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Résumé

Nous proposons une tentative d’exploration du concept
de mesures de cohérence. Par celles-ci, il s’agit d’attribuer
un degré de cohérence à des ensembles finis de formules
logiques, comme un pendant au concept bien connu de me-
sures d’incohérence qui attribuent un degré d’incohérence à
des ensembles finis de formules logiques. Nous introduisons
un ensemble primitif de postulats pour des mesures de co-
hérence. Nous nous penchons sur quelques correspondances
avec les mesures d’incohérence. Nous posons également les
bases d’une dualité entre les deux univers. Finalement, nous
examinons de façon préliminaire ce que pourrait être une
mesure mixte, à savoir, une mesure qui détermine un degré,
sur un même référentiel, pour la cohérence (valeur positive)
ainsi que pour l’incohérence (valeur négative). Nous abor-
dons aussi, en comparaison, la question des super-modèles
de Ginsberg et col., ainsi que ce qui peut en être considéré
comme une généralisation, les morpho-logiques.

Abstract

We give some insight into a preliminary attempt at in-
vestigating a notion of consistency measures. These would
provide a consistency degree for any finite collection of log-
ical formulas, on a par with the well-known notion of in-
consistency measures, that aim at assigning degrees of in-
consistency to finite sets of logical formulas. We first pro-
pose a basic set of postulates for consistency measures. We
look at a couple of relationships with inconsistency mea-
sures. We even lay grounds for a formal duality between
these two domains. Lastly, we have a look at what would
be a mix measure, that is, a measure that gives a degree,
on the same scale, for consistency (positive values) and in-
consistency (negative values). We also mention supermod-
els, as defined by Ginsberg et al., as well as a theory that
can be regarded as a generalization of super-models, namely
morpho-logics.

1 Introduction

In some sense, a formula can be viewed as more con-
sistent than another. An illustration on such an idea is as
follows. For a formula ϕ and a propositional variable a,
define

νa.ϕ def
= ϕ[> ← a] ∧ ϕ[⊥ ← a].

Then, assuming Var(ϕ) = {a1, . . . , an}, and ρ a permutation
(for the ai’s), an example of a “consistency measure” is

C(ϕ) = inf{k | ∃ρ s.t. νaρ(1) · · · aρ(k).ϕ ` ⊥}.

In a more explicit way, min{k | ∃ρ s.t. νaρ(1) · · · aρ(k).ϕ ` ⊥}
is the value of C(ϕ) in the case that there exist k and ρ such
that νaρ(1) · · · aρ(k).ϕ is inconsistent. Otherwise, C(ϕ) = ∞.

Example 1 In view of νa.¬a = (¬> ∧ ¬⊥), it holds that
C(¬a) = 1. Similarly, C(a) = 1. However, νa.(a ∨ ¬a) =

(> ∨ ¬>) ∧ (⊥ ∨ ¬⊥) so that C(a ∨ ¬a) = ∞.

Generalizing the above idea, a consistency measure is a
total function that maps every finite set of formulas K to a
value in IR+ ∪ {∞}.

2 Preliminaries

All the formal matters will refer to propositional logic `
with a language L based on a set of propositional variables
denoted Var(L ) as well as the propositional constants ⊥
and >. The symbols for the connectives are ¬ (negation),
∧ (conjunction), ∨ (disjunction),→ (material implication).
Logical equivalence (not the equivalence connective) is de-
noted by means of ≡. For the sake of clarity, we write &
(and),⇒ (if . . . then),⇔ (if and only if) in meta-level state-
ments where ϕ, ψ, . . . denote formulas of L while K, K′,



. . . are called belief bases and denote finite sets of formulas
of L . As a final word about notation, KL is comprised of
all belief bases over L .

For our purposes, a consistency measure is a map

C : KL → IR+ ∪ {∞}.

The paper is organized as follows: in section 3 below,
basic postulates for consistency measures are proposed,
and the duality with inconsistency measures is investigated.
In section 4, the notion of mixed measure is introduced.
Section 5.1 exhibits a link with supermodels such as de-
fined by Ginsberg et al.

