 100 random add-MARA instances for
each method and for each couple (|N|,|O|) from (3, 4) to
(10, 12). We considered such couples of values in order to
produce settings where few EF allocations exist as recom-
mended in [8]. We did not go beyond 10 agents because of



Figure 1 – Percentage of EF,EFX,EF1,PO for each method
averaged on all (|N|,|O|)

Figure 2 – Value of the OWA of the vector of envy for each
allocation protocol

the computation time of the RR methods as we had to ge-
nerate every possible allocation from every possible round
robin. Indeed, even for 10 agents both the OWA methods
were computed in less than two seconds (via Gurobi sol-
ver).

We evaluated the performances of the different methods
by measuring the percentage allocations that are EF, EFX,
EF1 and Pareto optimal. The results are aggregated in Fi-
gure 1. It can first be observed that our method obtains the
highest rate of EF and EFX allocations : it is not that sur-
prising for EF as our method is a relaxation of EF but the
result about EFX is very promising. Every method has re-
turned an EF1. Regarding the number of Pareto optimal al-
locations, our methods places second as maximizing OWA
of the utilities necessarily produces a PO allocation.

Figure 2 shows how far the other methods are in terms of
OWA envy values. We notice that even the closest method
(max OWA util) is relatively far from our method, none
of them has similar performances. Figure 3 shows that our

Figure 3 – Value of the sum of the vector of utilities for
each allocation protocol

method has also good performances in terms of utilitarian
criteria.

We performed same experiments for the OWA weights
(1, 0, 0, 0) and obtained similar results. For these weights
the max OWA util does not always return a PO allocation
and our method returns a lower rate of EFX (but still more
than the other methods). This reinforces the idea that consi-
dering the envy of all agents and not only the maximum
leads to fairer allocations.

6 Conclusion

In this paper, we introduced a new fairness concept fol-
lowing the idea of minimizing envy. More particularly, we
used an OWA to express fairness in the distribution of envy
between agents. After implementing a MIP to compute min
OWA allocations, we showed the connections between the
min OWA allocation and other famous fairness measures.
We ran some experiments to test the performances of our
method and compared it with other allocation protocols.

We also left the question of the performance of our me-
thod by considering the weights of the OWA as variables
and not as a fix entry of the problem. We could focus on
this matter for future works and try for example to learn
them.

Finally, it could also be interesting to change the defini-
tion of the envy of an agent. Indeed, instead of defining it
as the maximum of the pairwise envies we could define it
as other aggregations of the pairwise envies such as their
sum or even their OWA.
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solving linear programs with the ordered weighted
averaging objective. European Journal of Operational
Research, 148:80–91, 2003.

[13] Rawls, John: A Theory of Justice. Harvard University
Press, Cambridge, Mass., 1971. Traduction française
disponible aux éditions du Seuil.

[14] Yager, Ronald R.: On ordered weighted averaging
aggregation operators in multicriteria decision mak-
ing. IEEE Transactions on Systems, Man, and Cyber-
netics, 18:183–190, 1988.