3 Postulates for consistency measures

Not all such functions C can do! A list of requirements
over C is needed. To this end, postulates can ensure C to
make sense for the purpose of consistency measuring.

This section is an investigation into such requirements as
postulates formulated on the following grounds:

— The context is classical logic ` over a language L .

— Belief bases are finite sets of formulas of L .

— C maps all finite sets of formulas of L to values in
IR+ ∪ {∞}.

The first postulates that come to mind are those speci-
fying what cases must be ascribed the lowest, respectively
highest, consistency degree. Thus arise the following pos-
tulates.

Inconsistency Null

C(K) = 0 ⇔ K ` ⊥

Inconsistent bases, and only them, have the lowest
consistency degree: 0.

Tautology Top

` K ⇒ C(K) ≥ C(K′)

Tautologies have the highest consistency degree.

Equivalence

K ≡ K′ ⇒ C(K) = C(K′)

Logically equivalent bases have the same consistency
degree. 1

Variant Equality

σK = K′ & σ′K = K ⇒ C(K) = C(K′)

Renaming does not change the consistency degree.

1. Due to Inconsistency Null, introducing the extra condition K 0 ⊥
(or, equivalently, K′ 0 ⊥) would be otiose.

Proposition 1 Inconsistency Null is equivalent to the con-
junction of the conditions below.(

∀K′ C(K) ≤ C(K′)
)
⇒ K ` ⊥ (1)

K ` ⊥ ⇒ C(K) ≤ C(K′) (2)

∃K C(K) = 0 (3)

Two (equivalent in the context of (1)–(3)) consequences
are:

K ` ⊥ & K′ 0 ⊥ ⇒ C(K) < C(K′) (4)

K 0 ⊥ ⇒ 0 < C(K) (5)

Proof Let us start by showing that Inconsistency Null en-
tails (1)–(3). To start with, (3) is a trivial consequence of
Inconsistency Null. As regards (2), it is a direct conse-
quence of Inconsistency Null because the codomain of C is
IR+ ∪ {∞}. Now, in order to prove (1), assume ∀K′ C(K) ≤
C(K′). By (3), C(K0) = 0 for some K0. Due to Inconsis-
tency Null, K0 ` ⊥. An instance of (2) is K ` ⊥ ⇒ C(K) ≤
C(K0) which gives K ` ⊥ ⇒ C(K) ≤ 0 hence K ` ⊥ ⇒
C(K) = 0 (the codomain of C is IR+ ∪ {∞}). Applying In-
consistency Null, K ` ⊥ and (1) is proven. Let us now
show that (1)–(3) entail Inconsistency Null. An obvious
consequence of (1)–(2) is

(
∀K′ C(K) ≤ C(K′)

)
⇔ K ` ⊥

i.e. C(K) = min{C(K′) | K′ ⊆ f L } ⇔ K ` ⊥. 2 Now, (3)
means that min{C(K′) | K′ ⊆ f L } = 0 since the codomain
of C is IR+∪{∞}. Therefore,

(
∀K′ C(K) ≤ C(K′)

)
⇔ K ` ⊥

is equivalent with Inconsistency Null.
We now show that (1) and (2) imply (4). Due to (1),(
∀K′′ C(K′) ≤ C(K′′)

)
⇒ K′ ` ⊥. In contrapositive form,

K′ 0 ⊥ ⇒ ∃K′′ C(K′) > C(K′′). Since an immediate
instance of (2) is K ` ⊥ ⇒ C(K) ≤ C(K′′), it ensues that
K ` ⊥ & K′ 0 ⊥ gives ∃K′′ C(K′′) < C(K′) as well as
∀K′′ C(K) ≤ C(K′′) hence ∃K′′ C(K) ≤ C(K′′) < C(K′).
Summing it up, K ` ⊥ & K′ 0 ⊥ ⇒ C(K) < C(K′).

Lastly, we show that (4) and (5) are equivalent in the con-
text of (1)–(3). Assume first that C satisfies K ` ⊥ & K′ 0
⊥ ⇒ C(K) < C(K′). However, {⊥} ` ⊥. Accordingly,
K′ 0 ⊥ ⇒ C({⊥}) < C(K′). Since the codomain of C is
IR+ ∪ {∞}, it then follows that K′ 0 ⊥ ⇒ 0 < C(K′). As to
the converse, assume that C satisfies K′ 0 ⊥ ⇒ 0 < C(K′).
A consequence of (2) and (3) (together with the fact that
the codomain of C is IR+ ∪ {∞}) is K ` ⊥ ⇒ C(K) = 0. It
follows that K ` ⊥ & K′ 0 ⊥ ⇒ C(K) < C(K′).

Conditions (1)–(2) express that inconsistent formulas get
the lowest consistency degree and induce that consistent
formulas are ascribed a strictly greater consistency degree.

2. We write X ⊆ f Y to denote that X is a finite subset of Y .



3.1 Postulate chopping

Do we wish to endorse the general principle that K′ ` K
entails C(K) ≥ C(K′)? Under the reading of “being more
consistent” as “having more models”, the answer must be
positive.

Adopting a positive answer actually amounts to supple-
menting Inconsistency Null with the following postulate.

Entailment Decrease

K ` K′ ⇒ C(K) ≤ C(K′)

Proposition 2 Entailment Decrease entails Tautology Top,
Equivalence, Variant Equality, condition (2) from Proposi-
tion 1 and the following property.

σK = K′ ⇒ C(K) ≥ C(K′) (6)

Proof The case of Equivalence is trivial. As regards Tau-
tology Top, if ` K then K′ ` K. By Entailment Decrease,
C(K′) ≤ C(K). As to Variant Equality, it is a special
case of (6) that is taken care of as the last item in this
proof. As regards (2), assume K ` ⊥. Thus, K ` K′.
Applying Entailment Decrease, C(K) ≤ C(K′). As re-
gards (6), assume σK = K′. Now, K′ = σK entails
K′ ≡ K ∪ {a → b | [b ← a] ∈ σ}. Obviously, K′ ` K.
In view of Entailment Decrease, C(K′) ≤ C(K) ensues.

In (6), the significant case is K′ consistent (otherwise,
C(K′) = 0 by Inconsistency Null and C(K) ≥ C(K′) triv-
ially ensues). Thus, (6) expresses that K has a higher (or
equal) consistency degree than any instance of K.

Example 2 Let K = {p ∨ q} and K′ = {p ∨ p}. Thus,
σK = K′ for σ = [p ← q]. In view of (6), C(K) ≥ C(K′)
i.e. C(p ∨ q) ≥ C(p ∨ p).

Obviously, Entailment Decrease realizes the idea that
“having more models” does imply “being more consis-
tent”: If Mod(K) ⊆ Mod(K′) then C(K) ≤ C(K′). The
converse is untrue because ≤ is a total order whereas ⊆ (as
ranging over models of finite subsets of L ) is only a partial
order. In particular, for Var(K) ∩ Var(K′) = ∅, it must still
be the case that either C(K) ≤ C(K′) or C(K′) ≤ C(K) but
neither Mod(K) ⊆ Mod(K′) nor Mod(K′) ⊆ Mod(K) hold.

Note. A strict version of Entailment Decrease is of interest,
in the form of condition (4) from Proposition 1, that is:

Strict Entailment Decrease

K ` K′ & K′ 0 K ⇒ C(K) < C(K′)

The codomain of a consistency measure might be re-
stricted to [0, 1]. Equivalently, such a consistency measure
can be viewed as satisfying the following postulate.

Normalization

0 ≤ C(K) ≤ 1

Trivially, Normalization suggests alternative postulates,
e.g., Tautology Top could be replaced by the following
(stronger even in the case that the codomain of C is [0, 1])
postulate.

Tautology 1-Top

` K ⇒ C(K) = 1

3.2 Relationship with inconsistency measures

Inconsistency measures (they have received a great deal
of attention [9]) are meant to indicate to what extent a fi-
nite set of formulas K is inconsistent. Formally, an in-
consistency measure I maps every finite set of formulas
K to a value in IR+ ∪ {∞}. Interestingly, various postulates
have been proposed for inconsistency measuring, here is
the most important one (see the survey [18]).

Consistency Null

I(K) = 0 ⇔ K 0 ⊥

No more is needed to show that every pair (C, I), no mat-
ter how arbitrary, conveys some duality between C and I:

Proposition 3 Let C enjoy Inconsistency Null and I enjoy
Consistency Null. Then,

C(K) = 0 ⇔ K ` ⊥ ⇔ I(K) > 0
C(K) > 0 ⇔ K 0 ⊥ ⇔ I(K) = 0

Proof (C(K) = 0 ⇒ K ` ⊥) Assuming C(K) = 0, In-
consistency Null then gives K ` ⊥. (K ` ⊥ ⇒ I(K) > 0)
Assuming K ` ⊥, Consistency Null gives I(K) , 0. As
the codomain of I is IR+ ∪ {∞}, it follows that I(K) > 0.
(I(K) > 0 ⇒ C(K) = 0) Assuming I(K) > 0, Consistency
Null gives K ` ⊥. Applying Inconsistency Null, C(K) = 0.

C(K) > 0 ⇔ K 0 ⊥ ⇔ I(K) = 0 is proven in a similar
way.

The Tautology Top postulate is to be put in regard with
the following property (induced from Consistency Null and
the fact that I has codomain IR+ ∪ {∞}):

K 0 ⊥ ⇒ I(K) ≤ I(K′)

That is, the lowest value for I holds for the case that K
is consistent. Duality appears as Tautology Top actually
means that the highest value for C holds for K being tauto-
logical, intuitively the most extreme 3 form of consistency:

K ∈ max
�cons
{K | K 0 ⊥}︸                     ︷︷                     ︸
` K

⇒ C(K) ≥ C(K′)

3. We use �cons to intuitively denote a pre-order for “is at least as
consistent as”.



According to this scheme, it is expected that the following
consequence of Inconsistency Null

K ` ⊥ ⇒ C(K) ≤ C(K′)

gets a dual so that the highest value for I holds for the most
extreme 4 form of inconsistency:

K ∈ max
�inc
{K | K ` ⊥}︸                    ︷︷                    ︸
???

⇒ I(K) ≥ I(K′)

Duality breaks down as no such notion of “maximal incon-
sistent” arises in classical logic.

3.2.1 Formal duality

The aim here is to set a duality formally between pos-
tulates (and more generally properties) about consistency
measures and inconsistency measures.

Definition 1 Recursively set [A R B]? = A? R? B? where
the relation R as well as the expressions A and B have the
following primitive cases:

C(X)
?
←→ I(X)

is inconsistent
?
←→ is consistent

⇒
?
←→ ⇒

≤
?
←→ ≤

>
?
←→ >

=
?
←→ =

⊥
?
←→ ⊥

0
?
←→ 0

K
?
←→ K

K′
?
←→ K′
...

Example 3 Here are a few examples of dual properties
(we write K ` ⊥ to stand for “K is inconsistent” but the
latter expression is what is used for determining the dual
expression, and similarly for K 0 ⊥ standing for “K is
consistent”).

[C(K) = 0⇒ K ` ⊥]? = [C(K) = 0]? ⇒ [K ` ⊥]?

= I(K) = 0⇒ K 0 ⊥

[K ` ⊥ ⇒ I(K) > 0]? = [K ` ⊥]? ⇒ [I(K) > 0]?

= K 0 ⊥ ⇒ C(K) > 0

[K ` ⊥ ⇒ C(K) ≤ C(K′)]? = [K ` ⊥]? ⇒ [C(K) ≤ C(K′)]?

= K 0 ⊥ ⇒ I(K) ≤ I(K′)

4. We use �inc to intuitively denote a pre-order for “is at least as in-
consistent as”.

The duality fails with

` K ⇒ C(K) ≥ C(K′)

because ` K is not mapped to 0 K (there is no “is max-
imally unsatisfiable” —which is expected as dual to “is
valid” understood as “is maximally satisfiable”).

The duality also fails as Definition 1 has no entry for `?.
In fact, the idea that “having more models” implies “being
more consistent” has no counterpart in the universe of in-
consistency measures: by strong completeness of proposi-
tional logic, having more models is equivalent with propo-
sitional entailment but this is useless for inconsistent sets
of formulas because they all entail each other. In symbols,
[K ` K′ ⇒ C(K) ≤ C(K′)]? is undefined. The correspond-
ing item would be K ` K′ ⇒ I(K) ≤ I(K′) which would
make I to collapse because K ` K′ holds for every incon-
sistent K and K′.

4 Mixed measures

Consider extending C so that not all inconsistent bases
get the same consistency degree. An idea is to extend the
codomain to IR ∪ {−∞,+∞}. The main postulate would
become

Inconsistency below zero

C(K) ≤ 0 ⇔ K ` ⊥

The negative values can as well come from a given in-
consistency measure I, by letting C(K) = −I(K) whenever
K ` ⊥. 5

The original (i.e., non-extended) C ascribes 0 to every
inconsistent K whereas I ascribes 0 to every consistent K.
Since no K is both consistent and inconsistent, the extended
C is to ascribe 0 to no K at all: the codomain of the ex-
tended C is not to include 0.

Definition 2 A mixed measure M assigns any finite K a
value in IR∗ ∪ {−∞,+∞}.

For mixed measures, the fundamental postulate therefore
is

Inconsistency

M(K) < 0 ⇔ K ` ⊥

Lemma 1 The Inconsistency postulate is equivalent to

M(K) > 0 ⇔ K 0 ⊥

Proof Trivial.

5. Careful: Equivalently, I(K) = −C(K) but keep in mind that K ` ⊥
must hold hence I actually fails to be defined from C.



Lemma 2 The Inconsistency postulate implies that
M(K) > M(K′) whenever K 0 ⊥ and K′ ` ⊥.

Proof Trivial.

Another major postulate is

Tautology Top

` K ⇔ ∀K′ M(K) ≥ M(K′)

That is, tautologies are ascribed the highest degree (they
are regarded as more consistent than any non-tautologies).

5 Consistency Measures based on Opera-
tions over Models

Entailment Decrease (or the weaker Equivalence postulate)
allows us to take advantage of operations over the set of
models of a belief base K to ascribe a consistency degree
to K using the set of models of K. The next two sections
present such examples: supermodels and morpho-logics.

5.1 Supermodels

Ginsberg et al. [6] introduced the notion of supermodels.
In a nutshell, these act as would be models for a formula ϕ
as follows: if the truth-value of n atoms (not occurrences
of atoms) are switched, does switching the truth-value of m
other atoms yield a model of ϕ? This can be viewed as an
assessment of consistency, indicative of the extent to which
the model can be distorted and still remain a model. To be
self-contained, here is a short presentation of supermodels.

Definition 3 An (n,m)-supermodel of ϕ is a modelM of ϕ
such that whenever the truth-value of at most n variables
is switched in M (yielding an interpretation M′), we can
[still] obtain a model of ϕ by changing the truth-value of at
most m other variables inM′.

Remark. Should there be less than n or m variables oc-
curring in ϕ, the definition means that the extra variables
whose value may happen to be varied are taken in the rest
of the infinite supply (remember that an interpretation is
defined over the set of all variables).

Notation. The set of all (n,m)-supermodels of ϕ is denoted
Supmodϕ(n,m).

Obviously, the classical models of ϕ always are the
(0, 0)-supermodels of ϕ, i.e. Supmodϕ(0, 0)=Mod(ϕ).

Example 4 The interpretation pq is a (1, 0)-supermodel of
p ∨ q as well as a classical model of p ∨ q.

Making a restricted use of supermodels is enough to in-
duce a consistency measure as follows.

C(K) def
=

{
0 if SupmodK(0, 0) = ∅

1 + sup{n | SupmodK(n, 0) , ∅} otherwise

Detailing, C(K) = 1+max{n | SupmodK(n, 0) , ∅}when
K is neither tautologous nor inconsistent, while C(K) = ∞

for K tautologous.
Please observe that C satisfies Inconsistency Null and

Entailment Decrease hence Tautology Top, Equivalence,
Variant Equality. Actually, C satisfies Strict Entailment
Decrease. Trivially, C fails Tautology 1-Top and Normal-
ization.

5.2 Morpho-Logics

Mathematical morphology, which is based on set theory,
deals with shapes and transformations. It has been intro-
duced in logic by Bloch and Lang [4]. Two basic operations
in mathematical morphology are dilution (meant to enlarge
a shape) and erosion (meant to contract a shape). They are
based on a auxiliary structure, captured by a function that
maps each point (of the shape) to a set of points (meant to
serve as a neighborhood but other options are possible).

This gives us, for Ω a set of interpretations on Var(L ),
and ω varying over the set of all interpretations on Var(L ),

D f (Ω) = {ω | f (ω) ∩Ω , ∅}

and
E f (Ω) = {ω | f (ω) ⊆ Ω}

Clearly, properties of f are crucial for D f and E f to be
faithful to the idea of actually enlarging and contracting:
e.g., f must be extensive in the sense that ω ∈ f (ω), . . .

Both D f and E f are monotone wrt set inclusion of sets
of interpretations, e.g.,

if Γ ⊆ Ω then E f (Γ) ⊆ E f (Ω)

With respect to the auxiliary structure, however, dilution is
monotone but erosion is anti-monotone: 6

if f ≤ g then Eg(Ω) ⊆ E f (Ω)

A host of consistency measures can be cast by resorting
to distance-based functions. For example, a family ( fi)i∈IN
can be defined by

fi(ω) =
{
ω′ | δ(ω,ω′) ≤ i

}
where δ is an integer-valued distance over the set of all in-
terpretations on Var(L ).

6. ≤ is the usual order over functions with codomain a set of sets:
f ≤ f ′ iff ∀ω, f (ω) ⊆ f ′(ω).



A collection of consistency measures then arises from

C(K) def
= sup

{
n | E fn (Mod(K)) , ∅

}
Please observe that the consistency measure previously

defined with supermodels is the same as the consistency
measure obtained here for the case that δ is the Hamming 7

distance dH defined as

dH(ω,ω′) =
∑

a∈Var(K)

|ω(a) − ω′(a)|

6 Interim Conclusion

Indeed, there is an extensive body of literature on incon-
sistency measures: From the seminal article [7], with mile-
stones such as [13, 11, 17] up to more recent contributions
in a special issue [14] and an anniversary book [9], as well
as, in the meantime, specific measures [19, 15, 1, 5, 12]
or analysis of measures through properties and postu-
lates [10, 2, 3, 18] and even measures defined with posi-
tive/negative values [16] (also, [8] by a measure compar-
ing inconsistency in two sets of formulas). From a dual
perspective, a similar development would seem natural. It
certainly makes sense to rank logical bases from more con-
sistent to less consistent in the context of getting conclu-
sions on firmer grounds.

We have shown that a study of consistent measures could
reflect work on inconsistency measures. A number of cor-
respondences show up. Though, even with such a prelim-
inary investigation, a caveat has been exhibited: While a
notion of “maximally satisfiable” makes sense, there is no
corresponding notion of “maximally unsatisfiable”. On the
more positive side, a finding of interest is that very little
(actually, the pair of Null postulates) is needed to estab-
lish the correspondence between consistency/inconsistency
and positive/negative values for consistency measures and
inconsistency measures (Proposition 3).

Also, we have initiated a process of merging a consis-
tency and inconsistency measure into a single measure.
Here, a perhaps unexpected byproduct is that the null value
disappears. . . Hopefully, further such surprises are afoot in
the area of consistency measures.
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